1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17, c++20
// <flat_map>
// class flat_multimap
// template<class K> iterator insert(P&& x);
// template<class K> iterator insert(const_iterator hint, P&& x);
#include <algorithm>
#include <compare>
#include <concepts>
#include <deque>
#include <flat_map>
#include <functional>
#include <tuple>
#include "MinSequenceContainer.h"
#include "../helpers.h"
#include "test_macros.h"
#include "test_iterators.h"
#include "min_allocator.h"
// Constraints: is_constructible_v<pair<key_type, mapped_type>, P> is true.
template <class M, class... Args>
concept CanInsert = requires(M m, Args&&... args) { m.insert(std::forward<Args>(args)...); };
using Map = std::flat_multimap<int, double>;
using Iter = Map::const_iterator;
static_assert(CanInsert<Map, std::pair<short, double>&&>);
static_assert(CanInsert<Map, Iter, std::pair<short, double>&&>);
static_assert(CanInsert<Map, std::tuple<short, double>&&>);
static_assert(CanInsert<Map, Iter, std::tuple<short, double>&&>);
static_assert(!CanInsert<Map, int>);
static_assert(!CanInsert<Map, Iter, int>);
static int expensive_comparisons = 0;
static int cheap_comparisons = 0;
struct CompareCounter {
int i_ = 0;
CompareCounter(int i) : i_(i) {}
friend auto operator<=>(const CompareCounter& x, const CompareCounter& y) {
expensive_comparisons += 1;
return x.i_ <=> y.i_;
}
bool operator==(const CompareCounter&) const = default;
friend auto operator<=>(const CompareCounter& x, int y) {
cheap_comparisons += 1;
return x.i_ <=> y;
}
};
template <class KeyContainer, class ValueContainer>
void test() {
using Key = typename KeyContainer::value_type;
using Value = typename ValueContainer::value_type;
using M = std::flat_multimap<Key, Value, std::less<Key>, KeyContainer, ValueContainer>;
{
// insert(P&&)
// Unlike flat_set, here we can't use key_compare to compare value_type versus P,
// so we must eagerly convert to value_type.
M m = {{1, 1}, {2, 2}, {3, 1}, {3, 4}, {4, 4}, {5, 5}};
expensive_comparisons = 0;
cheap_comparisons = 0;
std::same_as<typename M::iterator> decltype(auto) r = m.insert(std::make_pair(3, 3)); // conversion happens first
assert(expensive_comparisons >= 2);
assert(cheap_comparisons == 0);
assert(r == m.begin() + 4);
std::pair<int, int> expected[] = {{1, 1}, {2, 2}, {3, 1}, {3, 4}, {3, 3}, {4, 4}, {5, 5}};
assert(std::ranges::equal(m, expected));
}
{
// insert(const_iterator, P&&)
M m = {{1, 1}, {2, 2}, {3, 1}, {3, 4}, {4, 4}, {5, 5}};
expensive_comparisons = 0;
cheap_comparisons = 0;
std::same_as<typename M::iterator> auto it = m.insert(m.begin(), std::make_pair(3, 3));
assert(expensive_comparisons >= 2);
assert(cheap_comparisons == 0);
assert(it == m.begin() + 2);
std::pair<int, int> expected[] = {{1, 1}, {2, 2}, {3, 3}, {3, 1}, {3, 4}, {4, 4}, {5, 5}};
assert(std::ranges::equal(m, expected));
}
}
int main(int, char**) {
test<std::vector<CompareCounter>, std::vector<double>>();
test<std::deque<CompareCounter>, std::vector<double>>();
test<MinSequenceContainer<CompareCounter>, MinSequenceContainer<double>>();
test<std::vector<CompareCounter, min_allocator<CompareCounter>>, std::vector<double, min_allocator<double>>>();
{
// no ambiguity between insert(pos, P&&) and insert(first, last)
using M = std::flat_multimap<int, int>;
struct Evil {
operator M::value_type() const;
operator M::const_iterator() const;
};
std::flat_multimap<int, int> m;
ASSERT_SAME_TYPE(decltype(m.insert(Evil())), M::iterator);
ASSERT_SAME_TYPE(decltype(m.insert(m.begin(), Evil())), M::iterator);
ASSERT_SAME_TYPE(decltype(m.insert(m.begin(), m.end())), void);
}
{
auto insert_func = [](auto& m, auto key_arg, auto value_arg) {
using FlatMap = std::decay_t<decltype(m)>;
using tuple_type = std::tuple<typename FlatMap::key_type, typename FlatMap::mapped_type>;
tuple_type t(key_arg, value_arg);
m.insert(t);
};
test_emplace_exception_guarantee(insert_func);
}
{
auto insert_func_iter = [](auto& m, auto key_arg, auto value_arg) {
using FlatMap = std::decay_t<decltype(m)>;
using tuple_type = std::tuple<typename FlatMap::key_type, typename FlatMap::mapped_type>;
tuple_type t(key_arg, value_arg);
m.insert(m.begin(), t);
};
test_emplace_exception_guarantee(insert_func_iter);
}
return 0;
}
|