1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::formatv;
namespace {
/// If `E` is a "clean" array subscript expression, return the type of the
/// accessed element. If the base of the subscript expression is modified by
/// pointer arithmetic (and not the beginning of a "full" memory region), this
/// always returns nullopt because that's the right (or the least bad) thing to
/// do for the diagnostic output that's relying on this.
static std::optional<QualType> determineElementType(const Expr *E,
const CheckerContext &C) {
const auto *ASE = dyn_cast<ArraySubscriptExpr>(E);
if (!ASE)
return std::nullopt;
const MemRegion *SubscriptBaseReg = C.getSVal(ASE->getBase()).getAsRegion();
if (!SubscriptBaseReg)
return std::nullopt;
// The base of the subscript expression is affected by pointer arithmetics,
// so we want to report byte offsets instead of indices.
if (isa<ElementRegion>(SubscriptBaseReg->StripCasts()))
return std::nullopt;
return ASE->getType();
}
static std::optional<int64_t>
determineElementSize(const std::optional<QualType> T, const CheckerContext &C) {
if (!T)
return std::nullopt;
return C.getASTContext().getTypeSizeInChars(*T).getQuantity();
}
class StateUpdateReporter {
const SubRegion *Reg;
const NonLoc ByteOffsetVal;
const std::optional<QualType> ElementType;
const std::optional<int64_t> ElementSize;
bool AssumedNonNegative = false;
std::optional<NonLoc> AssumedUpperBound = std::nullopt;
public:
StateUpdateReporter(const SubRegion *R, NonLoc ByteOffsVal, const Expr *E,
CheckerContext &C)
: Reg(R), ByteOffsetVal(ByteOffsVal),
ElementType(determineElementType(E, C)),
ElementSize(determineElementSize(ElementType, C)) {}
void recordNonNegativeAssumption() { AssumedNonNegative = true; }
void recordUpperBoundAssumption(NonLoc UpperBoundVal) {
AssumedUpperBound = UpperBoundVal;
}
bool assumedNonNegative() { return AssumedNonNegative; }
const NoteTag *createNoteTag(CheckerContext &C) const;
private:
std::string getMessage(PathSensitiveBugReport &BR) const;
/// Return true if information about the value of `Sym` can put constraints
/// on some symbol which is interesting within the bug report `BR`.
/// In particular, this returns true when `Sym` is interesting within `BR`;
/// but it also returns true if `Sym` is an expression that contains integer
/// constants and a single symbolic operand which is interesting (in `BR`).
/// We need to use this instead of plain `BR.isInteresting()` because if we
/// are analyzing code like
/// int array[10];
/// int f(int arg) {
/// return array[arg] && array[arg + 10];
/// }
/// then the byte offsets are `arg * 4` and `(arg + 10) * 4`, which are not
/// sub-expressions of each other (but `getSimplifiedOffsets` is smart enough
/// to detect this out of bounds access).
static bool providesInformationAboutInteresting(SymbolRef Sym,
PathSensitiveBugReport &BR);
static bool providesInformationAboutInteresting(SVal SV,
PathSensitiveBugReport &BR) {
return providesInformationAboutInteresting(SV.getAsSymbol(), BR);
}
};
struct Messages {
std::string Short, Full;
};
// NOTE: The `ArraySubscriptExpr` and `UnaryOperator` callbacks are `PostStmt`
// instead of `PreStmt` because the current implementation passes the whole
// expression to `CheckerContext::getSVal()` which only works after the
// symbolic evaluation of the expression. (To turn them into `PreStmt`
// callbacks, we'd need to duplicate the logic that evaluates these
// expressions.) The `MemberExpr` callback would work as `PreStmt` but it's
// defined as `PostStmt` for the sake of consistency with the other callbacks.
