File: SemaOpenACC.cpp

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.6-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,304 kB
  • sloc: cpp: 7,438,677; ansic: 1,393,822; asm: 1,012,926; python: 241,650; f90: 86,635; objc: 75,479; lisp: 42,144; pascal: 17,286; sh: 10,027; ml: 5,082; perl: 4,730; awk: 3,523; makefile: 3,349; javascript: 2,251; xml: 892; fortran: 672
file content (1679 lines) | stat: -rw-r--r-- 64,869 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs, and things
/// that are not clause specific.
///
//===----------------------------------------------------------------------===//

#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaOpenACC.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"

using namespace clang;

namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
                                    SourceLocation StartLoc, bool IsStmt) {
  switch (K) {
  default:
  case OpenACCDirectiveKind::Invalid:
    // Nothing to do here, both invalid and unimplemented don't really need to
    // do anything.
    break;
  case OpenACCDirectiveKind::ParallelLoop:
  case OpenACCDirectiveKind::SerialLoop:
  case OpenACCDirectiveKind::KernelsLoop:
  case OpenACCDirectiveKind::Parallel:
  case OpenACCDirectiveKind::Serial:
  case OpenACCDirectiveKind::Kernels:
  case OpenACCDirectiveKind::Loop:
  case OpenACCDirectiveKind::Data:
  case OpenACCDirectiveKind::EnterData:
  case OpenACCDirectiveKind::ExitData:
  case OpenACCDirectiveKind::HostData:
  case OpenACCDirectiveKind::Wait:
    if (!IsStmt)
      return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
    break;
  }
  return false;
}

void CollectActiveReductionClauses(
    llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses,
    ArrayRef<OpenACCClause *> CurClauses) {
  for (auto *CurClause : CurClauses) {
    if (auto *RedClause = dyn_cast<OpenACCReductionClause>(CurClause);
        RedClause && !RedClause->getVarList().empty())
      ActiveClauses.push_back(RedClause);
  }
}

// Depth needs to be preserved for all associated statements that aren't
// supposed to modify the compute/combined/loop construct information.
bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) {
  switch (DK) {
  case OpenACCDirectiveKind::Parallel:
  case OpenACCDirectiveKind::ParallelLoop:
  case OpenACCDirectiveKind::Serial:
  case OpenACCDirectiveKind::SerialLoop:
  case OpenACCDirectiveKind::Kernels:
  case OpenACCDirectiveKind::KernelsLoop:
  case OpenACCDirectiveKind::Loop:
    return false;
  case OpenACCDirectiveKind::Data:
  case OpenACCDirectiveKind::HostData:
    return true;
  case OpenACCDirectiveKind::EnterData:
  case OpenACCDirectiveKind::ExitData:
  case OpenACCDirectiveKind::Wait:
  case OpenACCDirectiveKind::Init:
  case OpenACCDirectiveKind::Shutdown:
  case OpenACCDirectiveKind::Set:
  case OpenACCDirectiveKind::Update:
    llvm_unreachable("Doesn't have an associated stmt");
  default:
  case OpenACCDirectiveKind::Invalid:
    llvm_unreachable("Unhandled directive kind?");
  }
  llvm_unreachable("Unhandled directive kind?");
}

} // namespace

SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}

SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII(
    SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc,
    ArrayRef<const OpenACCClause *> UnInstClauses,
    ArrayRef<OpenACCClause *> Clauses)
    : SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo),
      DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel),
      OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc),
      OldLoopVectorClauseLoc(S.LoopVectorClauseLoc),
      OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo),
      ActiveReductionClauses(S.ActiveReductionClauses),
      LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DirKind)) {

  // Compute constructs end up taking their 'loop'.
  if (DirKind == OpenACCDirectiveKind::Parallel ||
      DirKind == OpenACCDirectiveKind::Serial ||
      DirKind == OpenACCDirectiveKind::Kernels) {
    CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
    SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
    SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;

    // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
    // construct, the gang clause behaves as follows. ... The region of a loop
    // with a gang clause may not contain another loop with a gang clause unless
    // within a nested compute region.
    //
    // Implement the 'unless within a nested compute region' part.
    SemaRef.LoopGangClauseOnKernel = {};
    SemaRef.LoopWorkerClauseLoc = {};
    SemaRef.LoopVectorClauseLoc = {};
    SemaRef.LoopWithoutSeqInfo = {};
  } else if (DirKind == OpenACCDirectiveKind::ParallelLoop ||
             DirKind == OpenACCDirectiveKind::SerialLoop ||
             DirKind == OpenACCDirectiveKind::KernelsLoop) {
    SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
    SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;

    CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
    SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
    SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);

    SemaRef.LoopGangClauseOnKernel = {};
    SemaRef.LoopWorkerClauseLoc = {};
    SemaRef.LoopVectorClauseLoc = {};

    // Set the active 'loop' location if there isn't a 'seq' on it, so we can
    // diagnose the for loops.
    SemaRef.LoopWithoutSeqInfo = {};
    if (Clauses.end() ==
        llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
      SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};

    // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
    // construct, the gang clause behaves as follows. ... The region of a loop
    // with a gang clause may not contain another loop with a gang clause unless
    // within a nested compute region.
    //
    // We don't bother doing this when this is a template instantiation, as
    // there is no reason to do these checks: the existance of a
    // gang/kernels/etc cannot be dependent.
    if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) {
      // This handles the 'outer loop' part of this.
      auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
      if (Itr != Clauses.end())
        SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(), DirKind};
    }

    if (UnInstClauses.empty()) {
      auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
      if (Itr != Clauses.end())
        SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();

      auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
      if (Itr2 != Clauses.end())
        SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
    }
  } else if (DirKind == OpenACCDirectiveKind::Loop) {
    CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
    SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
    SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);

    // Set the active 'loop' location if there isn't a 'seq' on it, so we can
    // diagnose the for loops.
    SemaRef.LoopWithoutSeqInfo = {};
    if (Clauses.end() ==
        llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
      SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};

    // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
    // construct, the gang clause behaves as follows. ... The region of a loop
    // with a gang clause may not contain another loop with a gang clause unless
    // within a nested compute region.
    //
    // We don't bother doing this when this is a template instantiation, as
    // there is no reason to do these checks: the existance of a
    // gang/kernels/etc cannot be dependent.
    if (SemaRef.getActiveComputeConstructInfo().Kind ==
            OpenACCDirectiveKind::Kernels &&
        UnInstClauses.empty()) {
      // This handles the 'outer loop' part of this.
      auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
      if (Itr != Clauses.end())
        SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(),
                                          OpenACCDirectiveKind::Kernels};
    }

    if (UnInstClauses.empty()) {
      auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
      if (Itr != Clauses.end())
        SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();

      auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
      if (Itr2 != Clauses.end())
        SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
    }
  }
}

void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt(
    ArrayRef<const OpenACCClause *> UnInstClauses,
    ArrayRef<OpenACCClause *> Clauses) {

