1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
|
//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs, and things
/// that are not clause specific.
///
//===----------------------------------------------------------------------===//
#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaOpenACC.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
using namespace clang;
namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
SourceLocation StartLoc, bool IsStmt) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, both invalid and unimplemented don't really need to
// do anything.
break;
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Wait:
if (!IsStmt)
return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
break;
}
return false;
}
void CollectActiveReductionClauses(
llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses,
ArrayRef<OpenACCClause *> CurClauses) {
for (auto *CurClause : CurClauses) {
if (auto *RedClause = dyn_cast<OpenACCReductionClause>(CurClause);
RedClause && !RedClause->getVarList().empty())
ActiveClauses.push_back(RedClause);
}
}
// Depth needs to be preserved for all associated statements that aren't
// supposed to modify the compute/combined/loop construct information.
bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) {
switch (DK) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
return false;
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
return true;
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
llvm_unreachable("Doesn't have an associated stmt");
default:
case OpenACCDirectiveKind::Invalid:
llvm_unreachable("Unhandled directive kind?");
}
llvm_unreachable("Unhandled directive kind?");
}
} // namespace
SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}
SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII(
SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses)
: SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo),
DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel),
OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc),
OldLoopVectorClauseLoc(S.LoopVectorClauseLoc),
OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo),
ActiveReductionClauses(S.ActiveReductionClauses),
LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DirKind)) {
// Compute constructs end up taking their 'loop'.
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// Implement the 'unless within a nested compute region' part.
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
SemaRef.LoopWithoutSeqInfo = {};
} else if (DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(), DirKind};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
} else if (DirKind == OpenACCDirectiveKind::Loop) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (SemaRef.getActiveComputeConstructInfo().Kind ==
OpenACCDirectiveKind::Kernels &&
UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(),
OpenACCDirectiveKind::Kernels};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
}
}
void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// Reset this checking for loops that aren't covered in a RAII object.
SemaRef.LoopInfo.CurLevelHasLoopAlready = false;
SemaRef.CollapseInfo.CollapseDepthSatisfied = true;
SemaRef.TileInfo.TileDepthSatisfied = true;
// We make sure to take an optional list of uninstantiated clauses, so that
// we can check to make sure we don't 'double diagnose' in the event that
// the value of 'N' was not dependent in a template. We also ensure during
// Sema that there is only 1 collapse on each construct, so we can count on
// the fact that if both find a 'collapse', that they are the same one.
auto *CollapseClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCCollapseClause>);
auto *UnInstCollapseClauseItr =
llvm::find_if(UnInstClauses, llvm::IsaPred<OpenACCCollapseClause>);
if (Clauses.end() == CollapseClauseItr)
return;
OpenACCCollapseClause *CollapseClause =
cast<OpenACCCollapseClause>(*CollapseClauseItr);
SemaRef.CollapseInfo.ActiveCollapse = CollapseClause;
Expr *LoopCount = CollapseClause->getLoopCount();
// If the loop count is still instantiation dependent, setting the depth
// counter isn't necessary, so return here.
if (!LoopCount || LoopCount->isInstantiationDependent())
return;
// Suppress diagnostics if we've done a 'transform' where the previous version
// wasn't dependent, meaning we already diagnosed it.
if (UnInstCollapseClauseItr != UnInstClauses.end() &&
!cast<OpenACCCollapseClause>(*UnInstCollapseClauseItr)
->getLoopCount()
->isInstantiationDependent())
return;
SemaRef.CollapseInfo.CollapseDepthSatisfied = false;
SemaRef.CollapseInfo.CurCollapseCount =
cast<ConstantExpr>(LoopCount)->getResultAsAPSInt();
SemaRef.CollapseInfo.DirectiveKind = DirKind;
}
void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// We don't diagnose if this is during instantiation, since the only thing we
// care about is the number of arguments, which we can figure out without
// instantiation, so we don't want to double-diagnose.
