1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
//===-- GlobPattern.cpp - Glob pattern matcher implementation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a glob pattern matcher.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/GlobPattern.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Errc.h"
using namespace llvm;
// Expands character ranges and returns a bitmap.
// For example, "a-cf-hz" is expanded to "abcfghz".
static Expected<BitVector> expand(StringRef S, StringRef Original) {
BitVector BV(256, false);
// Expand X-Y.
for (;;) {
if (S.size() < 3)
break;
uint8_t Start = S[0];
uint8_t End = S[2];
// If it doesn't start with something like X-Y,
// consume the first character and proceed.
if (S[1] != '-') {
BV[Start] = true;
S = S.substr(1);
continue;
}
// It must be in the form of X-Y.
// Validate it and then interpret the range.
if (Start > End)
return make_error<StringError>("invalid glob pattern: " + Original,
errc::invalid_argument);
for (int C = Start; C <= End; ++C)
BV[(uint8_t)C] = true;
S = S.substr(3);
}
for (char C : S)
BV[(uint8_t)C] = true;
return BV;
}
// Identify brace expansions in S and return the list of patterns they expand
// into.
static Expected<SmallVector<std::string, 1>>
parseBraceExpansions(StringRef S, std::optional<size_t> MaxSubPatterns) {
SmallVector<std::string> SubPatterns = {S.str()};
if (!MaxSubPatterns || !S.contains('{'))
return std::move(SubPatterns);
struct BraceExpansion {
size_t Start;
size_t Length;
SmallVector<StringRef, 2> Terms;
};
SmallVector<BraceExpansion, 0> BraceExpansions;
BraceExpansion *CurrentBE = nullptr;
size_t TermBegin;
for (size_t I = 0, E = S.size(); I != E; ++I) {
if (S[I] == '[') {
I = S.find(']', I + 2);
if (I == std::string::npos)
return make_error<StringError>("invalid glob pattern, unmatched '['",
errc::invalid_argument);
} else if (S[I] == '{') {
if (CurrentBE)
return make_error<StringError>(
"nested brace expansions are not supported",
errc::invalid_argument);
CurrentBE = &BraceExpansions.emplace_back();
CurrentBE->Start = I;
TermBegin = I + 1;
} else if (S[I] == ',') {
if (!CurrentBE)
continue;
CurrentBE->Terms.push_back(S.substr(TermBegin, I - TermBegin));
TermBegin = I + 1;
} else if (S[I] == '}') {
if (!CurrentBE)
continue;
if (CurrentBE->Terms.empty())
return make_error<StringError>(
"empty or singleton brace expansions are not supported",
errc::invalid_argument);
CurrentBE->Terms.push_back(S.substr(TermBegin, I - TermBegin));
CurrentBE->Length = I - CurrentBE->Start + 1;
CurrentBE = nullptr;
} else if (S[I] == '\\') {
if (++I == E)
return make_error<StringError>("invalid glob pattern, stray '\\'",
errc::invalid_argument);
}
}
if (CurrentBE)
return make_error<StringError>("incomplete brace expansion",
errc::invalid_argument);
size_t NumSubPatterns = 1;
for (auto &BE : BraceExpansions) {
if (NumSubPatterns > std::numeric_limits<size_t>::max() / BE.Terms.size()) {
NumSubPatterns = std::numeric_limits<size_t>::max();
break;
}
NumSubPatterns *= BE.Terms.size();
}
if (NumSubPatterns > *MaxSubPatterns)
return make_error<StringError>("too many brace expansions",
errc::invalid_argument);
// Replace brace expansions in reverse order so that we don't invalidate
// earlier start indices
for (auto &BE : reverse(BraceExpansions)) {
SmallVector<std::string> OrigSubPatterns;
std::swap(SubPatterns, OrigSubPatterns);
for (StringRef Term : BE.Terms)
for (StringRef Orig : OrigSubPatterns)
SubPatterns.emplace_back(Orig).replace(BE.Start, BE.Length, Term);
}
return std::move(SubPatterns);
}
Expected<GlobPattern>
GlobPattern::create(StringRef S, std::optional<size_t> MaxSubPatterns) {
GlobPattern Pat;
// Store the prefix that does not contain any metacharacter.