class ArrayBoundCheckerV2 : public Checker<check::PostStmt<ArraySubscriptExpr>,
check::PostStmt<UnaryOperator>,
check::PostStmt<MemberExpr>> {
BugType BT{this, "Out-of-bound access"};
BugType TaintBT{this, "Out-of-bound access", categories::TaintedData};
void performCheck(const Expr *E, CheckerContext &C) const;
void reportOOB(CheckerContext &C, ProgramStateRef ErrorState, Messages Msgs,
NonLoc Offset, std::optional<NonLoc> Extent,
bool IsTaintBug = false) const;
static void markPartsInteresting(PathSensitiveBugReport &BR,
ProgramStateRef ErrorState, NonLoc Val,
bool MarkTaint);
static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);
static bool isIdiomaticPastTheEndPtr(const Expr *E, ProgramStateRef State,
NonLoc Offset, NonLoc Limit,
CheckerContext &C);
static bool isInAddressOf(const Stmt *S, ASTContext &AC);
public:
void checkPostStmt(const ArraySubscriptExpr *E, CheckerContext &C) const {
performCheck(E, C);
}
void checkPostStmt(const UnaryOperator *E, CheckerContext &C) const {
if (E->getOpcode() == UO_Deref)
performCheck(E, C);
}
void checkPostStmt(const MemberExpr *E, CheckerContext &C) const {
if (E->isArrow())
performCheck(E->getBase(), C);
}
};
} // anonymous namespace
/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
static std::optional<std::pair<const SubRegion *, NonLoc>>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) {
QualType T = SVB.getArrayIndexType();
auto EvalBinOp = [&SVB, State, T](BinaryOperatorKind Op, NonLoc L, NonLoc R) {
// We will use this utility to add and multiply values.
return SVB.evalBinOpNN(State, Op, L, R, T).getAs<NonLoc>();
};
const SubRegion *OwnerRegion = nullptr;
std::optional<NonLoc> Offset = SVB.makeZeroArrayIndex();
const ElementRegion *CurRegion =
dyn_cast_or_null<ElementRegion>(Location.getAsRegion());
while (CurRegion) {
const auto Index = CurRegion->getIndex().getAs<NonLoc>();
if (!Index)
return std::nullopt;
QualType ElemType = CurRegion->getElementType();
// FIXME: The following early return was presumably added to safeguard the
// getTypeSizeInChars() call (which doesn't accept an incomplete type), but
// it seems that `ElemType` cannot be incomplete at this point.
if (ElemType->isIncompleteType())
return std::nullopt;
// Calculate Delta = Index * sizeof(ElemType).
NonLoc Size = SVB.makeArrayIndex(
SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
auto Delta = EvalBinOp(BO_Mul, *Index, Size);
if (!Delta)
return std::nullopt;
// Perform Offset += Delta.
Offset = EvalBinOp(BO_Add, *Offset, *Delta);
if (!Offset)
return std::nullopt;
OwnerRegion = CurRegion->getSuperRegion()->getAs<SubRegion>();
// When this is just another ElementRegion layer, we need to continue the
// offset calculations:
CurRegion = dyn_cast_or_null<ElementRegion>(OwnerRegion);
}
if (OwnerRegion)
return std::make_pair(OwnerRegion, *Offset);
return std::nullopt;
}
// NOTE: This function is the "heart" of this checker. It simplifies
// inequalities with transformations that are valid (and very elementary) in
// pure mathematics, but become invalid if we use them in C++ number model
// where the calculations may overflow.
// Due to the overflow issues I think it's impossible (or at least not
// practical) to integrate this kind of simplification into the resolution of
// arbitrary inequalities (i.e. the code of `evalBinOp`); but this function
// produces valid results when the calculations are handling memory offsets
// and every value is well below SIZE_MAX.
// TODO: This algorithm should be moved to a central location where it's
// available for other checkers that need to compare memory offsets.
// NOTE: the simplification preserves the order of the two operands in a
// mathematical sense, but it may change the result produced by a C++
// comparison operator (and the automatic type conversions).
