1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
//===-- TimeProfiler.cpp - Hierarchical Time Profiler ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements hierarchical time profiler.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TimeProfiler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Threading.h"
#include <algorithm>
#include <cassert>
#include <chrono>
#include <memory>
#include <mutex>
#include <string>
#include <vector>
using namespace llvm;
namespace {
using std::chrono::duration;
using std::chrono::duration_cast;
using std::chrono::microseconds;
using std::chrono::steady_clock;
using std::chrono::system_clock;
using std::chrono::time_point;
using std::chrono::time_point_cast;
struct TimeTraceProfilerInstances {
std::mutex Lock;
std::vector<TimeTraceProfiler *> List;
};
TimeTraceProfilerInstances &getTimeTraceProfilerInstances() {
static TimeTraceProfilerInstances Instances;
return Instances;
}
} // anonymous namespace
// Per Thread instance
static LLVM_THREAD_LOCAL TimeTraceProfiler *TimeTraceProfilerInstance = nullptr;
TimeTraceProfiler *llvm::getTimeTraceProfilerInstance() {
return TimeTraceProfilerInstance;
}
namespace {
using ClockType = steady_clock;
using TimePointType = time_point<ClockType>;
using DurationType = duration<ClockType::rep, ClockType::period>;
using CountAndDurationType = std::pair<size_t, DurationType>;
using NameAndCountAndDurationType =
std::pair<std::string, CountAndDurationType>;
} // anonymous namespace
/// Represents an open or completed time section entry to be captured.
struct llvm::TimeTraceProfilerEntry {
const TimePointType Start;
TimePointType End;
const std::string Name;
TimeTraceMetadata Metadata;
const TimeTraceEventType EventType = TimeTraceEventType::CompleteEvent;
TimeTraceProfilerEntry(TimePointType &&S, TimePointType &&E, std::string &&N,
std::string &&Dt, TimeTraceEventType Et)
: Start(std::move(S)), End(std::move(E)), Name(std::move(N)), Metadata(),
EventType(Et) {
Metadata.Detail = std::move(Dt);
}
TimeTraceProfilerEntry(TimePointType &&S, TimePointType &&E, std::string &&N,
TimeTraceMetadata &&Mt, TimeTraceEventType Et)
: Start(std::move(S)), End(std::move(E)), Name(std::move(N)),
Metadata(std::move(Mt)), EventType(Et) {}
// Calculate timings for FlameGraph. Cast time points to microsecond precision
// rather than casting duration. This avoids truncation issues causing inner
// scopes overruning outer scopes.
ClockType::rep getFlameGraphStartUs(TimePointType StartTime) const {
return (time_point_cast<microseconds>(Start) -
time_point_cast<microseconds>(StartTime))
.count();
}
ClockType::rep getFlameGraphDurUs() const {
return (time_point_cast<microseconds>(End) -
time_point_cast<microseconds>(Start))
.count();
}
};
// Represents a currently open (in-progress) time trace entry. InstantEvents
// that happen during an open event are associated with the duration of this
// parent event and they are dropped if parent duration is shorter than
// the granularity.