  // Reset this checking for loops that aren't covered in a RAII object.
  SemaRef.LoopInfo.CurLevelHasLoopAlready = false;
  SemaRef.CollapseInfo.CollapseDepthSatisfied = true;
  SemaRef.TileInfo.TileDepthSatisfied = true;

  // We make sure to take an optional list of uninstantiated clauses, so that
  // we can check to make sure we don't 'double diagnose' in the event that
  // the value of 'N' was not dependent in a template. We also ensure during
  // Sema that there is only 1 collapse on each construct, so we can count on
  // the fact that if both find a 'collapse', that they are the same one.
  auto *CollapseClauseItr =
      llvm::find_if(Clauses, llvm::IsaPred<OpenACCCollapseClause>);
  auto *UnInstCollapseClauseItr =
      llvm::find_if(UnInstClauses, llvm::IsaPred<OpenACCCollapseClause>);

  if (Clauses.end() == CollapseClauseItr)
    return;

  OpenACCCollapseClause *CollapseClause =
      cast<OpenACCCollapseClause>(*CollapseClauseItr);

  SemaRef.CollapseInfo.ActiveCollapse = CollapseClause;
  Expr *LoopCount = CollapseClause->getLoopCount();

  // If the loop count is still instantiation dependent, setting the depth
  // counter isn't necessary, so return here.
  if (!LoopCount || LoopCount->isInstantiationDependent())
    return;

  // Suppress diagnostics if we've done a 'transform' where the previous version
  // wasn't dependent, meaning we already diagnosed it.
  if (UnInstCollapseClauseItr != UnInstClauses.end() &&
      !cast<OpenACCCollapseClause>(*UnInstCollapseClauseItr)
           ->getLoopCount()
           ->isInstantiationDependent())
    return;

  SemaRef.CollapseInfo.CollapseDepthSatisfied = false;
  SemaRef.CollapseInfo.CurCollapseCount =
      cast<ConstantExpr>(LoopCount)->getResultAsAPSInt();
  SemaRef.CollapseInfo.DirectiveKind = DirKind;
}

void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt(
    ArrayRef<const OpenACCClause *> UnInstClauses,
    ArrayRef<OpenACCClause *> Clauses) {
  // We don't diagnose if this is during instantiation, since the only thing we
  // care about is the number of arguments, which we can figure out without
  // instantiation, so we don't want to double-diagnose.
  if (UnInstClauses.size() > 0)
    return;
  auto *TileClauseItr =
      llvm::find_if(Clauses, llvm::IsaPred<OpenACCTileClause>);

  if (Clauses.end() == TileClauseItr)
    return;

  OpenACCTileClause *TileClause = cast<OpenACCTileClause>(*TileClauseItr);
  SemaRef.TileInfo.ActiveTile = TileClause;
  SemaRef.TileInfo.TileDepthSatisfied = false;
  SemaRef.TileInfo.CurTileCount = TileClause->getSizeExprs().size();
  SemaRef.TileInfo.DirectiveKind = DirKind;
}

SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() {
  if (DirKind == OpenACCDirectiveKind::Parallel ||
      DirKind == OpenACCDirectiveKind::Serial ||
      DirKind == OpenACCDirectiveKind::Kernels ||
      DirKind == OpenACCDirectiveKind::Loop ||
      DirKind == OpenACCDirectiveKind::ParallelLoop ||
      DirKind == OpenACCDirectiveKind::SerialLoop ||
      DirKind == OpenACCDirectiveKind::KernelsLoop) {
    SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo;
    SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel;
    SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc;
    SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc;
    SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo;
    SemaRef.ActiveReductionClauses.swap(ActiveReductionClauses);
  } else if (DirKind == OpenACCDirectiveKind::Data ||
             DirKind == OpenACCDirectiveKind::HostData) {
    // Intentionally doesn't reset the Loop, Compute Construct, or reduction
    // effects.
  }
}

void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
                                 SourceLocation DirLoc) {
  // Start an evaluation context to parse the clause arguments on.
  SemaRef.PushExpressionEvaluationContext(
      Sema::ExpressionEvaluationContext::PotentiallyEvaluated);

  switch (K) {
  case OpenACCDirectiveKind::Invalid:
    // Nothing to do here, an invalid kind has nothing we can check here.  We
    // want to continue parsing clauses as far as we can, so we will just
    // ensure that we can still work and don't check any construct-specific
    // rules anywhere.
    break;
  case OpenACCDirectiveKind::Parallel:
  case OpenACCDirectiveKind::Serial:
  case OpenACCDirectiveKind::Kernels:
  case OpenACCDirectiveKind::ParallelLoop:
  case OpenACCDirectiveKind::SerialLoop:
  case OpenACCDirectiveKind::KernelsLoop:
  case OpenACCDirectiveKind::Loop:
  case OpenACCDirectiveKind::Data:
  case OpenACCDirectiveKind::EnterData:
  case OpenACCDirectiveKind::ExitData:
  case OpenACCDirectiveKind::HostData:
  case OpenACCDirectiveKind::Init:
  case OpenACCDirectiveKind::Shutdown:
  case OpenACCDirectiveKind::Set:
  case OpenACCDirectiveKind::Update:
    // Nothing to do here, there is no real legalization that needs to happen
    // here as these constructs do not take any arguments.
    break;
  case OpenACCDirectiveKind::Wait:
    // Nothing really to do here, the arguments to the 'wait' should have
    // already been handled by the time we get here.
    break;
  default:
    Diag(DirLoc, diag::warn_acc_construct_unimplemented) << K;
    break;
  }
}

ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
                                     OpenACCClauseKind CK, SourceLocation Loc,
                                     Expr *IntExpr) {

  assert(((DK != OpenACCDirectiveKind::Invalid &&
           CK == OpenACCClauseKind::Invalid) ||
          (DK == OpenACCDirectiveKind::Invalid &&
           CK != OpenACCClauseKind::Invalid) ||
          (DK == OpenACCDirectiveKind::Invalid &&
           CK == OpenACCClauseKind::Invalid)) &&
         "Only one of directive or clause kind should be provided");

  class IntExprConverter : public Sema::ICEConvertDiagnoser {
    OpenACCDirectiveKind DirectiveKind;
    OpenACCClauseKind ClauseKind;
    Expr *IntExpr;

    // gets the index into the diagnostics so we can use this for clauses,
    // directives, and sub array.s
    unsigned getDiagKind() const {
      if (ClauseKind != OpenACCClauseKind::Invalid)
        return 0;
      if (DirectiveKind != OpenACCDirectiveKind::Invalid)
        return 1;
      return 2;
    }

  public:
    IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
                     Expr *IntExpr)
        : ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
                              /*Suppress=*/false,
                              /*SuppressConversion=*/true),
          DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}

    bool match(QualType T) override {
      // OpenACC spec just calls this 'integer expression' as having an
      // 'integer type', so fall back on C99's 'integer type'.
      return T->isIntegerType();
    }
    SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
                                                   QualType T) override {
      return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
             << getDiagKind() << ClauseKind << DirectiveKind << T;
    }

    SemaBase::SemaDiagnosticBuilder
    diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
      return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
             << T << IntExpr->getSourceRange();
    }