// For example, consider a comparison "X+1 < 0", where the LHS is stored as a
// size_t and the RHS is stored in an int. (As size_t is unsigned, this
// comparison is false for all values of "X".) However, the simplification may
// turn it into "X < -1", which is still always false in a mathematical sense,
// but can produce a true result when evaluated by `evalBinOp` (which follows
// the rules of C++ and casts -1 to SIZE_MAX).
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
const llvm::APSInt &extentVal = extent.getValue();
std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant = APSIntType(extentVal).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, becasue multiplication by zero
// is simplified by the engine.
if ((extentVal % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extentVal / constant), svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extentVal - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
static bool isNegative(SValBuilder &SVB, ProgramStateRef State, NonLoc Value) {
const llvm::APSInt *MaxV = SVB.getMaxValue(State, Value);
return MaxV && MaxV->isNegative();
}
static bool isUnsigned(SValBuilder &SVB, NonLoc Value) {
QualType T = Value.getType(SVB.getContext());
return T->isUnsignedIntegerType();
}
// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
// If the optional argument CheckEquality is true, then use BO_EQ instead of
// the default BO_LT after consistently applying the same simplification steps.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
SValBuilder &SVB, bool CheckEquality = false) {
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
}
// We want to perform a _mathematical_ comparison between the numbers `Value`
// and `Threshold`; but `evalBinOpNN` evaluates a C/C++ operator that may
// perform automatic conversions. For example the number -1 is less than the
// number 1000, but -1 < `1000ull` will evaluate to `false` because the `int`
// -1 is converted to ULONGLONG_MAX.
// To avoid automatic conversions, we evaluate the "obvious" cases without
// calling `evalBinOpNN`:
if (isNegative(SVB, State, Value) && isUnsigned(SVB, Threshold)) {
if (CheckEquality) {
// negative_value == unsigned_threshold is always false
return {nullptr, State};
}
// negative_value < unsigned_threshold is always true
return {State, nullptr};
}
if (isUnsigned(SVB, Value) && isNegative(SVB, State, Threshold)) {
// unsigned_value == negative_threshold and
// unsigned_value < negative_threshold are both always false
return {nullptr, State};
}
// FIXME: These special cases are sufficient for handling real-world
// comparisons, but in theory there could be contrived situations where
// automatic conversion of a symbolic value (which can be negative and can be
// positive) leads to incorrect results.
// NOTE: We NEED to use the `evalBinOpNN` call in the "common" case, because
// we want to ensure that assumptions coming from this precondition and
// assumptions coming from regular C/C++ operator calls are represented by
// constraints on the same symbolic expression. A solution that would
// evaluate these "mathematical" compariosns through a separate pathway would
// be a step backwards in this sense.
const BinaryOperatorKind OpKind = CheckEquality ? BO_EQ : BO_LT;
auto BelowThreshold =
SVB.evalBinOpNN(State, OpKind, Value, Threshold, SVB.getConditionType())
.getAs<NonLoc>();
if (BelowThreshold)
return State->assume(*BelowThreshold);
return {nullptr, nullptr};
}
static std::string getRegionName(const SubRegion *Region) {
if (std::string RegName = Region->getDescriptiveName(); !RegName.empty())
return RegName;
// Field regions only have descriptive names when their parent has a
// descriptive name; so we provide a fallback representation for them:
if (const auto *FR = Region->getAs<FieldRegion>()) {
if (StringRef Name = FR->getDecl()->getName(); !Name.empty())
return formatv("the field '{0}'", Name);
return "the unnamed field";
}
if (isa<AllocaRegion>(Region))
return "the memory returned by 'alloca'";
if (isa<SymbolicRegion>(Region) &&
isa<HeapSpaceRegion>(Region->getMemorySpace()))
return "the heap area";
if (isa<StringRegion>(Region))
return "the string literal";
return "the region";
}
static std::optional<int64_t> getConcreteValue(NonLoc SV) {
if (auto ConcreteVal = SV.getAs<nonloc::ConcreteInt>()) {
return ConcreteVal->getValue()->tryExtValue();
}
return std::nullopt;
}
static std::optional<int64_t> getConcreteValue(std::optional<NonLoc> SV) {
return SV ? getConcreteValue(*SV) : std::nullopt;
}
static Messages getPrecedesMsgs(const SubRegion *Region, NonLoc Offset) {
std::string RegName = getRegionName(Region), OffsetStr = "";
if (auto ConcreteOffset = getConcreteValue(Offset))
OffsetStr = formatv(" {0}", ConcreteOffset);
return {
formatv("Out of bound access to memory preceding {0}", RegName),
formatv("Access of {0} at negative byte offset{1}", RegName, OffsetStr)};
}
/// Try to divide `Val1` and `Val2` (in place) by `Divisor` and return true if
/// it can be performed (`Divisor` is nonzero and there is no remainder). The
/// values `Val1` and `Val2` may be nullopt and in that case the corresponding
/// division is considered to be successful.