if (UnInstClauses.size() > 0)
return;
auto *TileClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCTileClause>);
if (Clauses.end() == TileClauseItr)
return;
OpenACCTileClause *TileClause = cast<OpenACCTileClause>(*TileClauseItr);
SemaRef.TileInfo.ActiveTile = TileClause;
SemaRef.TileInfo.TileDepthSatisfied = false;
SemaRef.TileInfo.CurTileCount = TileClause->getSizeExprs().size();
SemaRef.TileInfo.DirectiveKind = DirKind;
}
SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() {
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels ||
DirKind == OpenACCDirectiveKind::Loop ||
DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo;
SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel;
SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc;
SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc;
SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo;
SemaRef.ActiveReductionClauses.swap(ActiveReductionClauses);
} else if (DirKind == OpenACCDirectiveKind::Data ||
DirKind == OpenACCDirectiveKind::HostData) {
// Intentionally doesn't reset the Loop, Compute Construct, or reduction
// effects.
}
}
void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
SourceLocation DirLoc) {
// Start an evaluation context to parse the clause arguments on.
SemaRef.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
switch (K) {
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, an invalid kind has nothing we can check here. We
// want to continue parsing clauses as far as we can, so we will just
// ensure that we can still work and don't check any construct-specific
// rules anywhere.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
// Nothing to do here, there is no real legalization that needs to happen
// here as these constructs do not take any arguments.
break;
case OpenACCDirectiveKind::Wait:
// Nothing really to do here, the arguments to the 'wait' should have
// already been handled by the time we get here.
break;
default:
Diag(DirLoc, diag::warn_acc_construct_unimplemented) << K;
break;
}
}
ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
Expr *IntExpr) {
assert(((DK != OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK != OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid)) &&
"Only one of directive or clause kind should be provided");
class IntExprConverter : public Sema::ICEConvertDiagnoser {
OpenACCDirectiveKind DirectiveKind;
OpenACCClauseKind ClauseKind;
Expr *IntExpr;
// gets the index into the diagnostics so we can use this for clauses,
// directives, and sub array.s
unsigned getDiagKind() const {
if (ClauseKind != OpenACCClauseKind::Invalid)
return 0;
if (DirectiveKind != OpenACCDirectiveKind::Invalid)
return 1;
return 2;
}
public:
IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *IntExpr)
: ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
/*Suppress=*/false,
/*SuppressConversion=*/true),
DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}
bool match(QualType T) override {
// OpenACC spec just calls this 'integer expression' as having an
// 'integer type', so fall back on C99's 'integer type'.
return T->isIntegerType();
}
SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
<< getDiagKind() << ClauseKind << DirectiveKind << T;
}
SemaBase::SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
<< T << IntExpr->getSourceRange();
}
SemaBase::SemaDiagnosticBuilder
diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
<< T << ConvTy;
}
SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
}
SemaBase::SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} IntExprDiagnoser(DK, CK, IntExpr);
if (!IntExpr)
return ExprError();
ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
Loc, IntExpr, IntExprDiagnoser);
if (IntExprResult.isInvalid())
return ExprError();
IntExpr = IntExprResult.get();
if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
return ExprError();
// TODO OpenACC: Do we want to perform usual unary conversions here? When
// doing codegen we might find that is necessary, but skip it for now.
return IntExpr;
}
bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
Expr *VarExpr) {
// We already know that VarExpr is a proper reference to a variable, so we
// should be able to just take the type of the expression to get the type of
// the referenced variable.
// We've already seen an error, don't diagnose anything else.
if (!VarExpr || VarExpr->containsErrors())
return false;
if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
return true;
}
QualType Ty = VarExpr->getType();
Ty = Ty.getNonReferenceType().getUnqualifiedType();
// Nothing we can do if this is a dependent type.
if (Ty->isDependentType())
return false;
if (!Ty->isPointerType())
return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
<< ClauseKind << Ty;
return false;
}
ExprResult SemaOpenACC::ActOnVar(OpenACCClauseKind CK, Expr *VarExpr) {
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// 'use_device' doesn't allow array subscript or array sections.
