1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
//===--- SemaStmtAttr.cpp - Statement Attribute Handling ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements stmt-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/ScopeInfo.h"
#include <optional>
using namespace clang;
using namespace sema;
static Attr *handleFallThroughAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
FallThroughAttr Attr(S.Context, A);
if (isa<SwitchCase>(St)) {
S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_wrong_target)
<< A << St->getBeginLoc();
SourceLocation L = S.getLocForEndOfToken(Range.getEnd());
S.Diag(L, diag::note_fallthrough_insert_semi_fixit)
<< FixItHint::CreateInsertion(L, ";");
return nullptr;
}
auto *FnScope = S.getCurFunction();
if (FnScope->SwitchStack.empty()) {
S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_outside_switch);
return nullptr;
}
// If this is spelled as the standard C++17 attribute, but not in C++17, warn
// about using it as an extension.
if (!S.getLangOpts().CPlusPlus17 && A.isCXX11Attribute() &&
!A.getScopeName())
S.Diag(A.getLoc(), diag::ext_cxx17_attr) << A;
FnScope->setHasFallthroughStmt();
return ::new (S.Context) FallThroughAttr(S.Context, A);
}
static Attr *handleSuppressAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (A.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress &&
A.getNumArgs() < 1) {
// Suppression attribute with GSL spelling requires at least 1 argument.
S.Diag(A.getLoc(), diag::err_attribute_too_few_arguments) << A << 1;
return nullptr;
}
std::vector<StringRef> DiagnosticIdentifiers;
for (unsigned I = 0, E = A.getNumArgs(); I != E; ++I) {
StringRef RuleName;
if (!S.checkStringLiteralArgumentAttr(A, I, RuleName, nullptr))
return nullptr;
DiagnosticIdentifiers.push_back(RuleName);
}
return ::new (S.Context) SuppressAttr(
S.Context, A, DiagnosticIdentifiers.data(), DiagnosticIdentifiers.size());
}
static Attr *handleLoopHintAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange) {
IdentifierLoc *PragmaNameLoc = A.getArgAsIdent(0);
IdentifierLoc *OptionLoc = A.getArgAsIdent(1);
IdentifierLoc *StateLoc = A.getArgAsIdent(2);
Expr *ValueExpr = A.getArgAsExpr(3);
StringRef PragmaName =
llvm::StringSwitch<StringRef>(PragmaNameLoc->Ident->getName())
.Cases("unroll", "nounroll", "unroll_and_jam", "nounroll_and_jam",
PragmaNameLoc->Ident->getName())
.Default("clang loop");
// This could be handled automatically by adding a Subjects definition in
// Attr.td, but that would make the diagnostic behavior worse in this case
// because the user spells this attribute as a pragma.
if (!isa<DoStmt, ForStmt, CXXForRangeStmt, WhileStmt>(St)) {
std::string Pragma = "#pragma " + std::string(PragmaName);
S.Diag(St->getBeginLoc(), diag::err_pragma_loop_precedes_nonloop) << Pragma;
return nullptr;
}
LoopHintAttr::OptionType Option;
LoopHintAttr::LoopHintState State;
auto SetHints = [&Option, &State](LoopHintAttr::OptionType O,
LoopHintAttr::LoopHintState S) {
Option = O;
State = S;
};
if (PragmaName == "nounroll") {
SetHints(LoopHintAttr::Unroll, LoopHintAttr::Disable);
} else if (PragmaName == "unroll") {
// #pragma unroll N
if (ValueExpr) {
if (!ValueExpr->isValueDependent()) {
auto Value = ValueExpr->EvaluateKnownConstInt(S.getASTContext());
if (Value.isZero() || Value.isOne())
SetHints(LoopHintAttr::Unroll, LoopHintAttr::Disable);
else
SetHints(LoopHintAttr::UnrollCount, LoopHintAttr::Numeric);
} else
SetHints(LoopHintAttr::UnrollCount, LoopHintAttr::Numeric);
} else
SetHints(LoopHintAttr::Unroll, LoopHintAttr::Enable);
} else if (PragmaName == "nounroll_and_jam") {
SetHints(LoopHintAttr::UnrollAndJam, LoopHintAttr::Disable);
} else if (PragmaName == "unroll_and_jam") {
// #pragma unroll_and_jam N
if (ValueExpr)
SetHints(LoopHintAttr::UnrollAndJamCount, LoopHintAttr::Numeric);
else
SetHints(LoopHintAttr::UnrollAndJam, LoopHintAttr::Enable);
} else {
// #pragma clang loop ...