struct InProgressEntry {
TimeTraceProfilerEntry Event;
std::vector<TimeTraceProfilerEntry> InstantEvents;
InProgressEntry(TimePointType S, TimePointType E, std::string N,
std::string Dt, TimeTraceEventType Et)
: Event(std::move(S), std::move(E), std::move(N), std::move(Dt), Et),
InstantEvents() {}
InProgressEntry(TimePointType S, TimePointType E, std::string N,
TimeTraceMetadata Mt, TimeTraceEventType Et)
: Event(std::move(S), std::move(E), std::move(N), std::move(Mt), Et),
InstantEvents() {}
};
struct llvm::TimeTraceProfiler {
TimeTraceProfiler(unsigned TimeTraceGranularity = 0, StringRef ProcName = "",
bool TimeTraceVerbose = false)
: BeginningOfTime(system_clock::now()), StartTime(ClockType::now()),
ProcName(ProcName), Pid(sys::Process::getProcessId()),
Tid(llvm::get_threadid()), TimeTraceGranularity(TimeTraceGranularity),
TimeTraceVerbose(TimeTraceVerbose) {
llvm::get_thread_name(ThreadName);
}
TimeTraceProfilerEntry *
begin(std::string Name, llvm::function_ref<std::string()> Detail,
TimeTraceEventType EventType = TimeTraceEventType::CompleteEvent) {
assert(EventType != TimeTraceEventType::InstantEvent &&
"Instant Events don't have begin and end.");
Stack.emplace_back(std::make_unique<InProgressEntry>(
ClockType::now(), TimePointType(), std::move(Name), Detail(),
EventType));
return &Stack.back()->Event;
}
TimeTraceProfilerEntry *
begin(std::string Name, llvm::function_ref<TimeTraceMetadata()> Metadata,
TimeTraceEventType EventType = TimeTraceEventType::CompleteEvent) {
assert(EventType != TimeTraceEventType::InstantEvent &&
"Instant Events don't have begin and end.");
Stack.emplace_back(std::make_unique<InProgressEntry>(
ClockType::now(), TimePointType(), std::move(Name), Metadata(),
EventType));
return &Stack.back()->Event;
}
void insert(std::string Name, llvm::function_ref<std::string()> Detail) {
if (Stack.empty())
return;
Stack.back()->InstantEvents.emplace_back(TimeTraceProfilerEntry(
ClockType::now(), TimePointType(), std::move(Name), Detail(),
TimeTraceEventType::InstantEvent));
}
void end() {
assert(!Stack.empty() && "Must call begin() first");
end(Stack.back()->Event);
}
void end(TimeTraceProfilerEntry &E) {
assert(!Stack.empty() && "Must call begin() first");
E.End = ClockType::now();
// Calculate duration at full precision for overall counts.
DurationType Duration = E.End - E.Start;
const auto *Iter =
llvm::find_if(Stack, [&](const std::unique_ptr<InProgressEntry> &Val) {
return &Val->Event == &E;
});
assert(Iter != Stack.end() && "Event not in the Stack");
// Only include sections longer or equal to TimeTraceGranularity msec.
if (duration_cast<microseconds>(Duration).count() >= TimeTraceGranularity) {
Entries.emplace_back(E);
for (auto &IE : Iter->get()->InstantEvents) {
Entries.emplace_back(IE);
}
}
// Track total time taken by each "name", but only the topmost levels of
// them; e.g. if there's a template instantiation that instantiates other
// templates from within, we only want to add the topmost one. "topmost"
// happens to be the ones that don't have any currently open entries above
// itself.
if (llvm::none_of(llvm::drop_begin(llvm::reverse(Stack)),
[&](const std::unique_ptr<InProgressEntry> &Val) {
return Val->Event.Name == E.Name;
})) {
auto &CountAndTotal = CountAndTotalPerName[E.Name];
CountAndTotal.first++;
CountAndTotal.second += Duration;
};
Stack.erase(Iter);
}
// Write events from this TimeTraceProfilerInstance and
// ThreadTimeTraceProfilerInstances.
void write(raw_pwrite_stream &OS) {
// Acquire Mutex as reading ThreadTimeTraceProfilerInstances.
auto &Instances = getTimeTraceProfilerInstances();
std::lock_guard<std::mutex> Lock(Instances.Lock);
assert(Stack.empty() &&
"All profiler sections should be ended when calling write");
assert(llvm::all_of(Instances.List,
[](const auto &TTP) { return TTP->Stack.empty(); }) &&
"All profiler sections should be ended when calling write");
json::OStream J(OS);
J.objectBegin();
J.attributeBegin("traceEvents");
J.arrayBegin();
// Emit all events for the main flame graph.
auto writeEvent = [&](const auto &E, uint64_t Tid) {
auto StartUs = E.getFlameGraphStartUs(StartTime);
auto DurUs = E.getFlameGraphDurUs();
J.object([&] {
J.attribute("pid", Pid);
J.attribute("tid", int64_t(Tid));
J.attribute("ts", StartUs);
if (E.EventType == TimeTraceEventType::AsyncEvent) {
J.attribute("cat", E.Name);
J.attribute("ph", "b");
J.attribute("id", 0);
} else if (E.EventType == TimeTraceEventType::CompleteEvent) {
J.attribute("ph", "X");
J.attribute("dur", DurUs);
} else { // instant event
assert(E.EventType == TimeTraceEventType::InstantEvent &&
"InstantEvent expected");
J.attribute("ph", "i");
}
J.attribute("name", E.Name);
if (!E.Metadata.isEmpty()) {
J.attributeObject("args", [&] {
if (!E.Metadata.Detail.empty())
J.attribute("detail", E.Metadata.Detail);
if (!E.Metadata.File.empty())
J.attribute("file", E.Metadata.File);
if (E.Metadata.Line > 0)
J.attribute("line", E.Metadata.Line);
});
}
});
if (E.EventType == TimeTraceEventType::AsyncEvent) {
J.object([&] {
J.attribute("pid", Pid);
J.attribute("tid", int64_t(Tid));
J.attribute("ts", StartUs + DurUs);
J.attribute("cat", E.Name);
J.attribute("ph", "e");
J.attribute("id", 0);
J.attribute("name", E.Name);
});
}
};
for (const TimeTraceProfilerEntry &E : Entries)
writeEvent(E, this->Tid);
for (const TimeTraceProfiler *TTP : Instances.List)
for (const TimeTraceProfilerEntry &E : TTP->Entries)
writeEvent(E, TTP->Tid);
// Emit totals by section name as additional "thread" events, sorted from
// longest one.