// OpenACC3.3 2.8:
// A 'var' in a 'use_device' clause must be the name of a variable or array.
if (CK == OpenACCClauseKind::UseDevice &&
isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device);
return ExprError();
}
// Sub-arrays/subscript-exprs are fine as long as the base is a
// VarExpr/MemberExpr. So strip all of those off.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
// If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
// reduction clause must be a scalar variable name, an aggregate variable
// name, an array element, or a subarray.
// If CK is a 'use_device', this also isn't valid, as it isn' the name of a
// variable or array.
// A MemberExpr that references a Field is valid for other clauses.
if (CK != OpenACCClauseKind::Reduction &&
CK != OpenACCClauseKind::UseDevice) {
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl()))
return VarExpr;
}
}
// Referring to 'this' is ok for the most part, but for 'use_device' doesn't
// fall into 'variable or array name'
if (CK != OpenACCClauseKind::UseDevice && isa<CXXThisExpr>(CurVarExpr))
return VarExpr;
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
(CK != OpenACCClauseKind::Reduction &&
isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
if (CK == OpenACCClauseKind::UseDevice)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device);
else
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
<< (CK != OpenACCClauseKind::Reduction);
return ExprError();
}
ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLoc,
Expr *Length,
SourceLocation RBLoc) {
ASTContext &Context = getASTContext();
// Handle placeholders.
if (Base->hasPlaceholderType() &&
!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
// Check the 'base' value, it must be an array or pointer type, and not to/of
// a function type.
QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (!Base->isTypeDependent()) {
if (OriginalBaseTy->isAnyPointerType()) {
ResultTy = OriginalBaseTy->getPointeeType();
} else if (OriginalBaseTy->isArrayType()) {
ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
<< Base->getSourceRange());
}
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_acc_subarray_incomplete_type,
Base))
return ExprError();
if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
}
auto GetRecovery = [&](Expr *E, QualType Ty) {
ExprResult Recovery =
SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
return Recovery.isUsable() ? Recovery.get() : nullptr;
};
// Ensure both of the expressions are int-exprs.
if (LowerBound && !LowerBound->isTypeDependent()) {
ExprResult LBRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
LowerBound->getExprLoc(), LowerBound);
if (LBRes.isUsable())
LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
LowerBound =
LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
}
if (Length && !Length->isTypeDependent()) {
ExprResult LenRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
Length->getExprLoc(), Length);
if (LenRes.isUsable())
LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
Length =
LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
}
// Length is required if the base type is not an array of known bounds.
if (!Length && (OriginalBaseTy.isNull() ||
(!OriginalBaseTy->isDependentType() &&
!OriginalBaseTy->isConstantArrayType() &&
!OriginalBaseTy->isDependentSizedArrayType()))) {
bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
Diag(ColonLoc, diag::err_acc_subarray_no_length) << IsArray;
// Fill in a dummy 'length' so that when we instantiate this we don't
// double-diagnose here.
ExprResult Recovery = SemaRef.CreateRecoveryExpr(
ColonLoc, SourceLocation(), ArrayRef<Expr *>(), Context.IntTy);
Length = Recovery.isUsable() ? Recovery.get() : nullptr;
}
// Check the values of each of the arguments, they cannot be negative(we
// assume), and if the array bound is known, must be within range. As we do
// so, do our best to continue with evaluation, we can set the
// value/expression to nullptr/nullopt if they are invalid, and treat them as
// not present for the rest of evaluation.
// We don't have to check for dependence, because the dependent size is
// represented as a different AST node.
std::optional<llvm::APSInt> BaseSize;
if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
BaseSize = ArrayTy->getSize();
}
auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
if (!E || E->isInstantiationDependent())
return std::nullopt;
Expr::EvalResult Res;
if (!E->EvaluateAsInt(Res, Context))
return std::nullopt;
return Res.Val.getInt();
};
std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);
// Check lower bound for negative or out of range.
if (LowerBoundValue.has_value()) {
if (LowerBoundValue->isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
// Lower bound (start index) must be less than the size of the array.