assert(OptionLoc && OptionLoc->Ident &&
"Attribute must have valid option info.");
Option = llvm::StringSwitch<LoopHintAttr::OptionType>(
OptionLoc->Ident->getName())
.Case("vectorize", LoopHintAttr::Vectorize)
.Case("vectorize_width", LoopHintAttr::VectorizeWidth)
.Case("interleave", LoopHintAttr::Interleave)
.Case("vectorize_predicate", LoopHintAttr::VectorizePredicate)
.Case("interleave_count", LoopHintAttr::InterleaveCount)
.Case("unroll", LoopHintAttr::Unroll)
.Case("unroll_count", LoopHintAttr::UnrollCount)
.Case("pipeline", LoopHintAttr::PipelineDisabled)
.Case("pipeline_initiation_interval",
LoopHintAttr::PipelineInitiationInterval)
.Case("distribute", LoopHintAttr::Distribute)
.Default(LoopHintAttr::Vectorize);
if (Option == LoopHintAttr::VectorizeWidth) {
assert((ValueExpr || (StateLoc && StateLoc->Ident)) &&
"Attribute must have a valid value expression or argument.");
if (ValueExpr && S.CheckLoopHintExpr(ValueExpr, St->getBeginLoc(),
/*AllowZero=*/false))
return nullptr;
if (StateLoc && StateLoc->Ident && StateLoc->Ident->isStr("scalable"))
State = LoopHintAttr::ScalableWidth;
else
State = LoopHintAttr::FixedWidth;
} else if (Option == LoopHintAttr::InterleaveCount ||
Option == LoopHintAttr::UnrollCount ||
Option == LoopHintAttr::PipelineInitiationInterval) {
assert(ValueExpr && "Attribute must have a valid value expression.");
if (S.CheckLoopHintExpr(ValueExpr, St->getBeginLoc(),
/*AllowZero=*/false))
return nullptr;
State = LoopHintAttr::Numeric;
} else if (Option == LoopHintAttr::Vectorize ||
Option == LoopHintAttr::Interleave ||
Option == LoopHintAttr::VectorizePredicate ||
Option == LoopHintAttr::Unroll ||
Option == LoopHintAttr::Distribute ||
Option == LoopHintAttr::PipelineDisabled) {
assert(StateLoc && StateLoc->Ident && "Loop hint must have an argument");
if (StateLoc->Ident->isStr("disable"))
State = LoopHintAttr::Disable;
else if (StateLoc->Ident->isStr("assume_safety"))
State = LoopHintAttr::AssumeSafety;
else if (StateLoc->Ident->isStr("full"))
State = LoopHintAttr::Full;
else if (StateLoc->Ident->isStr("enable"))
State = LoopHintAttr::Enable;
else
llvm_unreachable("bad loop hint argument");
} else
llvm_unreachable("bad loop hint");
}
return LoopHintAttr::CreateImplicit(S.Context, Option, State, ValueExpr, A);
}
namespace {
class CallExprFinder : public ConstEvaluatedExprVisitor<CallExprFinder> {
bool FoundAsmStmt = false;
std::vector<const CallExpr *> CallExprs;
public:
typedef ConstEvaluatedExprVisitor<CallExprFinder> Inherited;
CallExprFinder(Sema &S, const Stmt *St) : Inherited(S.Context) { Visit(St); }
bool foundCallExpr() { return !CallExprs.empty(); }
const std::vector<const CallExpr *> &getCallExprs() { return CallExprs; }
bool foundAsmStmt() { return FoundAsmStmt; }
void VisitCallExpr(const CallExpr *E) { CallExprs.push_back(E); }
void VisitAsmStmt(const AsmStmt *S) { FoundAsmStmt = true; }
void Visit(const Stmt *St) {
if (!St)
return;
ConstEvaluatedExprVisitor<CallExprFinder>::Visit(St);
}
};
} // namespace
static Attr *handleNoMergeAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
CallExprFinder CEF(S, St);
if (!CEF.foundCallExpr() && !CEF.foundAsmStmt()) {
S.Diag(St->getBeginLoc(), diag::warn_attribute_ignored_no_calls_in_stmt)
<< A;
return nullptr;
}
return ::new (S.Context) NoMergeAttr(S.Context, A);
}
static Attr *handleNoConvergentAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
