1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
|
//===---------------------- rpmalloc.c ------------------*- C -*-=============//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This library provides a cross-platform lock free thread caching malloc
// implementation in C11.
//
//===----------------------------------------------------------------------===//
#include "rpmalloc.h"
////////////
///
/// Build time configurable limits
///
//////
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wunused-macros"
#pragma clang diagnostic ignored "-Wunused-function"
#if __has_warning("-Wreserved-identifier")
#pragma clang diagnostic ignored "-Wreserved-identifier"
#endif
#if __has_warning("-Wstatic-in-inline")
#pragma clang diagnostic ignored "-Wstatic-in-inline"
#endif
#elif defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wunused-macros"
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#if !defined(__has_builtin)
#define __has_builtin(b) 0
#endif
#if defined(__GNUC__) || defined(__clang__)
#if __has_builtin(__builtin_memcpy_inline)
#define _rpmalloc_memcpy_const(x, y, s) __builtin_memcpy_inline(x, y, s)
#else
#define _rpmalloc_memcpy_const(x, y, s) \
do { \
_Static_assert(__builtin_choose_expr(__builtin_constant_p(s), 1, 0), \
"len must be a constant integer"); \
memcpy(x, y, s); \
} while (0)
#endif
#if __has_builtin(__builtin_memset_inline)
#define _rpmalloc_memset_const(x, y, s) __builtin_memset_inline(x, y, s)
#else
#define _rpmalloc_memset_const(x, y, s) \
do { \
_Static_assert(__builtin_choose_expr(__builtin_constant_p(s), 1, 0), \
"len must be a constant integer"); \
memset(x, y, s); \
} while (0)
#endif
#else
#define _rpmalloc_memcpy_const(x, y, s) memcpy(x, y, s)
#define _rpmalloc_memset_const(x, y, s) memset(x, y, s)
#endif
#if __has_builtin(__builtin_assume)
#define rpmalloc_assume(cond) __builtin_assume(cond)
#elif defined(__GNUC__)
#define rpmalloc_assume(cond) \
do { \
if (!__builtin_expect(cond, 0)) \
__builtin_unreachable(); \
} while (0)
#elif defined(_MSC_VER)
#define rpmalloc_assume(cond) __assume(cond)
#else
#define rpmalloc_assume(cond) 0
#endif
#ifndef HEAP_ARRAY_SIZE
//! Size of heap hashmap
#define HEAP_ARRAY_SIZE 47
#endif
#ifndef ENABLE_THREAD_CACHE
//! Enable per-thread cache
#define ENABLE_THREAD_CACHE 1
#endif
#ifndef ENABLE_GLOBAL_CACHE
//! Enable global cache shared between all threads, requires thread cache
#define ENABLE_GLOBAL_CACHE 1
#endif
#ifndef ENABLE_VALIDATE_ARGS
//! Enable validation of args to public entry points
#define ENABLE_VALIDATE_ARGS 0
#endif
#ifndef ENABLE_STATISTICS
//! Enable statistics collection
#define ENABLE_STATISTICS 0
#endif
#ifndef ENABLE_ASSERTS
//! Enable asserts
#define ENABLE_ASSERTS 0
#endif
#ifndef ENABLE_OVERRIDE
//! Override standard library malloc/free and new/delete entry points
#define ENABLE_OVERRIDE 0
#endif
#ifndef ENABLE_PRELOAD
//! Support preloading
#define ENABLE_PRELOAD 0
#endif
#ifndef DISABLE_UNMAP
//! Disable unmapping memory pages (also enables unlimited cache)
#define DISABLE_UNMAP 0
#endif
#ifndef ENABLE_UNLIMITED_CACHE
//! Enable unlimited global cache (no unmapping until finalization)
#define ENABLE_UNLIMITED_CACHE 0
#endif
#ifndef ENABLE_ADAPTIVE_THREAD_CACHE
//! Enable adaptive thread cache size based on use heuristics
#define ENABLE_ADAPTIVE_THREAD_CACHE 0
#endif