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
}
}
// Check length for negative or out of range.
if (LengthValue.has_value()) {
if (LengthValue->isNegative()) {
Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
// Length must be lessthan or EQUAL to the size of the array.
Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
}
// Adding two APSInts requires matching sign, so extract that here.
auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
if (LHS.isSigned() == RHS.isSigned())
return LHS + RHS;
unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
};
// If we know all 3 values, we can diagnose that the total value would be out
// of range.
if (BaseSize.has_value() && LowerBoundValue.has_value() &&
LengthValue.has_value() &&
llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
*BaseSize) > 0) {
Diag(Base->getExprLoc(),
diag::err_acc_subarray_base_plus_length_out_of_range)
<< toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
// If any part of the expression is dependent, return a dependent sub-array.
QualType ArrayExprTy = Context.ArraySectionTy;
if (Base->isTypeDependent() ||
(LowerBound && LowerBound->isInstantiationDependent()) ||
(Length && Length->isInstantiationDependent()))
ArrayExprTy = Context.DependentTy;
return new (Context)
ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
OK_Ordinary, ColonLoc, RBLoc);
}
void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc,
ForStmtBeginChecker &C) {
assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?");
// Enable the while/do-while checking.
LoopInfo.TopLevelLoopSeen = true;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
C.check();
// OpenACC 3.3 2.9.1:
// Each associated loop, except the innermost, must contain exactly one loop
// or loop nest.
// This checks for more than 1 loop at the current level, the
// 'depth'-satisifed checking manages the 'not zero' case.
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "No collapse object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
} else {
--(*CollapseInfo.CurCollapseCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*CollapseInfo.CurCollapseCount == 0)
CollapseInfo.CollapseDepthSatisfied = true;
}
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
C.check();
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "No tile object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
} else {
--(*TileInfo.CurTileCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*TileInfo.CurTileCount == 0)
TileInfo.TileDepthSatisfied = true;
}
}
// Set this to 'false' for the body of this loop, so that the next level
// checks independently.
LoopInfo.CurLevelHasLoopAlready = false;
}
namespace {
bool isValidLoopVariableType(QualType LoopVarTy) {
// Just skip if it is dependent, it could be any of the below.
if (LoopVarTy->isDependentType())
return true;
// The loop variable must be of integer,
if (LoopVarTy->isIntegerType())
return true;
// C/C++ pointer,
if (LoopVarTy->isPointerType())
return true;
// or C++ random-access iterator type.
if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) {
// Note: Only do CXXRecordDecl because RecordDecl can't be a random access
// iterator type!
// We could either do a lot of work to see if this matches
// random-access-iterator, but it seems that just checking that the
// 'iterator_category' typedef is more than sufficient. If programmers are
// willing to lie about this, we can let them.
for (const auto *TD :
llvm::make_filter_range(RD->decls(), llvm::IsaPred<TypedefNameDecl>)) {
const auto *TDND = cast<TypedefNameDecl>(TD)->getCanonicalDecl();
if (TDND->getName() != "iterator_category")
continue;
// If there is no type for this decl, return false.
if (TDND->getUnderlyingType().isNull())
return false;
const CXXRecordDecl *ItrCategoryDecl =
TDND->getUnderlyingType()->getAsCXXRecordDecl();
// If the category isn't a record decl, it isn't the tag type.
if (!ItrCategoryDecl)
return false;
auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) {
if (RD->getName() != "random_access_iterator_tag")
return false;
// Checks just for std::random_access_iterator_tag.
return RD->getEnclosingNamespaceContext()->isStdNamespace();
};
if (IsRandomAccessIteratorTag(ItrCategoryDecl))
return true;
// We can also support types inherited from the
// random_access_iterator_tag.
for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) {
if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl()))
return true;
}
return false;
}
}
return false;
}
} // namespace
void SemaOpenACC::ForStmtBeginChecker::check() {
if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid)
return;
if (AlreadyChecked)
return;
AlreadyChecked = true;
// OpenACC3.3 2.1:
// A loop associated with a loop construct that does not have a seq clause
// must be written to meet all the following conditions:
// - The loop variable must be of integer, C/C++ pointer, or C++ random-access
// iterator type.