CallExprFinder CEF(S, St);
if (!CEF.foundCallExpr() && !CEF.foundAsmStmt()) {
S.Diag(St->getBeginLoc(), diag::warn_attribute_ignored_no_calls_in_stmt)
<< A;
return nullptr;
}
return ::new (S.Context) NoConvergentAttr(S.Context, A);
}
template <typename OtherAttr, int DiagIdx>
static bool CheckStmtInlineAttr(Sema &SemaRef, const Stmt *OrigSt,
const Stmt *CurSt,
const AttributeCommonInfo &A) {
CallExprFinder OrigCEF(SemaRef, OrigSt);
CallExprFinder CEF(SemaRef, CurSt);
// If the call expressions lists are equal in size, we can skip
// previously emitted diagnostics. However, if the statement has a pack
// expansion, we have no way of telling which CallExpr is the instantiated
// version of the other. In this case, we will end up re-diagnosing in the
// instantiation.
// ie: [[clang::always_inline]] non_dependent(), (other_call<Pack>()...)
// will diagnose nondependent again.
bool CanSuppressDiag =
OrigSt && CEF.getCallExprs().size() == OrigCEF.getCallExprs().size();
if (!CEF.foundCallExpr()) {
return SemaRef.Diag(CurSt->getBeginLoc(),
diag::warn_attribute_ignored_no_calls_in_stmt)
<< A;
}
for (const auto &Tup :
llvm::zip_longest(OrigCEF.getCallExprs(), CEF.getCallExprs())) {
// If the original call expression already had a callee, we already
// diagnosed this, so skip it here. We can't skip if there isn't a 1:1
// relationship between the two lists of call expressions.
if (!CanSuppressDiag || !(*std::get<0>(Tup))->getCalleeDecl()) {
const Decl *Callee = (*std::get<1>(Tup))->getCalleeDecl();
if (Callee &&
(Callee->hasAttr<OtherAttr>() || Callee->hasAttr<FlattenAttr>())) {
SemaRef.Diag(CurSt->getBeginLoc(),
diag::warn_function_stmt_attribute_precedence)
<< A << (Callee->hasAttr<OtherAttr>() ? DiagIdx : 1);
SemaRef.Diag(Callee->getBeginLoc(), diag::note_conflicting_attribute);
}
}
}
return false;
}
bool Sema::CheckNoInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
const AttributeCommonInfo &A) {
return CheckStmtInlineAttr<AlwaysInlineAttr, 0>(*this, OrigSt, CurSt, A);
}
bool Sema::CheckAlwaysInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
const AttributeCommonInfo &A) {
return CheckStmtInlineAttr<NoInlineAttr, 2>(*this, OrigSt, CurSt, A);
}
static Attr *handleNoInlineAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
NoInlineAttr NIA(S.Context, A);
if (!NIA.isStmtNoInline()) {
S.Diag(St->getBeginLoc(), diag::warn_function_attribute_ignored_in_stmt)
<< "[[clang::noinline]]";
return nullptr;
}
if (S.CheckNoInlineAttr(/*OrigSt=*/nullptr, St, A))
return nullptr;
return ::new (S.Context) NoInlineAttr(S.Context, A);
}
static Attr *handleAlwaysInlineAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
AlwaysInlineAttr AIA(S.Context, A);
if (!AIA.isClangAlwaysInline()) {
S.Diag(St->getBeginLoc(), diag::warn_function_attribute_ignored_in_stmt)
<< "[[clang::always_inline]]";
return nullptr;
}
if (S.CheckAlwaysInlineAttr(/*OrigSt=*/nullptr, St, A))
return nullptr;
return ::new (S.Context) AlwaysInlineAttr(S.Context, A);
}
static Attr *handleCXXAssumeAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
ExprResult Res = S.ActOnCXXAssumeAttr(St, A, Range);
if (!Res.isUsable())
return nullptr;
return ::new (S.Context) CXXAssumeAttr(S.Context, A, Res.get());
}
static Attr *handleMustTailAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
// Validation is in Sema::ActOnAttributedStmt().