size_t PrefixSize = S.find_first_of("?*[{\\");
Pat.Prefix = S.substr(0, PrefixSize);
if (PrefixSize == std::string::npos)
return Pat;
S = S.substr(PrefixSize);
SmallVector<std::string, 1> SubPats;
if (auto Err = parseBraceExpansions(S, MaxSubPatterns).moveInto(SubPats))
return std::move(Err);
for (StringRef SubPat : SubPats) {
auto SubGlobOrErr = SubGlobPattern::create(SubPat);
if (!SubGlobOrErr)
return SubGlobOrErr.takeError();
Pat.SubGlobs.push_back(*SubGlobOrErr);
}
return Pat;
}
Expected<GlobPattern::SubGlobPattern>
GlobPattern::SubGlobPattern::create(StringRef S) {
SubGlobPattern Pat;
// Parse brackets.
Pat.Pat.assign(S.begin(), S.end());
for (size_t I = 0, E = S.size(); I != E; ++I) {
if (S[I] == '[') {
// ']' is allowed as the first character of a character class. '[]' is
// invalid. So, just skip the first character.
++I;
size_t J = S.find(']', I + 1);
if (J == StringRef::npos)
return make_error<StringError>("invalid glob pattern, unmatched '['",
errc::invalid_argument);
StringRef Chars = S.substr(I, J - I);
bool Invert = S[I] == '^' || S[I] == '!';
Expected<BitVector> BV =
Invert ? expand(Chars.substr(1), S) : expand(Chars, S);
if (!BV)
return BV.takeError();
if (Invert)
BV->flip();
Pat.Brackets.push_back(Bracket{J + 1, std::move(*BV)});
I = J;
} else if (S[I] == '\\') {
if (++I == E)
return make_error<StringError>("invalid glob pattern, stray '\\'",
errc::invalid_argument);
}
}
return Pat;
}
bool GlobPattern::match(StringRef S) const {
if (!S.consume_front(Prefix))
return false;
if (SubGlobs.empty() && S.empty())
return true;
for (auto &Glob : SubGlobs)
if (Glob.match(S))
return true;
return false;
}
// Factor the pattern into segments split by '*'. The segment is matched
// sequentianlly by finding the first occurrence past the end of the previous
// match.
bool GlobPattern::SubGlobPattern::match(StringRef Str) const {
const char *P = Pat.data(), *SegmentBegin = nullptr, *S = Str.data(),
*SavedS = S;
const char *const PEnd = P + Pat.size(), *const End = S + Str.size();
size_t B = 0, SavedB = 0;
while (S != End) {
if (P == PEnd)
;
else if (*P == '*') {
// The non-* substring on the left of '*' matches the tail of S. Save the
// positions to be used by backtracking if we see a mismatch later.
SegmentBegin = ++P;
SavedS = S;
SavedB = B;
continue;
} else if (*P == '[') {
if (Brackets[B].Bytes[uint8_t(*S)]) {
P = Pat.data() + Brackets[B++].NextOffset;
++S;
continue;
}
} else if (*P == '\\') {
if (*++P == *S) {
++P;
++S;
continue;
}
} else if (*P == *S || *P == '?') {
++P;
++S;
continue;
}
if (!SegmentBegin)
return false;
// We have seen a '*'. Backtrack to the saved positions. Shift the S
// position to probe the next starting position in the segment.
P = SegmentBegin;
S = ++SavedS;
B = SavedB;
}
// All bytes in Str have been matched. Return true if the rest part of Pat is
// empty or contains only '*'.
return getPat().find_first_not_of('*', P - Pat.data()) == std::string::npos;
}
|