File: xray_loongarch64.cpp

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.6-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,304 kB
  • sloc: cpp: 7,438,677; ansic: 1,393,822; asm: 1,012,926; python: 241,650; f90: 86,635; objc: 75,479; lisp: 42,144; pascal: 17,286; sh: 10,027; ml: 5,082; perl: 4,730; awk: 3,523; makefile: 3,349; javascript: 2,251; xml: 892; fortran: 672
file content (169 lines) | stat: -rw-r--r-- 7,076 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//===-------- xray_loongarch64.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of loongarch-specific routines.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
#include "xray_interface_internal.h"
#include <atomic>

namespace __xray {

enum RegNum : uint32_t {
  RN_RA = 1,
  RN_SP = 3,
  RN_T0 = 12,
  RN_T1 = 13,
};

// Encode instructions in the 2RIx format, where the primary formats here
// are 2RI12-type and 2RI16-type.
static inline uint32_t
encodeInstruction2RIx(uint32_t Opcode, uint32_t Rd, uint32_t Rj,
                      uint32_t Imm) XRAY_NEVER_INSTRUMENT {
  return Opcode | (Imm << 10) | (Rj << 5) | Rd;
}

// Encode instructions in 1RI20 format, e.g. lu12i.w/lu32i.d.
static inline uint32_t
encodeInstruction1RI20(uint32_t Opcode, uint32_t Rd,
                       uint32_t Imm) XRAY_NEVER_INSTRUMENT {
  return Opcode | (Imm << 5) | Rd;
}

static inline bool patchSled(const bool Enable, const uint32_t FuncId,
                             const XRaySledEntry &Sled,
                             void (*TracingHook)()) XRAY_NEVER_INSTRUMENT {
  // When |Enable| == true,
  // We replace the following compile-time stub (sled):
  //
  // .Lxray_sled_beginN:
  //	B .Lxray_sled_endN
  //	11 NOPs (44 bytes)
  // .Lxray_sled_endN:
  //
  // With the following runtime patch:
  //
  // xray_sled_n:
  //   addi.d  sp, sp, -16                       ; create the stack frame
  //   st.d    ra, sp, 8                         ; save the return address
  //   lu12i.w t0, %abs_hi20(__xray_FunctionEntry/Exit)
  //   ori     t0, t0, %abs_lo12(__xray_FunctionEntry/Exit)
  //   lu32i.d t0, %abs64_lo20(__xray_FunctionEntry/Exit)
  //   lu52i.d t0, t0, %abs64_hi12(__xray_FunctionEntry/Exit)
  //   lu12i.w t1, %abs_hi20(function_id)
  //   ori     t1, t1, %abs_lo12(function_id)    ; pass the function id
  //   jirl    ra, t0, 0                         ; call the tracing hook
  //   ld.d    ra, sp, 8                         ; restore the return address
  //   addi.d  sp, sp, 16                        ; de-allocate the stack frame
  //
  // Replacement of the first 4-byte instruction should be the last and atomic
  // operation, so that the user code which reaches the sled concurrently
  // either jumps over the whole sled, or executes the whole sled when the
  // latter is ready.
  //
  // When |Enable|==false, we set the first instruction in the sled back to
  //   B #48

  uint32_t *Address = reinterpret_cast<uint32_t *>(Sled.address());
  if (Enable) {
    uint32_t LoTracingHookAddr = reinterpret_cast<int64_t>(TracingHook) & 0xfff;
    uint32_t HiTracingHookAddr =
        (reinterpret_cast<int64_t>(TracingHook) >> 12) & 0xfffff;
    uint32_t HigherTracingHookAddr =
        (reinterpret_cast<int64_t>(TracingHook) >> 32) & 0xfffff;
    uint32_t HighestTracingHookAddr =
        (reinterpret_cast<int64_t>(TracingHook) >> 52) & 0xfff;
    uint32_t LoFunctionID = FuncId & 0xfff;
    uint32_t HiFunctionID = (FuncId >> 12) & 0xfffff;
    Address[1] = encodeInstruction2RIx(0x29c00000, RegNum::RN_RA, RegNum::RN_SP,
                                       0x8); // st.d ra, sp, 8
    Address[2] = encodeInstruction1RI20(
        0x14000000, RegNum::RN_T0,
        HiTracingHookAddr); // lu12i.w t0, HiTracingHookAddr
    Address[3] = encodeInstruction2RIx(
        0x03800000, RegNum::RN_T0, RegNum::RN_T0,
        LoTracingHookAddr); // ori t0, t0, LoTracingHookAddr
    Address[4] = encodeInstruction1RI20(
        0x16000000, RegNum::RN_T0,
        HigherTracingHookAddr); // lu32i.d t0, HigherTracingHookAddr
    Address[5] = encodeInstruction2RIx(
        0x03000000, RegNum::RN_T0, RegNum::RN_T0,
        HighestTracingHookAddr); // lu52i.d t0, t0, HighestTracingHookAddr
    Address[6] =
        encodeInstruction1RI20(0x14000000, RegNum::RN_T1,
                               HiFunctionID); // lu12i.w t1, HiFunctionID
    Address[7] =
        encodeInstruction2RIx(0x03800000, RegNum::RN_T1, RegNum::RN_T1,
                              LoFunctionID); // ori t1, t1, LoFunctionID
    Address[8] = encodeInstruction2RIx(0x4c000000, RegNum::RN_RA, RegNum::RN_T0,
                                       0); // jirl ra, t0, 0
    Address[9] = encodeInstruction2RIx(0x28c00000, RegNum::RN_RA, RegNum::RN_SP,
                                       0x8); // ld.d ra, sp, 8
    Address[10] = encodeInstruction2RIx(
        0x02c00000, RegNum::RN_SP, RegNum::RN_SP, 0x10); // addi.d sp, sp, 16
    uint32_t CreateStackSpace = encodeInstruction2RIx(
        0x02c00000, RegNum::RN_SP, RegNum::RN_SP, 0xff0); // addi.d sp, sp, -16
    std::atomic_store_explicit(
        reinterpret_cast<std::atomic<uint32_t> *>(Address), CreateStackSpace,
        std::memory_order_release);
  } else {
    std::atomic_store_explicit(
        reinterpret_cast<std::atomic<uint32_t> *>(Address),
        uint32_t(0x50003000), std::memory_order_release); // b #48
  }
  return true;
}

bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
                        const XRaySledEntry &Sled,
                        const XRayTrampolines &Trampolines,
                        bool LogArgs) XRAY_NEVER_INSTRUMENT {
  auto Trampoline =
      LogArgs ? Trampolines.LogArgsTrampoline : Trampolines.EntryTrampoline;
  return patchSled(Enable, FuncId, Sled, Trampoline);
}

bool patchFunctionExit(
    const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
    const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
  return patchSled(Enable, FuncId, Sled, Trampolines.ExitTrampoline);
}

bool patchFunctionTailExit(
    const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
    const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
  // TODO: In the future we'd need to distinguish between non-tail exits and
  // tail exits for better information preservation.
  return patchSled(Enable, FuncId, Sled, Trampolines.ExitTrampoline);
}

bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
                      const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
  // FIXME: Implement in loongarch?
  return false;
}

bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
                     const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
  // FIXME: Implement in loongarch?
  return false;
}
} // namespace __xray

extern "C" void __xray_ArgLoggerEntry() XRAY_NEVER_INSTRUMENT {
  // TODO: This will have to be implemented in the trampoline assembly file.
}

extern "C" void __xray_FunctionTailExit() XRAY_NEVER_INSTRUMENT {
  // FIXME: this will have to be implemented in the trampoline assembly file
}