// - The loop variable must monotonically increase or decrease in the
// direction of its termination condition.
// - The loop trip count must be computable in constant time when entering the
// loop construct.
//
// For a C++ range-based for loop, the loop variable
// identified by the above conditions is the internal iterator, such as a
// pointer, that the compiler generates to iterate the range. it is not the
// variable declared by the for loop.
if (IsRangeFor) {
// If the range-for is being instantiated and didn't change, don't
// re-diagnose.
if (!RangeFor.has_value())
return;
// For a range-for, we can assume everything is 'corect' other than the type
// of the iterator, so check that.
const DeclStmt *RangeStmt = (*RangeFor)->getBeginStmt();
// In some dependent contexts, the autogenerated range statement doesn't get
// included until instantiation, so skip for now.
if (!RangeStmt)
return;
const ValueDecl *InitVar = cast<ValueDecl>(RangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType)) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return;
}
// Else we are in normal 'ForStmt', so we can diagnose everything.
// We only have to check cond/inc if they have changed, but 'init' needs to
// just suppress its diagnostics if it hasn't changed.
const ValueDecl *InitVar = checkInit();
if (Cond.has_value())
checkCond();
if (Inc.has_value())
checkInc(InitVar);
}
const ValueDecl *SemaOpenACC::ForStmtBeginChecker::checkInit() {
if (!Init) {
if (InitChanged) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
auto DiagLoopVar = [&]() {
if (InitChanged) {
SemaRef.Diag(Init->getBeginLoc(), diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
Init = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(Init))
Init = E->IgnoreParenImpCasts();
const ValueDecl *InitVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(Init)) {
// Allow assignment operator here.
if (!BO->isAssignmentOp())
return DiagLoopVar();
const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS))
InitVar = DRE->getDecl();
} else if (const auto *DS = dyn_cast<DeclStmt>(Init)) {
// Allow T t = <whatever>
if (!DS->isSingleDecl())
return DiagLoopVar();
InitVar = dyn_cast<ValueDecl>(DS->getSingleDecl());
// Ensure we have an initializer, unless this is a record/dependent type.
if (InitVar) {
if (!isa<VarDecl>(InitVar))
return DiagLoopVar();
if (!InitVar->getType()->isRecordType() &&
!InitVar->getType()->isDependentType() &&
!cast<VarDecl>(InitVar)->hasInit())
return DiagLoopVar();
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Init)) {
// Allow assignment operator call.
if (CE->getOperator() != OO_Equal)
return DiagLoopVar();
const Expr *LHS = CE->getArg(0)->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
InitVar = DRE->getDecl();
} else if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
InitVar = ME->getMemberDecl();
}
}
if (!InitVar)
return DiagLoopVar();
InitVar = cast<ValueDecl>(InitVar->getCanonicalDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
// Since we have one, all we need to do is ensure it is the right type.
if (!isValidLoopVariableType(VarType)) {
if (InitChanged) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
return InitVar;
}
void SemaOpenACC::ForStmtBeginChecker::checkCond() {
if (!*Cond) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
// Nothing else to do here. we could probably do some additional work to look
// into the termination condition, but that error-prone. For now, we don't
// implement anything other than 'there is a termination condition', and if
// codegen/MLIR comes up with some necessary restrictions, we can implement
// them here.