static bool tryDividePair(std::optional<int64_t> &Val1,
std::optional<int64_t> &Val2, int64_t Divisor) {
if (!Divisor)
return false;
const bool Val1HasRemainder = Val1 && *Val1 % Divisor;
const bool Val2HasRemainder = Val2 && *Val2 % Divisor;
if (!Val1HasRemainder && !Val2HasRemainder) {
if (Val1)
*Val1 /= Divisor;
if (Val2)
*Val2 /= Divisor;
return true;
}
return false;
}
static Messages getExceedsMsgs(ASTContext &ACtx, const SubRegion *Region,
NonLoc Offset, NonLoc Extent, SVal Location,
bool AlsoMentionUnderflow) {
std::string RegName = getRegionName(Region);
const auto *EReg = Location.getAsRegion()->getAs<ElementRegion>();
assert(EReg && "this checker only handles element access");
QualType ElemType = EReg->getElementType();
std::optional<int64_t> OffsetN = getConcreteValue(Offset);
std::optional<int64_t> ExtentN = getConcreteValue(Extent);
int64_t ElemSize = ACtx.getTypeSizeInChars(ElemType).getQuantity();
bool UseByteOffsets = !tryDividePair(OffsetN, ExtentN, ElemSize);
const char *OffsetOrIndex = UseByteOffsets ? "byte offset" : "index";
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of ";
if (!ExtentN && !UseByteOffsets)
Out << "'" << ElemType.getAsString() << "' element in ";
Out << RegName << " at ";
if (AlsoMentionUnderflow) {
Out << "a negative or overflowing " << OffsetOrIndex;
} else if (OffsetN) {
Out << OffsetOrIndex << " " << *OffsetN;
} else {
Out << "an overflowing " << OffsetOrIndex;
}
if (ExtentN) {
Out << ", while it holds only ";
if (*ExtentN != 1)
Out << *ExtentN;
else
Out << "a single";
if (UseByteOffsets)
Out << " byte";
else
Out << " '" << ElemType.getAsString() << "' element";
if (*ExtentN > 1)
Out << "s";
}
return {formatv("Out of bound access to memory {0} {1}",
AlsoMentionUnderflow ? "around" : "after the end of",
RegName),
std::string(Buf)};
}
static Messages getTaintMsgs(const SubRegion *Region, const char *OffsetName,
bool AlsoMentionUnderflow) {
std::string RegName = getRegionName(Region);
return {formatv("Potential out of bound access to {0} with tainted {1}",
RegName, OffsetName),
formatv("Access of {0} with a tainted {1} that may be {2}too large",
RegName, OffsetName,
AlsoMentionUnderflow ? "negative or " : "")};
}
const NoteTag *StateUpdateReporter::createNoteTag(CheckerContext &C) const {
// Don't create a note tag if we didn't assume anything:
if (!AssumedNonNegative && !AssumedUpperBound)
return nullptr;
return C.getNoteTag([*this](PathSensitiveBugReport &BR) -> std::string {
return getMessage(BR);
});
}
std::string StateUpdateReporter::getMessage(PathSensitiveBugReport &BR) const {
bool ShouldReportNonNegative = AssumedNonNegative;
if (!providesInformationAboutInteresting(ByteOffsetVal, BR)) {
if (AssumedUpperBound &&
providesInformationAboutInteresting(*AssumedUpperBound, BR)) {
// Even if the byte offset isn't interesting (e.g. it's a constant value),
// the assumption can still be interesting if it provides information
// about an interesting symbolic upper bound.