    SemaBase::SemaDiagnosticBuilder
    diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
                         QualType ConvTy) override {
      return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
             << T << ConvTy;
    }

    SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
                                                     CXXConversionDecl *Conv,
                                                     QualType ConvTy) override {
      return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
             << ConvTy->isEnumeralType() << ConvTy;
    }

    SemaBase::SemaDiagnosticBuilder
    diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
      return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
    }

    SemaBase::SemaDiagnosticBuilder
    noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
      return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
             << ConvTy->isEnumeralType() << ConvTy;
    }

    SemaBase::SemaDiagnosticBuilder
    diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
                       QualType ConvTy) override {
      llvm_unreachable("conversion functions are permitted");
    }
  } IntExprDiagnoser(DK, CK, IntExpr);

  if (!IntExpr)
    return ExprError();

  ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
      Loc, IntExpr, IntExprDiagnoser);
  if (IntExprResult.isInvalid())
    return ExprError();

  IntExpr = IntExprResult.get();
  if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
    return ExprError();

  // TODO OpenACC: Do we want to perform usual unary conversions here? When
  // doing codegen we might find that is necessary, but skip it for now.
  return IntExpr;
}

bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
                                        Expr *VarExpr) {
  // We already know that VarExpr is a proper reference to a variable, so we
  // should be able to just take the type of the expression to get the type of
  // the referenced variable.

  // We've already seen an error, don't diagnose anything else.
  if (!VarExpr || VarExpr->containsErrors())
    return false;

  if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
      VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
    Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
    Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
    return true;
  }

  QualType Ty = VarExpr->getType();
  Ty = Ty.getNonReferenceType().getUnqualifiedType();

  // Nothing we can do if this is a dependent type.
  if (Ty->isDependentType())
    return false;

  if (!Ty->isPointerType())
    return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
           << ClauseKind << Ty;
  return false;
}

ExprResult SemaOpenACC::ActOnVar(OpenACCClauseKind CK, Expr *VarExpr) {
  Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();

  // 'use_device' doesn't allow array subscript or array sections.
  // OpenACC3.3 2.8:
  // A 'var' in a 'use_device' clause must be the name of a variable or array.
  if (CK == OpenACCClauseKind::UseDevice &&
      isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
    Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device);
    return ExprError();
  }

  // Sub-arrays/subscript-exprs are fine as long as the base is a
  // VarExpr/MemberExpr. So strip all of those off.
  while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
    if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
      CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
    else
      CurVarExpr =
          cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
  }

  // References to a VarDecl are fine.
  if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
    if (isa<VarDecl, NonTypeTemplateParmDecl>(
            DRE->getFoundDecl()->getCanonicalDecl()))
      return VarExpr;
  }

  // If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
  // reduction clause must be a scalar variable name, an aggregate variable
  // name, an array element, or a subarray.
  // If CK is a 'use_device', this also isn't valid, as it isn' the name of a
  // variable or array.
  // A MemberExpr that references a Field is valid for other clauses.
  if (CK != OpenACCClauseKind::Reduction &&
      CK != OpenACCClauseKind::UseDevice) {
    if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
      if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl()))
        return VarExpr;
    }
  }

  // Referring to 'this' is ok for the most part, but for 'use_device' doesn't
  // fall into 'variable or array name'
  if (CK != OpenACCClauseKind::UseDevice && isa<CXXThisExpr>(CurVarExpr))
    return VarExpr;

  // Nothing really we can do here, as these are dependent.  So just return they
  // are valid.
  if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
      (CK != OpenACCClauseKind::Reduction &&
       isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
    return VarExpr;

  // There isn't really anything we can do in the case of a recovery expr, so
  // skip the diagnostic rather than produce a confusing diagnostic.
  if (isa<RecoveryExpr>(CurVarExpr))
    return ExprError();

  if (CK == OpenACCClauseKind::UseDevice)
    Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device);
  else
    Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
        << (CK != OpenACCClauseKind::Reduction);
  return ExprError();
}

ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
                                              Expr *LowerBound,
                                              SourceLocation ColonLoc,
                                              Expr *Length,
                                              SourceLocation RBLoc) {
  ASTContext &Context = getASTContext();

  // Handle placeholders.
  if (Base->hasPlaceholderType() &&
      !Base->hasPlaceholderType(BuiltinType::ArraySection)) {
    ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
    if (Result.isInvalid())
      return ExprError();
    Base = Result.get();
  }
  if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
    ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
    if (Result.isInvalid())
      return ExprError();
    Result = SemaRef.DefaultLvalueConversion(Result.get());
    if (Result.isInvalid())
      return ExprError();
    LowerBound = Result.get();
  }
  if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
    ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
    if (Result.isInvalid())
      return ExprError();
    Result = SemaRef.DefaultLvalueConversion(Result.get());
    if (Result.isInvalid())
      return ExprError();
    Length = Result.get();
  }

  // Check the 'base' value, it must be an array or pointer type, and not to/of
  // a function type.
  QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
  QualType ResultTy;
  if (!Base->isTypeDependent()) {
    if (OriginalBaseTy->isAnyPointerType()) {
      ResultTy = OriginalBaseTy->getPointeeType();
    } else if (OriginalBaseTy->isArrayType()) {
      ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
    } else {
      return ExprError(
          Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
          << Base->getSourceRange());
    }

    if (ResultTy->isFunctionType()) {
      Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
          << ResultTy << Base->getSourceRange();
      return ExprError();
    }

    if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
                                    diag::err_acc_subarray_incomplete_type,
                                    Base))
      return ExprError();

    if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
      ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
      if (Result.isInvalid())
        return ExprError();
      Base = Result.get();
    }
  }

  auto GetRecovery = [&](Expr *E, QualType Ty) {
    ExprResult Recovery =
        SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
    return Recovery.isUsable() ? Recovery.get() : nullptr;
  };

  // Ensure both of the expressions are int-exprs.
  if (LowerBound && !LowerBound->isTypeDependent()) {
    ExprResult LBRes =
        ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
                     LowerBound->getExprLoc(), LowerBound);

    if (LBRes.isUsable())
      LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
    LowerBound =
        LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
  }

  if (Length && !Length->isTypeDependent()) {
    ExprResult LenRes =
        ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
                     Length->getExprLoc(), Length);

    if (LenRes.isUsable())
      LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
    Length =
        LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
  }

  // Length is required if the base type is not an array of known bounds.
  if (!Length && (OriginalBaseTy.isNull() ||
                  (!OriginalBaseTy->isDependentType() &&
                   !OriginalBaseTy->isConstantArrayType() &&
                   !OriginalBaseTy->isDependentSizedArrayType()))) {
    bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
    Diag(ColonLoc, diag::err_acc_subarray_no_length) << IsArray;
    // Fill in a dummy 'length' so that when we instantiate this we don't
    // double-diagnose here.
    ExprResult Recovery = SemaRef.CreateRecoveryExpr(
        ColonLoc, SourceLocation(), ArrayRef<Expr *>(), Context.IntTy);
    Length = Recovery.isUsable() ? Recovery.get() : nullptr;
  }

  // Check the values of each of the arguments, they cannot be negative(we
  // assume), and if the array bound is known, must be within range. As we do
  // so, do our best to continue with evaluation, we can set the
  // value/expression to nullptr/nullopt if they are invalid, and treat them as
  // not present for the rest of evaluation.