#ifndef DEFAULT_SPAN_MAP_COUNT
//! Default number of spans to map in call to map more virtual memory (default
//! values yield 4MiB here)
#define DEFAULT_SPAN_MAP_COUNT 64
#endif
#ifndef GLOBAL_CACHE_MULTIPLIER
//! Multiplier for global cache
#define GLOBAL_CACHE_MULTIPLIER 8
#endif
#if DISABLE_UNMAP && !ENABLE_GLOBAL_CACHE
#error Must use global cache if unmap is disabled
#endif
#if DISABLE_UNMAP
#undef ENABLE_UNLIMITED_CACHE
#define ENABLE_UNLIMITED_CACHE 1
#endif
#if !ENABLE_GLOBAL_CACHE
#undef ENABLE_UNLIMITED_CACHE
#define ENABLE_UNLIMITED_CACHE 0
#endif
#if !ENABLE_THREAD_CACHE
#undef ENABLE_ADAPTIVE_THREAD_CACHE
#define ENABLE_ADAPTIVE_THREAD_CACHE 0
#endif
#if defined(_WIN32) || defined(__WIN32__) || defined(_WIN64)
#define PLATFORM_WINDOWS 1
#define PLATFORM_POSIX 0
#else
#define PLATFORM_WINDOWS 0
#define PLATFORM_POSIX 1
#endif
/// Platform and arch specifics
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(disable : 5105)
#ifndef FORCEINLINE
#define FORCEINLINE inline __forceinline
#endif
#define _Static_assert static_assert
#else
#ifndef FORCEINLINE
#define FORCEINLINE inline __attribute__((__always_inline__))
#endif
#endif
#if PLATFORM_WINDOWS
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#if ENABLE_VALIDATE_ARGS
#include <intsafe.h>
#endif
#else
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#if defined(__linux__) || defined(__ANDROID__)
#include <sys/prctl.h>
#if !defined(PR_SET_VMA)
#define PR_SET_VMA 0x53564d41
#define PR_SET_VMA_ANON_NAME 0
#endif
#endif
#if defined(__APPLE__)
#include <TargetConditionals.h>
#if !TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
#include <mach/mach_vm.h>
#include <mach/vm_statistics.h>
#endif
#include <pthread.h>
#endif
#if defined(__HAIKU__) || defined(__TINYC__)
#include <pthread.h>
#endif
#endif
#include <errno.h>
#include <stdint.h>
#include <string.h>
#if defined(_WIN32) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
#include <fibersapi.h>
static DWORD fls_key;
#endif
#if PLATFORM_POSIX
#include <sched.h>
#include <sys/mman.h>
#ifdef __FreeBSD__
#include <sys/sysctl.h>
#define MAP_HUGETLB MAP_ALIGNED_SUPER
#ifndef PROT_MAX
#define PROT_MAX(f) 0
#endif
#else
#define PROT_MAX(f) 0
#endif
#ifdef __sun
extern int madvise(caddr_t, size_t, int);
#endif
#ifndef MAP_UNINITIALIZED
#define MAP_UNINITIALIZED 0
#endif
#endif
#include <errno.h>
#if ENABLE_ASSERTS
#undef NDEBUG
#if defined(_MSC_VER) && !defined(_DEBUG)
#define _DEBUG
#endif
#include <assert.h>
#define RPMALLOC_TOSTRING_M(x) #x
#define RPMALLOC_TOSTRING(x) RPMALLOC_TOSTRING_M(x)
#define rpmalloc_assert(truth, message) \
do { \
if (!(truth)) { \
if (_memory_config.error_callback) { \
_memory_config.error_callback(message " (" RPMALLOC_TOSTRING( \
truth) ") at " __FILE__ ":" RPMALLOC_TOSTRING(__LINE__)); \
} else { \
assert((truth) && message); \
} \
} \
} while (0)
#else
#define rpmalloc_assert(truth, message) \
do { \
} while (0)
#endif
#if ENABLE_STATISTICS
#include <stdio.h>
#endif
//////
///
/// Atomic access abstraction (since MSVC does not do C11 yet)
///
//////
#if defined(_MSC_VER) && !defined(__clang__)
typedef volatile long atomic32_t;
typedef volatile long long atomic64_t;
typedef volatile void *atomicptr_t;
static FORCEINLINE int32_t atomic_load32(atomic32_t *src) { return *src; }
static FORCEINLINE void atomic_store32(atomic32_t *dst, int32_t val) {
