1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
//===- SemaSYCL.cpp - Semantic Analysis for SYCL constructs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implements Semantic Analysis for SYCL constructs.
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaSYCL.h"
#include "TreeTransform.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/SYCLKernelInfo.h"
#include "clang/AST/StmtSYCL.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Sema/Attr.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
using namespace clang;
// -----------------------------------------------------------------------------
// SYCL device specific diagnostics implementation
// -----------------------------------------------------------------------------
SemaSYCL::SemaSYCL(Sema &S) : SemaBase(S) {}
Sema::SemaDiagnosticBuilder SemaSYCL::DiagIfDeviceCode(SourceLocation Loc,
unsigned DiagID) {
assert(getLangOpts().SYCLIsDevice &&
"Should only be called during SYCL compilation");
FunctionDecl *FD = dyn_cast<FunctionDecl>(SemaRef.getCurLexicalContext());
SemaDiagnosticBuilder::Kind DiagKind = [this, FD] {
if (!FD)
return SemaDiagnosticBuilder::K_Nop;
if (SemaRef.getEmissionStatus(FD) == Sema::FunctionEmissionStatus::Emitted)
return SemaDiagnosticBuilder::K_ImmediateWithCallStack;
return SemaDiagnosticBuilder::K_Deferred;
}();
return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, FD, SemaRef);
}
static bool isZeroSizedArray(SemaSYCL &S, QualType Ty) {
if (const auto *CAT = S.getASTContext().getAsConstantArrayType(Ty))
return CAT->isZeroSize();
return false;
}
void SemaSYCL::deepTypeCheckForDevice(SourceLocation UsedAt,
llvm::DenseSet<QualType> Visited,
ValueDecl *DeclToCheck) {
assert(getLangOpts().SYCLIsDevice &&
"Should only be called during SYCL compilation");
// Emit notes only for the first discovered declaration of unsupported type
// to avoid mess of notes. This flag is to track that error already happened.
bool NeedToEmitNotes = true;
auto Check = [&](QualType TypeToCheck, const ValueDecl *D) {
bool ErrorFound = false;
if (isZeroSizedArray(*this, TypeToCheck)) {
DiagIfDeviceCode(UsedAt, diag::err_typecheck_zero_array_size) << 1;
ErrorFound = true;
}
// Checks for other types can also be done here.
if (ErrorFound) {
if (NeedToEmitNotes) {
if (auto *FD = dyn_cast<FieldDecl>(D))
DiagIfDeviceCode(FD->getLocation(),
diag::note_illegal_field_declared_here)
<< FD->getType()->isPointerType() << FD->getType();
else
DiagIfDeviceCode(D->getLocation(), diag::note_declared_at);
}
}
return ErrorFound;
};
// In case we have a Record used do the DFS for a bad field.
SmallVector<const ValueDecl *, 4> StackForRecursion;
StackForRecursion.push_back(DeclToCheck);
// While doing DFS save how we get there to emit a nice set of notes.
SmallVector<const FieldDecl *, 4> History;
History.push_back(nullptr);
do {
const ValueDecl *Next = StackForRecursion.pop_back_val();
if (!Next) {
assert(!History.empty());
// Found a marker, we have gone up a level.
History.pop_back();
continue;
}
QualType NextTy = Next->getType();
if (!Visited.insert(NextTy).second)
continue;
auto EmitHistory = [&]() {
// The first element is always nullptr.
for (uint64_t Index = 1; Index < History.size(); ++Index) {
DiagIfDeviceCode(History[Index]->getLocation(),
diag::note_within_field_of_type)
<< History[Index]->getType();
}
};
if (Check(NextTy, Next)) {
if (NeedToEmitNotes)
EmitHistory();
NeedToEmitNotes = false;
}
// In case pointer/array/reference type is met get pointee type, then
// proceed with that type.
while (NextTy->isAnyPointerType() || NextTy->isArrayType() ||
NextTy->isReferenceType()) {
if (NextTy->isArrayType())
NextTy = QualType{NextTy->getArrayElementTypeNoTypeQual(), 0};
else
NextTy = NextTy->getPointeeType();
if (Check(NextTy, Next)) {
if (NeedToEmitNotes)
EmitHistory();
NeedToEmitNotes = false;
}
}
if (const auto *RecDecl = NextTy->getAsRecordDecl()) {
if (auto *NextFD = dyn_cast<FieldDecl>(Next))
History.push_back(NextFD);
// When nullptr is discovered, this means we've gone back up a level, so
// the history should be cleaned.