return ::new (S.Context) MustTailAttr(S.Context, A);
}
static Attr *handleLikely(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (!S.getLangOpts().CPlusPlus20 && A.isCXX11Attribute() && !A.getScopeName())
S.Diag(A.getLoc(), diag::ext_cxx20_attr) << A << Range;
return ::new (S.Context) LikelyAttr(S.Context, A);
}
static Attr *handleUnlikely(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (!S.getLangOpts().CPlusPlus20 && A.isCXX11Attribute() && !A.getScopeName())
S.Diag(A.getLoc(), diag::ext_cxx20_attr) << A << Range;
return ::new (S.Context) UnlikelyAttr(S.Context, A);
}
CodeAlignAttr *Sema::BuildCodeAlignAttr(const AttributeCommonInfo &CI,
Expr *E) {
if (!E->isValueDependent()) {
llvm::APSInt ArgVal;
ExprResult Res = VerifyIntegerConstantExpression(E, &ArgVal);
if (Res.isInvalid())
return nullptr;
E = Res.get();
// This attribute requires an integer argument which is a constant power of
// two between 1 and 4096 inclusive.
if (ArgVal < CodeAlignAttr::MinimumAlignment ||
ArgVal > CodeAlignAttr::MaximumAlignment || !ArgVal.isPowerOf2()) {
if (std::optional<int64_t> Value = ArgVal.trySExtValue())
Diag(CI.getLoc(), diag::err_attribute_power_of_two_in_range)
<< CI << CodeAlignAttr::MinimumAlignment
<< CodeAlignAttr::MaximumAlignment << Value.value();
else
Diag(CI.getLoc(), diag::err_attribute_power_of_two_in_range)
<< CI << CodeAlignAttr::MinimumAlignment
<< CodeAlignAttr::MaximumAlignment << E;
return nullptr;
}
}
return new (Context) CodeAlignAttr(Context, CI, E);
}
static Attr *handleCodeAlignAttr(Sema &S, Stmt *St, const ParsedAttr &A) {
Expr *E = A.getArgAsExpr(0);
return S.BuildCodeAlignAttr(A, E);
}
// Diagnose non-identical duplicates as a 'conflicting' loop attributes
// and suppress duplicate errors in cases where the two match.
template <typename LoopAttrT>
static void CheckForDuplicateLoopAttrs(Sema &S, ArrayRef<const Attr *> Attrs) {
auto FindFunc = [](const Attr *A) { return isa<const LoopAttrT>(A); };
const auto *FirstItr = std::find_if(Attrs.begin(), Attrs.end(), FindFunc);
if (FirstItr == Attrs.end()) // no attributes found
return;
const auto *LastFoundItr = FirstItr;
std::optional<llvm::APSInt> FirstValue;
const auto *CAFA =
dyn_cast<ConstantExpr>(cast<LoopAttrT>(*FirstItr)->getAlignment());
// Return early if first alignment expression is dependent (since we don't
// know what the effective size will be), and skip the loop entirely.
if (!CAFA)
return;
while (Attrs.end() != (LastFoundItr = std::find_if(LastFoundItr + 1,
Attrs.end(), FindFunc))) {
const auto *CASA =
dyn_cast<ConstantExpr>(cast<LoopAttrT>(*LastFoundItr)->getAlignment());
// If the value is dependent, we can not test anything.
if (!CASA)
return;
// Test the attribute values.
llvm::APSInt SecondValue = CASA->getResultAsAPSInt();
if (!FirstValue)
FirstValue = CAFA->getResultAsAPSInt();
if (FirstValue != SecondValue) {
S.Diag((*LastFoundItr)->getLocation(), diag::err_loop_attr_conflict)
<< *FirstItr;
S.Diag((*FirstItr)->getLocation(), diag::note_previous_attribute);
}
}
return;
}
static Attr *handleMSConstexprAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (!S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2022_3)) {
S.Diag(A.getLoc(), diag::warn_unknown_attribute_ignored)
<< A << A.getRange();
return nullptr;
}
return ::new (S.Context) MSConstexprAttr(S.Context, A);
}
#define WANT_STMT_MERGE_LOGIC
#include "clang/Sema/AttrParsedAttrImpl.inc"
#undef WANT_STMT_MERGE_LOGIC
static void
CheckForIncompatibleAttributes(Sema &S,
const SmallVectorImpl<const Attr *> &Attrs) {
// The vast majority of attributed statements will only have one attribute
// on them, so skip all of the checking in the common case.