ShouldReportNonNegative = false;
} else {
// We don't have anything interesting, don't report the assumption.
return "";
}
}
std::optional<int64_t> OffsetN = getConcreteValue(ByteOffsetVal);
std::optional<int64_t> ExtentN = getConcreteValue(AssumedUpperBound);
const bool UseIndex =
ElementSize && tryDividePair(OffsetN, ExtentN, *ElementSize);
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Assuming ";
if (UseIndex) {
Out << "index ";
if (OffsetN)
Out << "'" << OffsetN << "' ";
} else if (AssumedUpperBound) {
Out << "byte offset ";
if (OffsetN)
Out << "'" << OffsetN << "' ";
} else {
Out << "offset ";
}
Out << "is";
if (ShouldReportNonNegative) {
Out << " non-negative";
}
if (AssumedUpperBound) {
if (ShouldReportNonNegative)
Out << " and";
Out << " less than ";
if (ExtentN)
Out << *ExtentN << ", ";
if (UseIndex && ElementType)
Out << "the number of '" << ElementType->getAsString()
<< "' elements in ";
else
Out << "the extent of ";
Out << getRegionName(Reg);
}
return std::string(Out.str());
}
bool StateUpdateReporter::providesInformationAboutInteresting(
SymbolRef Sym, PathSensitiveBugReport &BR) {
if (!Sym)
return false;
for (SymbolRef PartSym : Sym->symbols()) {
// The interestingess mark may appear on any layer as we're stripping off
// the SymIntExpr, UnarySymExpr etc. layers...
if (BR.isInteresting(PartSym))
return true;
// ...but if both sides of the expression are symbolic, then there is no
// practical algorithm to produce separate constraints for the two
// operands (from the single combined result).
if (isa<SymSymExpr>(PartSym))
return false;
}
return false;
}
void ArrayBoundCheckerV2::performCheck(const Expr *E, CheckerContext &C) const {
const SVal Location = C.getSVal(E);
// The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
// #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
// and incomplete analysis of these leads to false positives. As even
// accurate reports would be confusing for the users, just disable reports
// from these macros:
if (isFromCtypeMacro(E, C.getASTContext()))
return;
ProgramStateRef State = C.getState();
SValBuilder &SVB = C.getSValBuilder();
const std::optional<std::pair<const SubRegion *, NonLoc>> &RawOffset =
computeOffset(State, SVB, Location);
if (!RawOffset)
return;
auto [Reg, ByteOffset] = *RawOffset;
// The state updates will be reported as a single note tag, which will be
// composed by this helper class.
StateUpdateReporter SUR(Reg, ByteOffset, E, C);
// CHECK LOWER BOUND
const MemSpaceRegion *Space = Reg->getMemorySpace();
if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) {
// A symbolic region in unknown space represents an unknown pointer that
// may point into the middle of an array, so we don't look for underflows.
// Both conditions are significant because we want to check underflows in
// symbolic regions on the heap (which may be introduced by checkers like
// MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and
// non-symbolic regions (e.g. a field subregion of a symbolic region) in
// unknown space.
auto [PrecedesLowerBound, WithinLowerBound] = compareValueToThreshold(
State, ByteOffset, SVB.makeZeroArrayIndex(), SVB);
if (PrecedesLowerBound) {
// The offset may be invalid (negative)...
if (!WithinLowerBound) {
// ...and it cannot be valid (>= 0), so report an error.