StackForRecursion.push_back(nullptr);
llvm::copy(RecDecl->fields(), std::back_inserter(StackForRecursion));
}
} while (!StackForRecursion.empty());
}
ExprResult SemaSYCL::BuildUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation LParen,
SourceLocation RParen,
TypeSourceInfo *TSI) {
return SYCLUniqueStableNameExpr::Create(getASTContext(), OpLoc, LParen,
RParen, TSI);
}
ExprResult SemaSYCL::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation LParen,
SourceLocation RParen,
ParsedType ParsedTy) {
TypeSourceInfo *TSI = nullptr;
QualType Ty = SemaRef.GetTypeFromParser(ParsedTy, &TSI);
if (Ty.isNull())
return ExprError();
if (!TSI)
TSI = getASTContext().getTrivialTypeSourceInfo(Ty, LParen);
return BuildUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
}
void SemaSYCL::handleKernelAttr(Decl *D, const ParsedAttr &AL) {
// The 'sycl_kernel' attribute applies only to function templates.
const auto *FD = cast<FunctionDecl>(D);
const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
assert(FT && "Function template is expected");
// Function template must have at least two template parameters.
const TemplateParameterList *TL = FT->getTemplateParameters();
if (TL->size() < 2) {
Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
return;
}
// Template parameters must be typenames.
for (unsigned I = 0; I < 2; ++I) {
const NamedDecl *TParam = TL->getParam(I);
if (isa<NonTypeTemplateParmDecl>(TParam)) {
Diag(FT->getLocation(),
diag::warn_sycl_kernel_invalid_template_param_type);
return;
}
}
// Function must have at least one argument.
if (getFunctionOrMethodNumParams(D) != 1) {
Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
return;
}
// Function must return void.
QualType RetTy = getFunctionOrMethodResultType(D);
if (!RetTy->isVoidType()) {
Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
return;
}
handleSimpleAttribute<SYCLKernelAttr>(*this, D, AL);
}
void SemaSYCL::handleKernelEntryPointAttr(Decl *D, const ParsedAttr &AL) {
ParsedType PT = AL.getTypeArg();
TypeSourceInfo *TSI = nullptr;
(void)SemaRef.GetTypeFromParser(PT, &TSI);
assert(TSI && "no type source info for attribute argument");
D->addAttr(::new (SemaRef.Context)
SYCLKernelEntryPointAttr(SemaRef.Context, AL, TSI));
}
// Given a potentially qualified type, SourceLocationForUserDeclaredType()
// returns the source location of the canonical declaration of the unqualified
// desugared user declared type, if any. For non-user declared types, an
// invalid source location is returned. The intended usage of this function
// is to identify an appropriate source location, if any, for a
// "entity declared here" diagnostic note.
static SourceLocation SourceLocationForUserDeclaredType(QualType QT) {
SourceLocation Loc;
const Type *T = QT->getUnqualifiedDesugaredType();
if (const TagType *TT = dyn_cast<TagType>(T))
Loc = TT->getDecl()->getLocation();
else if (const ObjCInterfaceType *ObjCIT = dyn_cast<ObjCInterfaceType>(T))
Loc = ObjCIT->getDecl()->getLocation();
return Loc;
}
static bool CheckSYCLKernelName(Sema &S, SourceLocation Loc,
QualType KernelName) {
assert(!KernelName->isDependentType());
if (!KernelName->isStructureOrClassType()) {
// SYCL 2020 section 5.2, "Naming of kernels", only requires that the
// kernel name be a C++ typename. However, the definition of "kernel name"
// in the glossary states that a kernel name is a class type. Neither
// section explicitly states whether the kernel name type can be
// cv-qualified. For now, kernel name types are required to be class types
// and that they may be cv-qualified. The following issue requests
// clarification from the SYCL WG.