  // We don't have to check for dependence, because the dependent size is
  // represented as a different AST node.
  std::optional<llvm::APSInt> BaseSize;
  if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
    const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
    BaseSize = ArrayTy->getSize();
  }

  auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
    if (!E || E->isInstantiationDependent())
      return std::nullopt;

    Expr::EvalResult Res;
    if (!E->EvaluateAsInt(Res, Context))
      return std::nullopt;
    return Res.Val.getInt();
  };

  std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
  std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);

  // Check lower bound for negative or out of range.
  if (LowerBoundValue.has_value()) {
    if (LowerBoundValue->isNegative()) {
      Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
          << /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
      LowerBoundValue.reset();
      LowerBound = GetRecovery(LowerBound, LowerBound->getType());
    } else if (BaseSize.has_value() &&
               llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
      // Lower bound (start index) must be less than the size of the array.
      Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
          << /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
          << toString(*BaseSize, /*Radix=*/10);
      LowerBoundValue.reset();
      LowerBound = GetRecovery(LowerBound, LowerBound->getType());
    }
  }

  // Check length for negative or out of range.
  if (LengthValue.has_value()) {
    if (LengthValue->isNegative()) {
      Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
          << /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
      LengthValue.reset();
      Length = GetRecovery(Length, Length->getType());
    } else if (BaseSize.has_value() &&
               llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
      // Length must be lessthan or EQUAL to the size of the array.
      Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
          << /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
          << toString(*BaseSize, /*Radix=*/10);
      LengthValue.reset();
      Length = GetRecovery(Length, Length->getType());
    }
  }

  // Adding two APSInts requires matching sign, so extract that here.
  auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
    if (LHS.isSigned() == RHS.isSigned())
      return LHS + RHS;

    unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
    return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
  };

  // If we know all 3 values, we can diagnose that the total value would be out
  // of range.
  if (BaseSize.has_value() && LowerBoundValue.has_value() &&
      LengthValue.has_value() &&
      llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
                                  *BaseSize) > 0) {
    Diag(Base->getExprLoc(),
         diag::err_acc_subarray_base_plus_length_out_of_range)
        << toString(*LowerBoundValue, /*Radix=*/10)
        << toString(*LengthValue, /*Radix=*/10)
        << toString(*BaseSize, /*Radix=*/10);

    LowerBoundValue.reset();
    LowerBound = GetRecovery(LowerBound, LowerBound->getType());
    LengthValue.reset();
    Length = GetRecovery(Length, Length->getType());
  }

  // If any part of the expression is dependent, return a dependent sub-array.
  QualType ArrayExprTy = Context.ArraySectionTy;
  if (Base->isTypeDependent() ||
      (LowerBound && LowerBound->isInstantiationDependent()) ||
      (Length && Length->isInstantiationDependent()))
    ArrayExprTy = Context.DependentTy;

  return new (Context)
      ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
                       OK_Ordinary, ColonLoc, RBLoc);
}

void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) {
  if (!getLangOpts().OpenACC)
    return;

  if (!LoopInfo.TopLevelLoopSeen)
    return;

  if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
    Diag(WhileLoc, diag::err_acc_invalid_in_loop)
        << /*while loop*/ 1 << CollapseInfo.DirectiveKind
        << OpenACCClauseKind::Collapse;
    assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
    Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
         diag::note_acc_active_clause_here)
        << OpenACCClauseKind::Collapse;

    // Remove the value so that we don't get cascading errors in the body. The
    // caller RAII object will restore this.
    CollapseInfo.CurCollapseCount = std::nullopt;
  }

  if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
    Diag(WhileLoc, diag::err_acc_invalid_in_loop)
        << /*while loop*/ 1 << TileInfo.DirectiveKind
        << OpenACCClauseKind::Tile;
    assert(TileInfo.ActiveTile && "tile count without object?");
    Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
        << OpenACCClauseKind::Tile;

    // Remove the value so that we don't get cascading errors in the body. The
    // caller RAII object will restore this.
    TileInfo.CurTileCount = std::nullopt;
  }
}

void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) {
  if (!getLangOpts().OpenACC)
    return;

  if (!LoopInfo.TopLevelLoopSeen)
    return;

  if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
    Diag(DoLoc, diag::err_acc_invalid_in_loop)
        << /*do loop*/ 2 << CollapseInfo.DirectiveKind
        << OpenACCClauseKind::Collapse;
    assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
    Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
         diag::note_acc_active_clause_here)
        << OpenACCClauseKind::Collapse;

    // Remove the value so that we don't get cascading errors in the body. The
    // caller RAII object will restore this.
    CollapseInfo.CurCollapseCount = std::nullopt;
  }

  if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
    Diag(DoLoc, diag::err_acc_invalid_in_loop)
        << /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
    assert(TileInfo.ActiveTile && "tile count without object?");
    Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
        << OpenACCClauseKind::Tile;

    // Remove the value so that we don't get cascading errors in the body. The
    // caller RAII object will restore this.
    TileInfo.CurTileCount = std::nullopt;
  }
}

void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc,
                                     ForStmtBeginChecker &C) {
  assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?");

  // Enable the while/do-while checking.
  LoopInfo.TopLevelLoopSeen = true;

  if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
    C.check();

    // OpenACC 3.3 2.9.1:
    // Each associated loop, except the innermost, must contain exactly one loop
    // or loop nest.
    // This checks for more than 1 loop at the current level, the
    // 'depth'-satisifed checking manages the 'not zero' case.
    if (LoopInfo.CurLevelHasLoopAlready) {
      Diag(ForLoc, diag::err_acc_clause_multiple_loops)
          << CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse;
      assert(CollapseInfo.ActiveCollapse && "No collapse object?");
      Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
           diag::note_acc_active_clause_here)
          << OpenACCClauseKind::Collapse;
    } else {
      --(*CollapseInfo.CurCollapseCount);

      // Once we've hit zero here, we know we have deep enough 'for' loops to
      // get to the bottom.
      if (*CollapseInfo.CurCollapseCount == 0)
        CollapseInfo.CollapseDepthSatisfied = true;
    }
  }

  if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
    C.check();

    if (LoopInfo.CurLevelHasLoopAlready) {
      Diag(ForLoc, diag::err_acc_clause_multiple_loops)
          << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
      assert(TileInfo.ActiveTile && "No tile object?");
      Diag(TileInfo.ActiveTile->getBeginLoc(),
           diag::note_acc_active_clause_here)
          << OpenACCClauseKind::Tile;
    } else {
      --(*TileInfo.CurTileCount);
      // Once we've hit zero here, we know we have deep enough 'for' loops to
      // get to the bottom.
      if (*TileInfo.CurTileCount == 0)
        TileInfo.TileDepthSatisfied = true;
    }
  }

  // Set this to 'false' for the body of this loop, so that the next level
  // checks independently.
  LoopInfo.CurLevelHasLoopAlready = false;
}

namespace {
bool isValidLoopVariableType(QualType LoopVarTy) {
  // Just skip if it is dependent, it could be any of the below.
  if (LoopVarTy->isDependentType())
    return true;

  // The loop variable must be of integer,
  if (LoopVarTy->isIntegerType())
    return true;

  // C/C++ pointer,
  if (LoopVarTy->isPointerType())
    return true;

  // or C++ random-access iterator type.
  if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) {
    // Note: Only do CXXRecordDecl because RecordDecl can't be a random access
    // iterator type!