// Find highest used thread id.
uint64_t MaxTid = this->Tid;
for (const TimeTraceProfiler *TTP : Instances.List)
MaxTid = std::max(MaxTid, TTP->Tid);
// Combine all CountAndTotalPerName from threads into one.
StringMap<CountAndDurationType> AllCountAndTotalPerName;
auto combineStat = [&](const auto &Stat) {
StringRef Key = Stat.getKey();
auto Value = Stat.getValue();
auto &CountAndTotal = AllCountAndTotalPerName[Key];
CountAndTotal.first += Value.first;
CountAndTotal.second += Value.second;
};
for (const auto &Stat : CountAndTotalPerName)
combineStat(Stat);
for (const TimeTraceProfiler *TTP : Instances.List)
for (const auto &Stat : TTP->CountAndTotalPerName)
combineStat(Stat);
std::vector<NameAndCountAndDurationType> SortedTotals;
SortedTotals.reserve(AllCountAndTotalPerName.size());
for (const auto &Total : AllCountAndTotalPerName)
SortedTotals.emplace_back(std::string(Total.getKey()), Total.getValue());
llvm::sort(SortedTotals, [](const NameAndCountAndDurationType &A,
const NameAndCountAndDurationType &B) {
return A.second.second > B.second.second;
});
// Report totals on separate threads of tracing file.
uint64_t TotalTid = MaxTid + 1;
for (const NameAndCountAndDurationType &Total : SortedTotals) {
auto DurUs = duration_cast<microseconds>(Total.second.second).count();
auto Count = AllCountAndTotalPerName[Total.first].first;
J.object([&] {
J.attribute("pid", Pid);
J.attribute("tid", int64_t(TotalTid));
J.attribute("ph", "X");
J.attribute("ts", 0);
J.attribute("dur", DurUs);
J.attribute("name", "Total " + Total.first);
J.attributeObject("args", [&] {
J.attribute("count", int64_t(Count));
J.attribute("avg ms", int64_t(DurUs / Count / 1000));
});
});
++TotalTid;
}
auto writeMetadataEvent = [&](const char *Name, uint64_t Tid,
StringRef arg) {
J.object([&] {
J.attribute("cat", "");
J.attribute("pid", Pid);
J.attribute("tid", int64_t(Tid));
J.attribute("ts", 0);
J.attribute("ph", "M");
J.attribute("name", Name);
J.attributeObject("args", [&] { J.attribute("name", arg); });
});
};
writeMetadataEvent("process_name", Tid, ProcName);
writeMetadataEvent("thread_name", Tid, ThreadName);
for (const TimeTraceProfiler *TTP : Instances.List)
writeMetadataEvent("thread_name", TTP->Tid, TTP->ThreadName);
J.arrayEnd();
J.attributeEnd();
// Emit the absolute time when this TimeProfiler started.
// This can be used to combine the profiling data from
// multiple processes and preserve actual time intervals.