// https://github.com/KhronosGroup/SYCL-Docs/issues/568
S.Diag(Loc, diag::warn_sycl_kernel_name_not_a_class_type) << KernelName;
SourceLocation DeclTypeLoc = SourceLocationForUserDeclaredType(KernelName);
if (DeclTypeLoc.isValid())
S.Diag(DeclTypeLoc, diag::note_entity_declared_at) << KernelName;
return true;
}
return false;
}
void SemaSYCL::CheckSYCLEntryPointFunctionDecl(FunctionDecl *FD) {
// Ensure that all attributes present on the declaration are consistent
// and warn about any redundant ones.
SYCLKernelEntryPointAttr *SKEPAttr = nullptr;
for (auto *SAI : FD->specific_attrs<SYCLKernelEntryPointAttr>()) {
if (!SKEPAttr) {
SKEPAttr = SAI;
continue;
}
if (!getASTContext().hasSameType(SAI->getKernelName(),
SKEPAttr->getKernelName())) {
Diag(SAI->getLocation(), diag::err_sycl_entry_point_invalid_redeclaration)
<< SAI->getKernelName() << SKEPAttr->getKernelName();
Diag(SKEPAttr->getLocation(), diag::note_previous_attribute);
SAI->setInvalidAttr();
} else {
Diag(SAI->getLocation(),
diag::warn_sycl_entry_point_redundant_declaration);
Diag(SKEPAttr->getLocation(), diag::note_previous_attribute);
}
}
assert(SKEPAttr && "Missing sycl_kernel_entry_point attribute");
// Ensure the kernel name type is valid.
if (!SKEPAttr->getKernelName()->isDependentType() &&
CheckSYCLKernelName(SemaRef, SKEPAttr->getLocation(),
SKEPAttr->getKernelName()))
SKEPAttr->setInvalidAttr();
// Ensure that an attribute present on the previous declaration
// matches the one on this declaration.
FunctionDecl *PrevFD = FD->getPreviousDecl();
if (PrevFD && !PrevFD->isInvalidDecl()) {
const auto *PrevSKEPAttr = PrevFD->getAttr<SYCLKernelEntryPointAttr>();
if (PrevSKEPAttr && !PrevSKEPAttr->isInvalidAttr()) {
if (!getASTContext().hasSameType(SKEPAttr->getKernelName(),
PrevSKEPAttr->getKernelName())) {
Diag(SKEPAttr->getLocation(),
diag::err_sycl_entry_point_invalid_redeclaration)
<< SKEPAttr->getKernelName() << PrevSKEPAttr->getKernelName();
Diag(PrevSKEPAttr->getLocation(), diag::note_previous_decl) << PrevFD;
SKEPAttr->setInvalidAttr();
}
}
}
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (!MD->isStatic()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*non-static member function*/ 0;
SKEPAttr->setInvalidAttr();
}
}
if (FD->isVariadic()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*variadic function*/ 1;
SKEPAttr->setInvalidAttr();
}
if (FD->isDefaulted()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*defaulted function*/ 3;
SKEPAttr->setInvalidAttr();
} else if (FD->isDeleted()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*deleted function*/ 2;
SKEPAttr->setInvalidAttr();
}
if (FD->isConsteval()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*consteval function*/ 5;
SKEPAttr->setInvalidAttr();
} else if (FD->isConstexpr()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*constexpr function*/ 4;
SKEPAttr->setInvalidAttr();
}
if (FD->isNoReturn()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*function declared with the 'noreturn' attribute*/ 6;
SKEPAttr->setInvalidAttr();
}
if (FD->getReturnType()->isUndeducedType()) {
Diag(SKEPAttr->getLocation(),
diag::err_sycl_entry_point_deduced_return_type);
SKEPAttr->setInvalidAttr();
} else if (!FD->getReturnType()->isDependentType() &&
!FD->getReturnType()->isVoidType()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_return_type);
SKEPAttr->setInvalidAttr();
}
if (!FD->isInvalidDecl() && !FD->isTemplated() &&
!SKEPAttr->isInvalidAttr()) {
const SYCLKernelInfo *SKI =
getASTContext().findSYCLKernelInfo(SKEPAttr->getKernelName());
if (SKI) {
if (!declaresSameEntity(FD, SKI->getKernelEntryPointDecl())) {
// FIXME: This diagnostic should include the origin of the kernel
// FIXME: names; not just the locations of the conflicting declarations.