    // We could either do a lot of work to see if this matches
    // random-access-iterator, but it seems that just checking that the
    // 'iterator_category' typedef is more than sufficient. If programmers are
    // willing to lie about this, we can let them.

    for (const auto *TD :
         llvm::make_filter_range(RD->decls(), llvm::IsaPred<TypedefNameDecl>)) {
      const auto *TDND = cast<TypedefNameDecl>(TD)->getCanonicalDecl();

      if (TDND->getName() != "iterator_category")
        continue;

      // If there is no type for this decl, return false.
      if (TDND->getUnderlyingType().isNull())
        return false;

      const CXXRecordDecl *ItrCategoryDecl =
          TDND->getUnderlyingType()->getAsCXXRecordDecl();

      // If the category isn't a record decl, it isn't the tag type.
      if (!ItrCategoryDecl)
        return false;

      auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) {
        if (RD->getName() != "random_access_iterator_tag")
          return false;
        // Checks just for std::random_access_iterator_tag.
        return RD->getEnclosingNamespaceContext()->isStdNamespace();
      };

      if (IsRandomAccessIteratorTag(ItrCategoryDecl))
        return true;

      // We can also support types inherited from the
      // random_access_iterator_tag.
      for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) {

        if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl()))
          return true;
      }

      return false;
    }
  }

  return false;
}

} // namespace

void SemaOpenACC::ForStmtBeginChecker::check() {
  if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid)
    return;

  if (AlreadyChecked)
    return;
  AlreadyChecked = true;

  // OpenACC3.3 2.1:
  // A loop associated with a loop construct that does not have a seq clause
  // must be written to meet all the following conditions:
  // - The loop variable must be of integer, C/C++ pointer, or C++ random-access
  // iterator type.
  // - The loop variable must monotonically increase or decrease in the
  // direction of its termination condition.
  // - The loop trip count must be computable in constant time when entering the
  // loop construct.
  //
  // For a C++ range-based for loop, the loop variable
  // identified by the above conditions is the internal iterator, such as a
  // pointer, that the compiler generates to iterate the range.  it is not the
  // variable declared by the for loop.

  if (IsRangeFor) {
    // If the range-for is being instantiated and didn't change, don't
    // re-diagnose.
    if (!RangeFor.has_value())
      return;
    // For a range-for, we can assume everything is 'corect' other than the type
    // of the iterator, so check that.
    const DeclStmt *RangeStmt = (*RangeFor)->getBeginStmt();

    // In some dependent contexts, the autogenerated range statement doesn't get
    // included until instantiation, so skip for now.
    if (!RangeStmt)
      return;

    const ValueDecl *InitVar = cast<ValueDecl>(RangeStmt->getSingleDecl());
    QualType VarType = InitVar->getType().getNonReferenceType();
    if (!isValidLoopVariableType(VarType)) {
      SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
          << SemaRef.LoopWithoutSeqInfo.Kind << VarType;
      SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
                   diag::note_acc_construct_here)
          << SemaRef.LoopWithoutSeqInfo.Kind;
    }
    return;
  }

  // Else we are in normal 'ForStmt', so we can diagnose everything.
  // We only have to check cond/inc if they have changed, but 'init' needs to
  // just suppress its diagnostics if it hasn't changed.
  const ValueDecl *InitVar = checkInit();
  if (Cond.has_value())
    checkCond();
  if (Inc.has_value())
    checkInc(InitVar);
}
const ValueDecl *SemaOpenACC::ForStmtBeginChecker::checkInit() {
  if (!Init) {
    if (InitChanged) {
      SemaRef.Diag(ForLoc, diag::err_acc_loop_variable)
          << SemaRef.LoopWithoutSeqInfo.Kind;
      SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
                   diag::note_acc_construct_here)
          << SemaRef.LoopWithoutSeqInfo.Kind;
    }
    return nullptr;
  }

  auto DiagLoopVar = [&]() {
    if (InitChanged) {
      SemaRef.Diag(Init->getBeginLoc(), diag::err_acc_loop_variable)
          << SemaRef.LoopWithoutSeqInfo.Kind;
      SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
                   diag::note_acc_construct_here)
          << SemaRef.LoopWithoutSeqInfo.Kind;
    }
    return nullptr;
  };

  if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
    Init = ExprTemp->getSubExpr();
  if (const auto *E = dyn_cast<Expr>(Init))
    Init = E->IgnoreParenImpCasts();

  const ValueDecl *InitVar = nullptr;

  if (const auto *BO = dyn_cast<BinaryOperator>(Init)) {
    // Allow assignment operator here.

    if (!BO->isAssignmentOp())
      return DiagLoopVar();

    const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts();

    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS))
      InitVar = DRE->getDecl();
  } else if (const auto *DS = dyn_cast<DeclStmt>(Init)) {
    // Allow T t = <whatever>
    if (!DS->isSingleDecl())
      return DiagLoopVar();

    InitVar = dyn_cast<ValueDecl>(DS->getSingleDecl());

    // Ensure we have an initializer, unless this is a record/dependent type.

    if (InitVar) {
      if (!isa<VarDecl>(InitVar))
        return DiagLoopVar();

      if (!InitVar->getType()->isRecordType() &&
          !InitVar->getType()->isDependentType() &&
          !cast<VarDecl>(InitVar)->hasInit())
        return DiagLoopVar();
    }
  } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Init)) {
    // Allow assignment operator call.
    if (CE->getOperator() != OO_Equal)
      return DiagLoopVar();

    const Expr *LHS = CE->getArg(0)->IgnoreParenImpCasts();

    if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
      InitVar = DRE->getDecl();
    } else if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
        InitVar = ME->getMemberDecl();
    }
  }

  if (!InitVar)
    return DiagLoopVar();

  InitVar = cast<ValueDecl>(InitVar->getCanonicalDecl());
  QualType VarType = InitVar->getType().getNonReferenceType();