if (Attrs.size() < 2)
return;
// First, check for the easy cases that are table-generated for us.
if (!DiagnoseMutualExclusions(S, Attrs))
return;
enum CategoryType {
// For the following categories, they come in two variants: a state form and
// a numeric form. The state form may be one of default, enable, and
// disable. The numeric form provides an integer hint (for example, unroll
// count) to the transformer.
Vectorize,
Interleave,
UnrollAndJam,
Pipeline,
// For unroll, default indicates full unrolling rather than enabling the
// transformation.
Unroll,
// The loop distribution transformation only has a state form that is
// exposed by #pragma clang loop distribute (enable | disable).
Distribute,
// The vector predication only has a state form that is exposed by
// #pragma clang loop vectorize_predicate (enable | disable).
VectorizePredicate,
// This serves as a indicator to how many category are listed in this enum.
NumberOfCategories
};
// The following array accumulates the hints encountered while iterating
// through the attributes to check for compatibility.
struct {
const LoopHintAttr *StateAttr;
const LoopHintAttr *NumericAttr;
} HintAttrs[CategoryType::NumberOfCategories] = {};
for (const auto *I : Attrs) {
const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(I);
// Skip non loop hint attributes
if (!LH)
continue;
CategoryType Category = CategoryType::NumberOfCategories;
LoopHintAttr::OptionType Option = LH->getOption();
switch (Option) {
case LoopHintAttr::Vectorize:
case LoopHintAttr::VectorizeWidth:
Category = Vectorize;
break;
case LoopHintAttr::Interleave:
case LoopHintAttr::InterleaveCount:
Category = Interleave;
break;
case LoopHintAttr::Unroll:
case LoopHintAttr::UnrollCount:
Category = Unroll;
break;
case LoopHintAttr::UnrollAndJam:
case LoopHintAttr::UnrollAndJamCount:
Category = UnrollAndJam;
break;
case LoopHintAttr::Distribute:
// Perform the check for duplicated 'distribute' hints.
Category = Distribute;
break;
case LoopHintAttr::PipelineDisabled:
case LoopHintAttr::PipelineInitiationInterval:
Category = Pipeline;
break;
case LoopHintAttr::VectorizePredicate:
Category = VectorizePredicate;
break;
};
assert(Category != NumberOfCategories && "Unhandled loop hint option");
auto &CategoryState = HintAttrs[Category];
const LoopHintAttr *PrevAttr;
if (Option == LoopHintAttr::Vectorize ||
Option == LoopHintAttr::Interleave || Option == LoopHintAttr::Unroll ||
Option == LoopHintAttr::UnrollAndJam ||
Option == LoopHintAttr::VectorizePredicate ||
Option == LoopHintAttr::PipelineDisabled ||
Option == LoopHintAttr::Distribute) {
// Enable|Disable|AssumeSafety hint. For example, vectorize(enable).
PrevAttr = CategoryState.StateAttr;
CategoryState.StateAttr = LH;
} else {
// Numeric hint. For example, vectorize_width(8).
PrevAttr = CategoryState.NumericAttr;
CategoryState.NumericAttr = LH;
}
PrintingPolicy Policy(S.Context.getLangOpts());
SourceLocation OptionLoc = LH->getRange().getBegin();
if (PrevAttr)
// Cannot specify same type of attribute twice.
S.Diag(OptionLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/true << PrevAttr->getDiagnosticName(Policy)
<< LH->getDiagnosticName(Policy);
if (CategoryState.StateAttr && CategoryState.NumericAttr &&
(Category == Unroll || Category == UnrollAndJam ||
CategoryState.StateAttr->getState() == LoopHintAttr::Disable)) {
// Disable hints are not compatible with numeric hints of the same
// category. As a special case, numeric unroll hints are also not
// compatible with enable or full form of the unroll pragma because these
// directives indicate full unrolling.