}
void SemaOpenACC::ForStmtBeginChecker::checkInc(const ValueDecl *Init) {
if (!*Inc) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
}
auto DiagIncVar = [this] {
SemaRef.Diag((*Inc)->getBeginLoc(), diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(*Inc))
Inc = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(*Inc))
Inc = E->IgnoreParenImpCasts();
auto getDeclFromExpr = [](const Expr *E) -> const ValueDecl * {
E = E->IgnoreParenImpCasts();
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
E = E->IgnoreParenImpCasts();
if (!E)
return nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<ValueDecl>(DRE->getDecl());
if (const auto *ME = dyn_cast<MemberExpr>(E))
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return ME->getMemberDecl();
return nullptr;
};
const ValueDecl *IncVar = nullptr;
// Here we enforce the monotonically increase/decrease:
if (const auto *UO = dyn_cast<UnaryOperator>(*Inc)) {
// Allow increment/decrement ops.
if (!UO->isIncrementDecrementOp())
return DiagIncVar();
IncVar = getDeclFromExpr(UO->getSubExpr());
} else if (const auto *BO = dyn_cast<BinaryOperator>(*Inc)) {
switch (BO->getOpcode()) {
default:
return DiagIncVar();
case BO_AddAssign:
case BO_SubAssign:
case BO_MulAssign:
case BO_DivAssign:
case BO_Assign:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(BO->getLHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(*Inc)) {
switch (CE->getOperator()) {
default:
return DiagIncVar();
case OO_PlusPlus:
case OO_MinusMinus:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_SlashEqual:
case OO_Equal:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(CE->getArg(0));
} else if (const auto *ME = dyn_cast<CXXMemberCallExpr>(*Inc)) {
IncVar = getDeclFromExpr(ME->getImplicitObjectArgument());
// We can't really do much for member expressions, other than hope they are
// doing the right thing, so give up here.
}
if (!IncVar)
return DiagIncVar();
// InitVar shouldn't be null unless there was an error, so don't diagnose if
// that is the case. Else we should ensure that it refers to the loop
// value.
if (Init && IncVar->getCanonicalDecl() != Init->getCanonicalDecl())
return DiagIncVar();
return;
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst,
const Stmt *First, const Stmt *OldSecond,
const Stmt *Second, const Stmt *OldThird,
const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
std::optional<const Stmt *> S;
if (OldSecond == Second)
S = std::nullopt;
else
S = Second;
std::optional<const Stmt *> T;
if (OldThird == Third)
S = std::nullopt;
else
S = Third;
bool InitChanged = false;
if (OldFirst != First) {
InitChanged = true;
// VarDecls are always rebuild because they are dependent, so we can do a
// little work to suppress some of the double checking based on whether the
// type is instantiation dependent.
QualType OldVDTy;
QualType NewVDTy;
if (const auto *DS = dyn_cast<DeclStmt>(OldFirst))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
OldVDTy = VD->getType();
if (const auto *DS = dyn_cast<DeclStmt>(First))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
NewVDTy = VD->getType();
if (!OldVDTy.isNull() && !NewVDTy.isNull())
InitChanged = OldVDTy->isInstantiationDependentType() !=
NewVDTy->isInstantiationDependentType();
}
ForStmtBeginChecker FSBC{*this, ForLoc, First, InitChanged, S, T};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First,
const Stmt *Second, const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, First, /*InitChanged=*/true,
Second, Third};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *OldRangeFor,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
std::optional<const CXXForRangeStmt *> RF;
if (OldRangeFor == RangeFor)
RF = std::nullopt;
else
RF = cast<CXXForRangeStmt>(RangeFor);
ForStmtBeginChecker FSBC{*this, ForLoc, RF};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, cast<CXXForRangeStmt>(RangeFor)};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
namespace {
SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) {
// We should diagnose on anything except `CompoundStmt`, `NullStmt`,
// `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and
// `DoStmt`, as those are caught as a violation elsewhere.
// For `CompoundStmt` we need to search inside of it.
if (!CurStmt ||
isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>(
CurStmt))
return SourceLocation{};
// Any other construct is an error anyway, so it has already been diagnosed.
if (isa<OpenACCConstructStmt>(CurStmt))
return SourceLocation{};
// Search inside the compound statement, this allows for arbitrary nesting
// of compound statements, as long as there isn't any code inside.
if (const auto *CS = dyn_cast<CompoundStmt>(CurStmt)) {
for (const auto *ChildStmt : CS->children()) {
SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(ChildStmt);
if (ChildStmtLoc.isValid())
return ChildStmtLoc;
}
// Empty/not invalid compound statements are legal.
return SourceLocation{};
}
return CurStmt->getBeginLoc();
}
} // namespace
void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) {
if (!getLangOpts().OpenACC)
return;
// Set this to 'true' so if we find another one at this level we can diagnose.