  // Since we have one, all we need to do is ensure it is the right type.
  if (!isValidLoopVariableType(VarType)) {
    if (InitChanged) {
      SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
          << SemaRef.LoopWithoutSeqInfo.Kind << VarType;
      SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
                   diag::note_acc_construct_here)
          << SemaRef.LoopWithoutSeqInfo.Kind;
    }
    return nullptr;
  }

  return InitVar;
}
void SemaOpenACC::ForStmtBeginChecker::checkCond() {
  if (!*Cond) {
    SemaRef.Diag(ForLoc, diag::err_acc_loop_terminating_condition)
        << SemaRef.LoopWithoutSeqInfo.Kind;
    SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
        << SemaRef.LoopWithoutSeqInfo.Kind;
  }
  // Nothing else to do here.  we could probably do some additional work to look
  // into the termination condition, but that error-prone.  For now, we don't
  // implement anything other than 'there is a termination condition', and if
  // codegen/MLIR comes up with some necessary restrictions, we can implement
  // them here.
}

void SemaOpenACC::ForStmtBeginChecker::checkInc(const ValueDecl *Init) {

  if (!*Inc) {
    SemaRef.Diag(ForLoc, diag::err_acc_loop_not_monotonic)
        << SemaRef.LoopWithoutSeqInfo.Kind;
    SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
        << SemaRef.LoopWithoutSeqInfo.Kind;
    return;
  }
  auto DiagIncVar = [this] {
    SemaRef.Diag((*Inc)->getBeginLoc(), diag::err_acc_loop_not_monotonic)
        << SemaRef.LoopWithoutSeqInfo.Kind;
    SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
        << SemaRef.LoopWithoutSeqInfo.Kind;
    return;
  };

  if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(*Inc))
    Inc = ExprTemp->getSubExpr();
  if (const auto *E = dyn_cast<Expr>(*Inc))
    Inc = E->IgnoreParenImpCasts();

  auto getDeclFromExpr = [](const Expr *E) -> const ValueDecl * {
    E = E->IgnoreParenImpCasts();
    if (const auto *FE = dyn_cast<FullExpr>(E))
      E = FE->getSubExpr();

    E = E->IgnoreParenImpCasts();

    if (!E)
      return nullptr;
    if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
      return dyn_cast<ValueDecl>(DRE->getDecl());

    if (const auto *ME = dyn_cast<MemberExpr>(E))
      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
        return ME->getMemberDecl();

    return nullptr;
  };

  const ValueDecl *IncVar = nullptr;

  // Here we enforce the monotonically increase/decrease:
  if (const auto *UO = dyn_cast<UnaryOperator>(*Inc)) {
    // Allow increment/decrement ops.
    if (!UO->isIncrementDecrementOp())
      return DiagIncVar();
    IncVar = getDeclFromExpr(UO->getSubExpr());
  } else if (const auto *BO = dyn_cast<BinaryOperator>(*Inc)) {
    switch (BO->getOpcode()) {
    default:
      return DiagIncVar();
    case BO_AddAssign:
    case BO_SubAssign:
    case BO_MulAssign:
    case BO_DivAssign:
    case BO_Assign:
      // += -= *= /= should all be fine here, this should be all of the
      // 'monotonical' compound-assign ops.
      // Assignment we just give up on, we could do better, and ensure that it
      // is a binary/operator expr doing more work, but that seems like a lot
      // of work for an error prone check.
      break;
    }
    IncVar = getDeclFromExpr(BO->getLHS());
  } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(*Inc)) {
    switch (CE->getOperator()) {
    default:
      return DiagIncVar();
    case OO_PlusPlus:
    case OO_MinusMinus:
    case OO_PlusEqual:
    case OO_MinusEqual:
    case OO_StarEqual:
    case OO_SlashEqual:
    case OO_Equal:
      // += -= *= /= should all be fine here, this should be all of the
      // 'monotonical' compound-assign ops.
      // Assignment we just give up on, we could do better, and ensure that it
      // is a binary/operator expr doing more work, but that seems like a lot
      // of work for an error prone check.
      break;
    }

    IncVar = getDeclFromExpr(CE->getArg(0));

  } else if (const auto *ME = dyn_cast<CXXMemberCallExpr>(*Inc)) {
    IncVar = getDeclFromExpr(ME->getImplicitObjectArgument());
    // We can't really do much for member expressions, other than hope they are
    // doing the right thing, so give up here.
  }

  if (!IncVar)
    return DiagIncVar();

  // InitVar shouldn't be null unless there was an error, so don't diagnose if
  // that is the case. Else we should ensure that it refers to the  loop
  // value.
  if (Init && IncVar->getCanonicalDecl() != Init->getCanonicalDecl())
    return DiagIncVar();

  return;
}

void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst,
                                    const Stmt *First, const Stmt *OldSecond,
                                    const Stmt *Second, const Stmt *OldThird,
                                    const Stmt *Third) {
  if (!getLangOpts().OpenACC)
    return;

  std::optional<const Stmt *> S;
  if (OldSecond == Second)
    S = std::nullopt;
  else
    S = Second;
  std::optional<const Stmt *> T;
  if (OldThird == Third)
    S = std::nullopt;
  else
    S = Third;

  bool InitChanged = false;
  if (OldFirst != First) {
    InitChanged = true;

    // VarDecls are always rebuild because they are dependent, so we can do a
    // little work to suppress some of the double checking based on whether the
    // type is instantiation dependent.
    QualType OldVDTy;
    QualType NewVDTy;
    if (const auto *DS = dyn_cast<DeclStmt>(OldFirst))
      if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
              DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
        OldVDTy = VD->getType();
    if (const auto *DS = dyn_cast<DeclStmt>(First))
      if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
              DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
        NewVDTy = VD->getType();

    if (!OldVDTy.isNull() && !NewVDTy.isNull())
      InitChanged = OldVDTy->isInstantiationDependentType() !=
                    NewVDTy->isInstantiationDependentType();
  }

  ForStmtBeginChecker FSBC{*this, ForLoc, First, InitChanged, S, T};
  if (!LoopInfo.TopLevelLoopSeen) {
    FSBC.check();
  }

  ForStmtBeginHelper(ForLoc, FSBC);
}

void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First,
                                    const Stmt *Second, const Stmt *Third) {
  if (!getLangOpts().OpenACC)
    return;

  ForStmtBeginChecker FSBC{*this,  ForLoc, First, /*InitChanged=*/true,
                           Second, Third};
  if (!LoopInfo.TopLevelLoopSeen) {
    FSBC.check();
  }

  ForStmtBeginHelper(ForLoc, FSBC);
}

void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
                                         const Stmt *OldRangeFor,
                                         const Stmt *RangeFor) {
  if (!getLangOpts().OpenACC)
    return;

  std::optional<const CXXForRangeStmt *> RF;

  if (OldRangeFor == RangeFor)
    RF = std::nullopt;
  else
    RF = cast<CXXForRangeStmt>(RangeFor);

  ForStmtBeginChecker FSBC{*this, ForLoc, RF};
  if (!LoopInfo.TopLevelLoopSeen) {
    FSBC.check();
  }
  ForStmtBeginHelper(ForLoc, FSBC);
}

void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
                                         const Stmt *RangeFor) {
  if (!getLangOpts().OpenACC)
    return;