S.Diag(OptionLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/false
<< CategoryState.StateAttr->getDiagnosticName(Policy)
<< CategoryState.NumericAttr->getDiagnosticName(Policy);
}
}
}
static Attr *handleOpenCLUnrollHint(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
// Although the feature was introduced only in OpenCL C v2.0 s6.11.5, it's
// useful for OpenCL 1.x too and doesn't require HW support.
// opencl_unroll_hint can have 0 arguments (compiler
// determines unrolling factor) or 1 argument (the unroll factor provided
// by the user).
unsigned UnrollFactor = 0;
if (A.getNumArgs() == 1) {
Expr *E = A.getArgAsExpr(0);
std::optional<llvm::APSInt> ArgVal;
if (!(ArgVal = E->getIntegerConstantExpr(S.Context))) {
S.Diag(A.getLoc(), diag::err_attribute_argument_type)
<< A << AANT_ArgumentIntegerConstant << E->getSourceRange();
return nullptr;
}
int Val = ArgVal->getSExtValue();
if (Val <= 0) {
S.Diag(A.getRange().getBegin(),
diag::err_attribute_requires_positive_integer)
<< A << /* positive */ 0;
return nullptr;
}
UnrollFactor = static_cast<unsigned>(Val);
}
return ::new (S.Context) OpenCLUnrollHintAttr(S.Context, A, UnrollFactor);
}
static Attr *handleHLSLLoopHintAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (A.getSemanticSpelling() == HLSLLoopHintAttr::Spelling::Microsoft_loop &&
!A.checkAtMostNumArgs(S, 0))
return nullptr;
unsigned UnrollFactor = 0;
if (A.getNumArgs() == 1) {
Expr *E = A.getArgAsExpr(0);
if (S.CheckLoopHintExpr(E, St->getBeginLoc(),
/*AllowZero=*/false))
return nullptr;
std::optional<llvm::APSInt> ArgVal = E->getIntegerConstantExpr(S.Context);
// CheckLoopHintExpr handles non int const cases
assert(ArgVal != std::nullopt && "ArgVal should be an integer constant.");
int Val = ArgVal->getSExtValue();
// CheckLoopHintExpr handles negative and zero cases
assert(Val > 0 && "Val should be a positive integer greater than zero.");
UnrollFactor = static_cast<unsigned>(Val);
}
return ::new (S.Context) HLSLLoopHintAttr(S.Context, A, UnrollFactor);
}
static Attr *handleHLSLControlFlowHint(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
return ::new (S.Context) HLSLControlFlowHintAttr(S.Context, A);
}
static Attr *ProcessStmtAttribute(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (A.isInvalid() || A.getKind() == ParsedAttr::IgnoredAttribute)
return nullptr;
// Unknown attributes are automatically warned on. Target-specific attributes
// which do not apply to the current target architecture are treated as
// though they were unknown attributes.