LoopInfo.CurLevelHasLoopAlready = true;
if (!Body.isUsable())
return;
bool IsActiveCollapse = CollapseInfo.CurCollapseCount &&
*CollapseInfo.CurCollapseCount > 0 &&
!CollapseInfo.ActiveCollapse->hasForce();
bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0;
if (IsActiveCollapse || IsActiveTile) {
SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(Body.get());
if (OtherStmtLoc.isValid() && IsActiveCollapse) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind;
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (OtherStmtLoc.isValid() && IsActiveTile) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Tile << TileInfo.DirectiveKind;
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
}
}
namespace {
// Get a list of clause Kinds for diagnosing a list, joined by a commas and an
// 'or'.
std::string GetListOfClauses(llvm::ArrayRef<OpenACCClauseKind> Clauses) {
assert(!Clauses.empty() && "empty clause list not supported");
std::string Output;
llvm::raw_string_ostream OS{Output};
if (Clauses.size() == 1) {
OS << '\'' << Clauses[0] << '\'';
return Output;
}
llvm::ArrayRef<OpenACCClauseKind> AllButLast{Clauses.begin(),
Clauses.end() - 1};
llvm::interleave(
AllButLast, [&](OpenACCClauseKind K) { OS << '\'' << K << '\''; },
[&] { OS << ", "; });
OS << " or \'" << Clauses.back() << '\'';
return Output;
}
} // namespace
bool SemaOpenACC::ActOnStartStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
// OpenACC 3.3 2.9.1:
// Intervening code must not contain other OpenACC directives or calls to API
// routines.
//
// ALL constructs are ill-formed if there is an active 'collapse'
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse << K;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile << K;
assert(TileInfo.ActiveTile && "Tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
// OpenACC3.3 2.6.5: At least one copy, copyin, copyout, create, no_create,
// present, deviceptr, attach, or default clause must appear on a 'data'
// construct.
if (K == OpenACCDirectiveKind::Data &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyClause, OpenACCCopyInClause,
OpenACCCopyOutClause, OpenACCCreateClause,
OpenACCNoCreateClause, OpenACCPresentClause,
OpenACCDevicePtrClause, OpenACCAttachClause,
OpenACCDefaultClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses(
{OpenACCClauseKind::Copy, OpenACCClauseKind::CopyIn,
OpenACCClauseKind::CopyOut, OpenACCClauseKind::Create,
OpenACCClauseKind::NoCreate, OpenACCClauseKind::Present,
OpenACCClauseKind::DevicePtr, OpenACCClauseKind::Attach,
OpenACCClauseKind::Default});
// OpenACC3.3 2.6.6: At least one copyin, create, or attach clause must appear
// on an enter data directive.
if (K == OpenACCDirectiveKind::EnterData &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyInClause, OpenACCCreateClause,
OpenACCAttachClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::CopyIn,
OpenACCClauseKind::Create,
OpenACCClauseKind::Attach,
});
// OpenACC3.3 2.6.6: At least one copyout, delete, or detach clause must
// appear on an exit data directive.
if (K == OpenACCDirectiveKind::ExitData &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyOutClause, OpenACCDeleteClause,
OpenACCDetachClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::CopyOut,
OpenACCClauseKind::Delete,
OpenACCClauseKind::Detach,
});
// OpenACC3.3 2.8: At least 'one use_device' clause must appear.
if (K == OpenACCDirectiveKind::HostData &&
llvm::find_if(Clauses, llvm::IsaPred<OpenACCUseDeviceClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K << GetListOfClauses({OpenACCClauseKind::UseDevice});
// OpenACC3.3 2.14.3: At least one default_async, device_num, or device_type
// clause must appear.