  ForStmtBeginChecker FSBC{*this, ForLoc, cast<CXXForRangeStmt>(RangeFor)};
  if (!LoopInfo.TopLevelLoopSeen) {
    FSBC.check();
  }
  ForStmtBeginHelper(ForLoc, FSBC);
}

namespace {
SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) {
  // We should diagnose on anything except `CompoundStmt`, `NullStmt`,
  // `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and
  // `DoStmt`, as those are caught as a violation elsewhere.
  // For `CompoundStmt` we need to search inside of it.
  if (!CurStmt ||
      isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>(
          CurStmt))
    return SourceLocation{};

  // Any other construct is an error anyway, so it has already been diagnosed.
  if (isa<OpenACCConstructStmt>(CurStmt))
    return SourceLocation{};

  // Search inside the compound statement, this allows for arbitrary nesting
  // of compound statements, as long as there isn't any code inside.
  if (const auto *CS = dyn_cast<CompoundStmt>(CurStmt)) {
    for (const auto *ChildStmt : CS->children()) {
      SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(ChildStmt);
      if (ChildStmtLoc.isValid())
        return ChildStmtLoc;
    }
    // Empty/not invalid compound statements are legal.
    return SourceLocation{};
  }
  return CurStmt->getBeginLoc();
}
} // namespace

void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) {
  if (!getLangOpts().OpenACC)
    return;

  // Set this to 'true' so if we find another one at this level we can diagnose.
  LoopInfo.CurLevelHasLoopAlready = true;

  if (!Body.isUsable())
    return;

  bool IsActiveCollapse = CollapseInfo.CurCollapseCount &&
                          *CollapseInfo.CurCollapseCount > 0 &&
                          !CollapseInfo.ActiveCollapse->hasForce();
  bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0;

  if (IsActiveCollapse || IsActiveTile) {
    SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(Body.get());

    if (OtherStmtLoc.isValid() && IsActiveCollapse) {
      Diag(OtherStmtLoc, diag::err_acc_intervening_code)
          << OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind;
      Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
           diag::note_acc_active_clause_here)
          << OpenACCClauseKind::Collapse;
    }

    if (OtherStmtLoc.isValid() && IsActiveTile) {
      Diag(OtherStmtLoc, diag::err_acc_intervening_code)
          << OpenACCClauseKind::Tile << TileInfo.DirectiveKind;
      Diag(TileInfo.ActiveTile->getBeginLoc(),
           diag::note_acc_active_clause_here)
          << OpenACCClauseKind::Tile;
    }
  }
}

namespace {
// Get a list of clause Kinds for diagnosing a list, joined by a commas and an
// 'or'.
std::string GetListOfClauses(llvm::ArrayRef<OpenACCClauseKind> Clauses) {
  assert(!Clauses.empty() && "empty clause list not supported");

  std::string Output;
  llvm::raw_string_ostream OS{Output};

  if (Clauses.size() == 1) {
    OS << '\'' << Clauses[0] << '\'';
    return Output;
  }

  llvm::ArrayRef<OpenACCClauseKind> AllButLast{Clauses.begin(),
                                               Clauses.end() - 1};

  llvm::interleave(
      AllButLast, [&](OpenACCClauseKind K) { OS << '\'' << K << '\''; },
      [&] { OS << ", "; });

  OS << " or \'" << Clauses.back() << '\'';
  return Output;
}
} // namespace

bool SemaOpenACC::ActOnStartStmtDirective(
    OpenACCDirectiveKind K, SourceLocation StartLoc,
    ArrayRef<const OpenACCClause *> Clauses) {
  SemaRef.DiscardCleanupsInEvaluationContext();
  SemaRef.PopExpressionEvaluationContext();

  // OpenACC 3.3 2.9.1:
  // Intervening code must not contain other OpenACC directives or calls to API
  // routines.
  //
  // ALL constructs are ill-formed if there is an active 'collapse'
  if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
    Diag(StartLoc, diag::err_acc_invalid_in_loop)
        << /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind
        << OpenACCClauseKind::Collapse << K;
    assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
    Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
         diag::note_acc_active_clause_here)
        << OpenACCClauseKind::Collapse;
  }
  if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
    Diag(StartLoc, diag::err_acc_invalid_in_loop)
        << /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind
        << OpenACCClauseKind::Tile << K;
    assert(TileInfo.ActiveTile && "Tile count without object?");
    Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
        << OpenACCClauseKind::Tile;
  }

  // OpenACC3.3 2.6.5: At least one copy, copyin, copyout, create, no_create,
  // present, deviceptr, attach, or default clause must appear on a 'data'
  // construct.
  if (K == OpenACCDirectiveKind::Data &&
      llvm::find_if(Clauses,
                    llvm::IsaPred<OpenACCCopyClause, OpenACCCopyInClause,
                                  OpenACCCopyOutClause, OpenACCCreateClause,
                                  OpenACCNoCreateClause, OpenACCPresentClause,
                                  OpenACCDevicePtrClause, OpenACCAttachClause,
                                  OpenACCDefaultClause>) == Clauses.end())
    return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
           << K
           << GetListOfClauses(
                  {OpenACCClauseKind::Copy, OpenACCClauseKind::CopyIn,
                   OpenACCClauseKind::CopyOut, OpenACCClauseKind::Create,
                   OpenACCClauseKind::NoCreate, OpenACCClauseKind::Present,
                   OpenACCClauseKind::DevicePtr, OpenACCClauseKind::Attach,
                   OpenACCClauseKind::Default});

  // OpenACC3.3 2.6.6: At least one copyin, create, or attach clause must appear
  // on an enter data directive.
  if (K == OpenACCDirectiveKind::EnterData &&
      llvm::find_if(Clauses,
                    llvm::IsaPred<OpenACCCopyInClause, OpenACCCreateClause,
                                  OpenACCAttachClause>) == Clauses.end())
    return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
           << K
           << GetListOfClauses({
                  OpenACCClauseKind::CopyIn,
                  OpenACCClauseKind::Create,
                  OpenACCClauseKind::Attach,
              });
  // OpenACC3.3 2.6.6: At least one copyout, delete, or detach clause must
  // appear on an exit data directive.
  if (K == OpenACCDirectiveKind::ExitData &&
      llvm::find_if(Clauses,
                    llvm::IsaPred<OpenACCCopyOutClause, OpenACCDeleteClause,
                                  OpenACCDetachClause>) == Clauses.end())
    return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
           << K
           << GetListOfClauses({
                  OpenACCClauseKind::CopyOut,
                  OpenACCClauseKind::Delete,
                  OpenACCClauseKind::Detach,
              });

  // OpenACC3.3 2.8: At least 'one use_device' clause must appear.
  if (K == OpenACCDirectiveKind::HostData &&
      llvm::find_if(Clauses, llvm::IsaPred<OpenACCUseDeviceClause>) ==
          Clauses.end())
    return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
           << K << GetListOfClauses({OpenACCClauseKind::UseDevice});

  // OpenACC3.3 2.14.3: At least one default_async, device_num, or device_type
  // clause must appear.
  if (K == OpenACCDirectiveKind::Set &&
      llvm::find_if(
          Clauses,
          llvm::IsaPred<OpenACCDefaultAsyncClause, OpenACCDeviceNumClause,
                        OpenACCDeviceTypeClause, OpenACCIfClause>) ==
          Clauses.end())
    return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
           << K
           << GetListOfClauses({OpenACCClauseKind::DefaultAsync,
                                OpenACCClauseKind::DeviceNum,
                                OpenACCClauseKind::DeviceType,
                                OpenACCClauseKind::If});