J.attribute("beginningOfTime",
time_point_cast<microseconds>(BeginningOfTime)
.time_since_epoch()
.count());
J.objectEnd();
}
SmallVector<std::unique_ptr<InProgressEntry>, 16> Stack;
SmallVector<TimeTraceProfilerEntry, 128> Entries;
StringMap<CountAndDurationType> CountAndTotalPerName;
// System clock time when the session was begun.
const time_point<system_clock> BeginningOfTime;
// Profiling clock time when the session was begun.
const TimePointType StartTime;
const std::string ProcName;
const sys::Process::Pid Pid;
SmallString<0> ThreadName;
const uint64_t Tid;
// Minimum time granularity (in microseconds)
const unsigned TimeTraceGranularity;
// Make time trace capture verbose event details (e.g. source filenames). This
// can increase the size of the output by 2-3 times.
const bool TimeTraceVerbose;
};
bool llvm::isTimeTraceVerbose() {
return getTimeTraceProfilerInstance() &&
getTimeTraceProfilerInstance()->TimeTraceVerbose;
}
void llvm::timeTraceProfilerInitialize(unsigned TimeTraceGranularity,
StringRef ProcName,
bool TimeTraceVerbose) {
assert(TimeTraceProfilerInstance == nullptr &&
"Profiler should not be initialized");
TimeTraceProfilerInstance = new TimeTraceProfiler(
TimeTraceGranularity, llvm::sys::path::filename(ProcName),
TimeTraceVerbose);
}
// Removes all TimeTraceProfilerInstances.
// Called from main thread.
void llvm::timeTraceProfilerCleanup() {
delete TimeTraceProfilerInstance;
TimeTraceProfilerInstance = nullptr;
auto &Instances = getTimeTraceProfilerInstances();
std::lock_guard<std::mutex> Lock(Instances.Lock);
for (auto *TTP : Instances.List)
delete TTP;
Instances.List.clear();
}
// Finish TimeTraceProfilerInstance on a worker thread.
// This doesn't remove the instance, just moves the pointer to global vector.
void llvm::timeTraceProfilerFinishThread() {
auto &Instances = getTimeTraceProfilerInstances();
std::lock_guard<std::mutex> Lock(Instances.Lock);
Instances.List.push_back(TimeTraceProfilerInstance);
TimeTraceProfilerInstance = nullptr;
}
void llvm::timeTraceProfilerWrite(raw_pwrite_stream &OS) {
assert(TimeTraceProfilerInstance != nullptr &&
"Profiler object can't be null");
TimeTraceProfilerInstance->write(OS);
}
Error llvm::timeTraceProfilerWrite(StringRef PreferredFileName,
StringRef FallbackFileName) {
assert(TimeTraceProfilerInstance != nullptr &&
"Profiler object can't be null");
std::string Path = PreferredFileName.str();
if (Path.empty()) {
Path = FallbackFileName == "-" ? "out" : FallbackFileName.str();
Path += ".time-trace";
}
std::error_code EC;
raw_fd_ostream OS(Path, EC, sys::fs::OF_TextWithCRLF);
if (EC)
return createStringError(EC, "Could not open " + Path);
timeTraceProfilerWrite(OS);
return Error::success();
}
TimeTraceProfilerEntry *llvm::timeTraceProfilerBegin(StringRef Name,
StringRef Detail) {
if (TimeTraceProfilerInstance != nullptr)
return TimeTraceProfilerInstance->begin(
std::string(Name), [&]() { return std::string(Detail); },
TimeTraceEventType::CompleteEvent);
return nullptr;
}
TimeTraceProfilerEntry *
llvm::timeTraceProfilerBegin(StringRef Name,
llvm::function_ref<std::string()> Detail) {
if (TimeTraceProfilerInstance != nullptr)
return TimeTraceProfilerInstance->begin(std::string(Name), Detail,
TimeTraceEventType::CompleteEvent);
return nullptr;
}
TimeTraceProfilerEntry *
llvm::timeTraceProfilerBegin(StringRef Name,
llvm::function_ref<TimeTraceMetadata()> Metadata) {
if (TimeTraceProfilerInstance != nullptr)
return TimeTraceProfilerInstance->begin(std::string(Name), Metadata,
TimeTraceEventType::CompleteEvent);
return nullptr;
}
TimeTraceProfilerEntry *llvm::timeTraceAsyncProfilerBegin(StringRef Name,
StringRef Detail) {
if (TimeTraceProfilerInstance != nullptr)
return TimeTraceProfilerInstance->begin(
std::string(Name), [&]() { return std::string(Detail); },
TimeTraceEventType::AsyncEvent);
return nullptr;
}
void llvm::timeTraceAddInstantEvent(StringRef Name,
llvm::function_ref<std::string()> Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->insert(std::string(Name), Detail);
}
void llvm::timeTraceProfilerEnd() {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->end();
}
void llvm::timeTraceProfilerEnd(TimeTraceProfilerEntry *E) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->end(*E);
}
|