Messages Msgs = getPrecedesMsgs(Reg, ByteOffset);
reportOOB(C, PrecedesLowerBound, Msgs, ByteOffset, std::nullopt);
return;
}
// ...but it can be valid as well, so the checker will (optimistically)
// assume that it's valid and mention this in the note tag.
SUR.recordNonNegativeAssumption();
}
// Actually update the state. The "if" only fails in the extremely unlikely
// case when compareValueToThreshold returns {nullptr, nullptr} becasue
// evalBinOpNN fails to evaluate the less-than operator.
if (WithinLowerBound)
State = WithinLowerBound;
}
// CHECK UPPER BOUND
DefinedOrUnknownSVal Size = getDynamicExtent(State, Reg, SVB);
if (auto KnownSize = Size.getAs<NonLoc>()) {
// In a situation where both underflow and overflow are possible (but the
// index is either tainted or known to be invalid), the logic of this
// checker will first assume that the offset is non-negative, and then
// (with this additional assumption) it will detect an overflow error.
// In this situation the warning message should mention both possibilities.
bool AlsoMentionUnderflow = SUR.assumedNonNegative();
auto [WithinUpperBound, ExceedsUpperBound] =
compareValueToThreshold(State, ByteOffset, *KnownSize, SVB);
if (ExceedsUpperBound) {
// The offset may be invalid (>= Size)...
if (!WithinUpperBound) {
// ...and it cannot be within bounds, so report an error, unless we can
// definitely determine that this is an idiomatic `&array[size]`
// expression that calculates the past-the-end pointer.
if (isIdiomaticPastTheEndPtr(E, ExceedsUpperBound, ByteOffset,
*KnownSize, C)) {
C.addTransition(ExceedsUpperBound, SUR.createNoteTag(C));
return;
}
Messages Msgs =
getExceedsMsgs(C.getASTContext(), Reg, ByteOffset, *KnownSize,
Location, AlsoMentionUnderflow);
reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize);
return;
}
// ...and it can be valid as well...
if (isTainted(State, ByteOffset)) {
// ...but it's tainted, so report an error.
// Diagnostic detail: saying "tainted offset" is always correct, but
// the common case is that 'idx' is tainted in 'arr[idx]' and then it's
// nicer to say "tainted index".
const char *OffsetName = "offset";
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E))
if (isTainted(State, ASE->getIdx(), C.getLocationContext()))
OffsetName = "index";
Messages Msgs = getTaintMsgs(Reg, OffsetName, AlsoMentionUnderflow);
reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize,
/*IsTaintBug=*/true);
return;
}
// ...and it isn't tainted, so the checker will (optimistically) assume
// that the offset is in bounds and mention this in the note tag.
SUR.recordUpperBoundAssumption(*KnownSize);
}
// Actually update the state. The "if" only fails in the extremely unlikely
// case when compareValueToThreshold returns {nullptr, nullptr} becasue
// evalBinOpNN fails to evaluate the less-than operator.
if (WithinUpperBound)
State = WithinUpperBound;
}
// Add a transition, reporting the state updates that we accumulated.
C.addTransition(State, SUR.createNoteTag(C));
}
void ArrayBoundCheckerV2::markPartsInteresting(PathSensitiveBugReport &BR,
ProgramStateRef ErrorState,
NonLoc Val, bool MarkTaint) {
if (SymbolRef Sym = Val.getAsSymbol()) {
// If the offset is a symbolic value, iterate over its "parts" with
// `SymExpr::symbols()` and mark each of them as interesting.