  // OpenACC3.3 2.14.4: At least one self, host, or device clause must appear on
  // an update directive.
  if (K == OpenACCDirectiveKind::Update &&
      llvm::find_if(Clauses, llvm::IsaPred<OpenACCSelfClause, OpenACCHostClause,
                                           OpenACCDeviceClause>) ==
          Clauses.end())
    return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
           << K
           << GetListOfClauses({OpenACCClauseKind::Self,
                                OpenACCClauseKind::Host,
                                OpenACCClauseKind::Device});

  return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}

StmtResult SemaOpenACC::ActOnEndStmtDirective(
    OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
    SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs,
    SourceLocation RParenLoc, SourceLocation EndLoc,
    ArrayRef<OpenACCClause *> Clauses, StmtResult AssocStmt) {
  switch (K) {
  default:
    return StmtEmpty();
  case OpenACCDirectiveKind::Invalid:
    return StmtError();
  case OpenACCDirectiveKind::Parallel:
  case OpenACCDirectiveKind::Serial:
  case OpenACCDirectiveKind::Kernels: {
    return OpenACCComputeConstruct::Create(
        getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
        AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
  }
  case OpenACCDirectiveKind::ParallelLoop:
  case OpenACCDirectiveKind::SerialLoop:
  case OpenACCDirectiveKind::KernelsLoop: {
    return OpenACCCombinedConstruct::Create(
        getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
        AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
  }
  case OpenACCDirectiveKind::Loop: {
    return OpenACCLoopConstruct::Create(
        getASTContext(), ActiveComputeConstructInfo.Kind, StartLoc, DirLoc,
        EndLoc, Clauses, AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
  }
  case OpenACCDirectiveKind::Data: {
    return OpenACCDataConstruct::Create(
        getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
        AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
  }
  case OpenACCDirectiveKind::EnterData: {
    return OpenACCEnterDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
                                             EndLoc, Clauses);
  }
  case OpenACCDirectiveKind::ExitData: {
    return OpenACCExitDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
                                            EndLoc, Clauses);
  }
  case OpenACCDirectiveKind::HostData: {
    return OpenACCHostDataConstruct::Create(
        getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
        AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
  }
  case OpenACCDirectiveKind::Wait: {
    return OpenACCWaitConstruct::Create(
        getASTContext(), StartLoc, DirLoc, LParenLoc, Exprs.front(), MiscLoc,
        Exprs.drop_front(), RParenLoc, EndLoc, Clauses);
  }
  case OpenACCDirectiveKind::Init: {
    return OpenACCInitConstruct::Create(getASTContext(), StartLoc, DirLoc,
                                        EndLoc, Clauses);
  }
  case OpenACCDirectiveKind::Shutdown: {
    return OpenACCShutdownConstruct::Create(getASTContext(), StartLoc, DirLoc,
                                            EndLoc, Clauses);
  }
  case OpenACCDirectiveKind::Set: {
    return OpenACCSetConstruct::Create(getASTContext(), StartLoc, DirLoc,
                                       EndLoc, Clauses);
  }
  case OpenACCDirectiveKind::Update: {
    return OpenACCUpdateConstruct::Create(getASTContext(), StartLoc, DirLoc,
                                          EndLoc, Clauses);
  }
  }
  llvm_unreachable("Unhandled case in directive handling?");
}

StmtResult SemaOpenACC::ActOnAssociatedStmt(
    SourceLocation DirectiveLoc, OpenACCDirectiveKind K,
    ArrayRef<const OpenACCClause *> Clauses, StmtResult AssocStmt) {
  switch (K) {
  default:
    llvm_unreachable("Unimplemented associated statement application");
  case OpenACCDirectiveKind::EnterData:
  case OpenACCDirectiveKind::ExitData:
  case OpenACCDirectiveKind::Wait:
  case OpenACCDirectiveKind::Init:
  case OpenACCDirectiveKind::Shutdown:
  case OpenACCDirectiveKind::Set:
    llvm_unreachable(
        "these don't have associated statements, so shouldn't get here");
  case OpenACCDirectiveKind::Parallel:
  case OpenACCDirectiveKind::Serial:
  case OpenACCDirectiveKind::Kernels:
  case OpenACCDirectiveKind::Data:
  case OpenACCDirectiveKind::HostData:
    // There really isn't any checking here that could happen. As long as we
    // have a statement to associate, this should be fine.
    // OpenACC 3.3 Section 6:
    // Structured Block: in C or C++, an executable statement, possibly
    // compound, with a single entry at the top and a single exit at the
    // bottom.
    // FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
    // an interpretation of it is to allow this and treat the initializer as
    // the 'structured block'.
    return AssocStmt;
  case OpenACCDirectiveKind::Loop:
  case OpenACCDirectiveKind::ParallelLoop:
  case OpenACCDirectiveKind::SerialLoop:
  case OpenACCDirectiveKind::KernelsLoop:
    if (!AssocStmt.isUsable())
      return StmtError();

    if (!isa<CXXForRangeStmt, ForStmt>(AssocStmt.get())) {
      Diag(AssocStmt.get()->getBeginLoc(), diag::err_acc_loop_not_for_loop)
          << K;
      Diag(DirectiveLoc, diag::note_acc_construct_here) << K;
      return StmtError();
    }

    if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) {
      if (!CollapseInfo.CollapseDepthSatisfied) {
        Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
            << OpenACCClauseKind::Collapse;
        assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
        Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
             diag::note_acc_active_clause_here)
            << OpenACCClauseKind::Collapse;
      }

      if (!TileInfo.TileDepthSatisfied) {
        Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
            << OpenACCClauseKind::Tile;
        assert(TileInfo.ActiveTile && "Collapse count without object?");
        Diag(TileInfo.ActiveTile->getBeginLoc(),
             diag::note_acc_active_clause_here)
            << OpenACCClauseKind::Tile;
      }
      return StmtError();
    }

    return AssocStmt.get();
  }
  llvm_unreachable("Invalid associated statement application");
}

bool SemaOpenACC::ActOnStartDeclDirective(OpenACCDirectiveKind K,
                                          SourceLocation StartLoc) {
  // OpenCC3.3 2.1 (line 889)
  // A program must not depend on the order of evaluation of expressions in
  // clause arguments or on any side effects of the evaluations.
  SemaRef.DiscardCleanupsInEvaluationContext();
  SemaRef.PopExpressionEvaluationContext();
  return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}

DeclGroupRef SemaOpenACC::ActOnEndDeclDirective() { return DeclGroupRef{}; }

ExprResult
SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
  return OpenACCAsteriskSizeExpr::Create(getASTContext(), AsteriskLoc);
}

ExprResult
SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
  return BuildOpenACCAsteriskSizeExpr(AsteriskLoc);
}