Diag(FD->getLocation(), diag::err_sycl_kernel_name_conflict);
Diag(SKI->getKernelEntryPointDecl()->getLocation(),
diag::note_previous_declaration);
SKEPAttr->setInvalidAttr();
}
} else {
getASTContext().registerSYCLEntryPointFunction(FD);
}
}
}
namespace {
// The body of a function declared with the [[sycl_kernel_entry_point]]
// attribute is cloned and transformed to substitute references to the original
// function parameters with references to replacement variables that stand in
// for SYCL kernel parameters or local variables that reconstitute a decomposed
// SYCL kernel argument.
class OutlinedFunctionDeclBodyInstantiator
: public TreeTransform<OutlinedFunctionDeclBodyInstantiator> {
public:
using ParmDeclMap = llvm::DenseMap<ParmVarDecl *, VarDecl *>;
OutlinedFunctionDeclBodyInstantiator(Sema &S, ParmDeclMap &M)
: TreeTransform<OutlinedFunctionDeclBodyInstantiator>(S), SemaRef(S),
MapRef(M) {}
// A new set of AST nodes is always required.
bool AlwaysRebuild() { return true; }
// Transform ParmVarDecl references to the supplied replacement variables.
ExprResult TransformDeclRefExpr(DeclRefExpr *DRE) {
const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl());
if (PVD) {
ParmDeclMap::iterator I = MapRef.find(PVD);
if (I != MapRef.end()) {
VarDecl *VD = I->second;
assert(SemaRef.getASTContext().hasSameUnqualifiedType(PVD->getType(),
VD->getType()));
assert(!VD->getType().isMoreQualifiedThan(PVD->getType(),
SemaRef.getASTContext()));
VD->setIsUsed();
return DeclRefExpr::Create(
SemaRef.getASTContext(), DRE->getQualifierLoc(),
DRE->getTemplateKeywordLoc(), VD, false, DRE->getNameInfo(),
DRE->getType(), DRE->getValueKind());
}
}
return DRE;
}
private:
Sema &SemaRef;
ParmDeclMap &MapRef;
};
} // unnamed namespace
StmtResult SemaSYCL::BuildSYCLKernelCallStmt(FunctionDecl *FD,
CompoundStmt *Body) {
assert(!FD->isInvalidDecl());
assert(!FD->isTemplated());
assert(FD->hasPrototype());
const auto *SKEPAttr = FD->getAttr<SYCLKernelEntryPointAttr>();
assert(SKEPAttr && "Missing sycl_kernel_entry_point attribute");
assert(!SKEPAttr->isInvalidAttr() &&
"sycl_kernel_entry_point attribute is invalid");
// Ensure that the kernel name was previously registered and that the
// stored declaration matches.
const SYCLKernelInfo &SKI =
getASTContext().getSYCLKernelInfo(SKEPAttr->getKernelName());
assert(declaresSameEntity(SKI.getKernelEntryPointDecl(), FD) &&
"SYCL kernel name conflict");
(void)SKI;
using ParmDeclMap = OutlinedFunctionDeclBodyInstantiator::ParmDeclMap;
ParmDeclMap ParmMap;
assert(SemaRef.CurContext == FD);
OutlinedFunctionDecl *OFD =
OutlinedFunctionDecl::Create(getASTContext(), FD, FD->getNumParams());
unsigned i = 0;
for (ParmVarDecl *PVD : FD->parameters()) {
ImplicitParamDecl *IPD = ImplicitParamDecl::Create(
getASTContext(), OFD, SourceLocation(), PVD->getIdentifier(),
PVD->getType(), ImplicitParamKind::Other);
OFD->setParam(i, IPD);
ParmMap[PVD] = IPD;
++i;
}
OutlinedFunctionDeclBodyInstantiator OFDBodyInstantiator(SemaRef, ParmMap);
Stmt *OFDBody = OFDBodyInstantiator.TransformStmt(Body).get();
OFD->setBody(OFDBody);
OFD->setNothrow();
Stmt *NewBody = new (getASTContext()) SYCLKernelCallStmt(Body, OFD);
return NewBody;
}
|