const TargetInfo *Aux = S.Context.getAuxTargetInfo();
if (A.getKind() == ParsedAttr::UnknownAttribute ||
!(A.existsInTarget(S.Context.getTargetInfo()) ||
(S.Context.getLangOpts().SYCLIsDevice && Aux &&
A.existsInTarget(*Aux)))) {
S.Diag(A.getLoc(), A.isRegularKeywordAttribute()
? (unsigned)diag::err_keyword_not_supported_on_target
: A.isDeclspecAttribute()
? (unsigned)diag::warn_unhandled_ms_attribute_ignored
: (unsigned)diag::warn_unknown_attribute_ignored)
<< A << A.getRange();
return nullptr;
}
if (S.checkCommonAttributeFeatures(St, A))
return nullptr;
switch (A.getKind()) {
case ParsedAttr::AT_AlwaysInline:
return handleAlwaysInlineAttr(S, St, A, Range);
case ParsedAttr::AT_CXXAssume:
return handleCXXAssumeAttr(S, St, A, Range);
case ParsedAttr::AT_FallThrough:
return handleFallThroughAttr(S, St, A, Range);
case ParsedAttr::AT_LoopHint:
return handleLoopHintAttr(S, St, A, Range);
case ParsedAttr::AT_HLSLLoopHint:
return handleHLSLLoopHintAttr(S, St, A, Range);
case ParsedAttr::AT_HLSLControlFlowHint:
return handleHLSLControlFlowHint(S, St, A, Range);
case ParsedAttr::AT_OpenCLUnrollHint:
return handleOpenCLUnrollHint(S, St, A, Range);
case ParsedAttr::AT_Suppress:
return handleSuppressAttr(S, St, A, Range);
case ParsedAttr::AT_NoMerge:
return handleNoMergeAttr(S, St, A, Range);
case ParsedAttr::AT_NoInline:
return handleNoInlineAttr(S, St, A, Range);
case ParsedAttr::AT_MustTail:
return handleMustTailAttr(S, St, A, Range);
case ParsedAttr::AT_Likely:
return handleLikely(S, St, A, Range);
case ParsedAttr::AT_Unlikely:
return handleUnlikely(S, St, A, Range);
case ParsedAttr::AT_CodeAlign:
return handleCodeAlignAttr(S, St, A);
case ParsedAttr::AT_MSConstexpr:
return handleMSConstexprAttr(S, St, A, Range);
case ParsedAttr::AT_NoConvergent:
return handleNoConvergentAttr(S, St, A, Range);
case ParsedAttr::AT_Annotate:
return S.CreateAnnotationAttr(A);
default:
if (Attr *AT = nullptr; A.getInfo().handleStmtAttribute(S, St, A, AT) !=
ParsedAttrInfo::NotHandled) {
return AT;
}
// N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
// declaration attribute is not written on a statement, but this code is
// needed for attributes in Attr.td that do not list any subjects.
S.Diag(A.getRange().getBegin(), diag::err_decl_attribute_invalid_on_stmt)
<< A << A.isRegularKeywordAttribute() << St->getBeginLoc();
return nullptr;
}
}
void Sema::ProcessStmtAttributes(Stmt *S, const ParsedAttributes &InAttrs,
SmallVectorImpl<const Attr *> &OutAttrs) {
for (const ParsedAttr &AL : InAttrs) {
if (const Attr *A = ProcessStmtAttribute(*this, S, AL, InAttrs.Range))
OutAttrs.push_back(A);
}
CheckForIncompatibleAttributes(*this, OutAttrs);
CheckForDuplicateLoopAttrs<CodeAlignAttr>(*this, OutAttrs);
}
bool Sema::CheckRebuiltStmtAttributes(ArrayRef<const Attr *> Attrs) {
CheckForDuplicateLoopAttrs<CodeAlignAttr>(*this, Attrs);
return false;
}
ExprResult Sema::ActOnCXXAssumeAttr(Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (A.getNumArgs() != 1 || !A.getArgAsExpr(0)) {
Diag(A.getLoc(), diag::err_attribute_wrong_number_arguments)
<< A.getAttrName() << 1 << Range;
return ExprError();
}
auto *Assumption = A.getArgAsExpr(0);
if (DiagnoseUnexpandedParameterPack(Assumption)) {
return ExprError();
}
if (Assumption->getDependence() == ExprDependence::None) {
ExprResult Res = BuildCXXAssumeExpr(Assumption, A.getAttrName(), Range);
if (Res.isInvalid())
return ExprError();
Assumption = Res.get();
}
if (!getLangOpts().CPlusPlus23 &&
A.getSyntax() == AttributeCommonInfo::AS_CXX11)
Diag(A.getLoc(), diag::ext_cxx23_attr) << A << Range;
return Assumption;
}
ExprResult Sema::BuildCXXAssumeExpr(Expr *Assumption,
const IdentifierInfo *AttrName,
SourceRange Range) {
ExprResult Res = CorrectDelayedTyposInExpr(Assumption);
if (Res.isInvalid())
return ExprError();
Res = CheckPlaceholderExpr(Res.get());
if (Res.isInvalid())
return ExprError();
Res = PerformContextuallyConvertToBool(Res.get());
if (Res.isInvalid())
return ExprError();
Assumption = Res.get();
if (Assumption->HasSideEffects(Context))
Diag(Assumption->getBeginLoc(), diag::warn_assume_side_effects)
<< AttrName << Range;
return Assumption;
}
|