// For example, if the offset is `x*4 + y` then we put interestingness onto
// the SymSymExpr `x*4 + y`, the SymIntExpr `x*4` and the two data symbols
// `x` and `y`.
for (SymbolRef PartSym : Sym->symbols())
BR.markInteresting(PartSym);
}
if (MarkTaint) {
// If the issue that we're reporting depends on the taintedness of the
// offset, then put interestingness onto symbols that could be the origin
// of the taint. Note that this may find symbols that did not appear in
// `Sym->symbols()` (because they're only loosely connected to `Val`).
for (SymbolRef Sym : getTaintedSymbols(ErrorState, Val))
BR.markInteresting(Sym);
}
}
void ArrayBoundCheckerV2::reportOOB(CheckerContext &C,
ProgramStateRef ErrorState, Messages Msgs,
NonLoc Offset, std::optional<NonLoc> Extent,
bool IsTaintBug /*=false*/) const {
ExplodedNode *ErrorNode = C.generateErrorNode(ErrorState);
if (!ErrorNode)
return;
auto BR = std::make_unique<PathSensitiveBugReport>(
IsTaintBug ? TaintBT : BT, Msgs.Short, Msgs.Full, ErrorNode);
// FIXME: ideally we would just call trackExpressionValue() and that would
// "do the right thing": mark the relevant symbols as interesting, track the
// control dependencies and statements storing the relevant values and add
// helpful diagnostic pieces. However, right now trackExpressionValue() is
// a heap of unreliable heuristics, so it would cause several issues:
// - Interestingness is not applied consistently, e.g. if `array[x+10]`
// causes an overflow, then `x` is not marked as interesting.
// - We get irrelevant diagnostic pieces, e.g. in the code
// `int *p = (int*)malloc(2*sizeof(int)); p[3] = 0;`
// it places a "Storing uninitialized value" note on the `malloc` call
// (which is technically true, but irrelevant).
// If trackExpressionValue() becomes reliable, it should be applied instead
// of this custom markPartsInteresting().
markPartsInteresting(*BR, ErrorState, Offset, IsTaintBug);
if (Extent)
markPartsInteresting(*BR, ErrorState, *Extent, IsTaintBug);
C.emitReport(std::move(BR));
}
bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
SourceLocation Loc = S->getBeginLoc();
if (!Loc.isMacroID())
return false;
StringRef MacroName = Lexer::getImmediateMacroName(
Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
return false;
return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
(MacroName == "isblank") || (MacroName == "isdigit") ||
(MacroName == "isgraph") || (MacroName == "islower") ||
(MacroName == "isnctrl") || (MacroName == "isprint") ||
(MacroName == "ispunct") || (MacroName == "isspace") ||
(MacroName == "isupper") || (MacroName == "isxdigit"));
}
bool ArrayBoundCheckerV2::isInAddressOf(const Stmt *S, ASTContext &ACtx) {
ParentMapContext &ParentCtx = ACtx.getParentMapContext();
do {
const DynTypedNodeList Parents = ParentCtx.getParents(*S);
if (Parents.empty())
return false;
S = Parents[0].get<Stmt>();
} while (isa_and_nonnull<ParenExpr, ImplicitCastExpr>(S));
const auto *UnaryOp = dyn_cast_or_null<UnaryOperator>(S);
return UnaryOp && UnaryOp->getOpcode() == UO_AddrOf;
}
bool ArrayBoundCheckerV2::isIdiomaticPastTheEndPtr(const Expr *E,
ProgramStateRef State,
NonLoc Offset, NonLoc Limit,
CheckerContext &C) {
if (isa<ArraySubscriptExpr>(E) && isInAddressOf(E, C.getASTContext())) {
auto [EqualsToThreshold, NotEqualToThreshold] = compareValueToThreshold(
State, Offset, Limit, C.getSValBuilder(), /*CheckEquality=*/true);
return EqualsToThreshold && !NotEqualToThreshold;
}
return false;
}
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundCheckerV2>();
}
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
return true;
}
|