if (K == OpenACCDirectiveKind::Set &&
llvm::find_if(
Clauses,
llvm::IsaPred<OpenACCDefaultAsyncClause, OpenACCDeviceNumClause,
OpenACCDeviceTypeClause, OpenACCIfClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({OpenACCClauseKind::DefaultAsync,
OpenACCClauseKind::DeviceNum,
OpenACCClauseKind::DeviceType,
OpenACCClauseKind::If});
// OpenACC3.3 2.14.4: At least one self, host, or device clause must appear on
// an update directive.
if (K == OpenACCDirectiveKind::Update &&
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSelfClause, OpenACCHostClause,
OpenACCDeviceClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({OpenACCClauseKind::Self,
OpenACCClauseKind::Host,
OpenACCClauseKind::Device});
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}
StmtResult SemaOpenACC::ActOnEndStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs,
SourceLocation RParenLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses, StmtResult AssocStmt) {
switch (K) {
default:
return StmtEmpty();
case OpenACCDirectiveKind::Invalid:
return StmtError();
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels: {
return OpenACCComputeConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop: {
return OpenACCCombinedConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Loop: {
return OpenACCLoopConstruct::Create(
getASTContext(), ActiveComputeConstructInfo.Kind, StartLoc, DirLoc,
EndLoc, Clauses, AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Data: {
return OpenACCDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::EnterData: {
return OpenACCEnterDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::ExitData: {
return OpenACCExitDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::HostData: {
return OpenACCHostDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Wait: {
return OpenACCWaitConstruct::Create(
getASTContext(), StartLoc, DirLoc, LParenLoc, Exprs.front(), MiscLoc,
Exprs.drop_front(), RParenLoc, EndLoc, Clauses);
}
case OpenACCDirectiveKind::Init: {
return OpenACCInitConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Shutdown: {
return OpenACCShutdownConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Set: {
return OpenACCSetConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Update: {
return OpenACCUpdateConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
}
llvm_unreachable("Unhandled case in directive handling?");
}
StmtResult SemaOpenACC::ActOnAssociatedStmt(
SourceLocation DirectiveLoc, OpenACCDirectiveKind K,
ArrayRef<const OpenACCClause *> Clauses, StmtResult AssocStmt) {
switch (K) {
default:
llvm_unreachable("Unimplemented associated statement application");
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
llvm_unreachable(
"these don't have associated statements, so shouldn't get here");
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
// There really isn't any checking here that could happen. As long as we
// have a statement to associate, this should be fine.
// OpenACC 3.3 Section 6:
// Structured Block: in C or C++, an executable statement, possibly
// compound, with a single entry at the top and a single exit at the
// bottom.
// FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
// an interpretation of it is to allow this and treat the initializer as
// the 'structured block'.
return AssocStmt;
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
if (!AssocStmt.isUsable())
return StmtError();
if (!isa<CXXForRangeStmt, ForStmt>(AssocStmt.get())) {
Diag(AssocStmt.get()->getBeginLoc(), diag::err_acc_loop_not_for_loop)
<< K;
Diag(DirectiveLoc, diag::note_acc_construct_here) << K;
return StmtError();
}
if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) {
if (!CollapseInfo.CollapseDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (!TileInfo.TileDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "Collapse count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
return StmtError();
}
return AssocStmt.get();
}
llvm_unreachable("Invalid associated statement application");
}
bool SemaOpenACC::ActOnStartDeclDirective(OpenACCDirectiveKind K,
SourceLocation StartLoc) {
// OpenCC3.3 2.1 (line 889)
// A program must not depend on the order of evaluation of expressions in
// clause arguments or on any side effects of the evaluations.
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}
DeclGroupRef SemaOpenACC::ActOnEndDeclDirective() { return DeclGroupRef{}; }
ExprResult
SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return OpenACCAsteriskSizeExpr::Create(getASTContext(), AsteriskLoc);
}
ExprResult
SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return BuildOpenACCAsteriskSizeExpr(AsteriskLoc);
}
|