*dst = val;
}
static FORCEINLINE int32_t atomic_incr32(atomic32_t *val) {
return (int32_t)InterlockedIncrement(val);
}
static FORCEINLINE int32_t atomic_decr32(atomic32_t *val) {
return (int32_t)InterlockedDecrement(val);
}
static FORCEINLINE int32_t atomic_add32(atomic32_t *val, int32_t add) {
return (int32_t)InterlockedExchangeAdd(val, add) + add;
}
static FORCEINLINE int atomic_cas32_acquire(atomic32_t *dst, int32_t val,
int32_t ref) {
return (InterlockedCompareExchange(dst, val, ref) == ref) ? 1 : 0;
}
static FORCEINLINE void atomic_store32_release(atomic32_t *dst, int32_t val) {
*dst = val;
}
static FORCEINLINE int64_t atomic_load64(atomic64_t *src) { return *src; }
static FORCEINLINE int64_t atomic_add64(atomic64_t *val, int64_t add) {
return (int64_t)InterlockedExchangeAdd64(val, add) + add;
}
static FORCEINLINE void *atomic_load_ptr(atomicptr_t *src) {
return (void *)*src;
}
static FORCEINLINE void atomic_store_ptr(atomicptr_t *dst, void *val) {
*dst = val;
}
static FORCEINLINE void atomic_store_ptr_release(atomicptr_t *dst, void *val) {
*dst = val;
}
static FORCEINLINE void *atomic_exchange_ptr_acquire(atomicptr_t *dst,
void *val) {
return (void *)InterlockedExchangePointer((void *volatile *)dst, val);
}
static FORCEINLINE int atomic_cas_ptr(atomicptr_t *dst, void *val, void *ref) {
return (InterlockedCompareExchangePointer((void *volatile *)dst, val, ref) ==
ref)
? 1
: 0;
}
#define EXPECTED(x) (x)
#define UNEXPECTED(x) (x)
#else
#include <stdatomic.h>
typedef volatile _Atomic(int32_t) atomic32_t;
typedef volatile _Atomic(int64_t) atomic64_t;
typedef volatile _Atomic(void *) atomicptr_t;
static FORCEINLINE int32_t atomic_load32(atomic32_t *src) {
return atomic_load_explicit(src, memory_order_relaxed);
}
static FORCEINLINE void atomic_store32(atomic32_t *dst, int32_t val) {
atomic_store_explicit(dst, val, memory_order_relaxed);
}
static FORCEINLINE int32_t atomic_incr32(atomic32_t *val) {
return atomic_fetch_add_explicit(val, 1, memory_order_relaxed) + 1;
}
static FORCEINLINE int32_t atomic_decr32(atomic32_t *val) {
return atomic_fetch_add_explicit(val, -1, memory_order_relaxed) - 1;
}
static FORCEINLINE int32_t atomic_add32(atomic32_t *val, int32_t add) {
return atomic_fetch_add_explicit(val, add, memory_order_relaxed) + add;
}
static FORCEINLINE int atomic_cas32_acquire(atomic32_t *dst, int32_t val,
int32_t ref) {
return atomic_compare_exchange_weak_explicit(
dst, &ref, val, memory_order_acquire, memory_order_relaxed);
}
static FORCEINLINE void atomic_store32_release(atomic32_t *dst, int32_t val) {
atomic_store_explicit(dst, val, memory_order_release);
}
static FORCEINLINE int64_t atomic_load64(atomic64_t *val) {
return atomic_load_explicit(val, memory_order_relaxed);
}
static FORCEINLINE int64_t atomic_add64(atomic64_t *val, int64_t add) {
return atomic_fetch_add_explicit(val, add, memory_order_relaxed) + add;
}
static FORCEINLINE void *atomic_load_ptr(atomicptr_t *src) {
return atomic_load_explicit(src, memory_order_relaxed);
}
static FORCEINLINE void atomic_store_ptr(atomicptr_t *dst, void *val) {
atomic_store_explicit(dst, val, memory_order_relaxed);
}
static FORCEINLINE void atomic_store_ptr_release(atomicptr_t *dst, void *val) {
atomic_store_explicit(dst, val, memory_order_release);
}
static FORCEINLINE void *atomic_exchange_ptr_acquire(atomicptr_t *dst,
void *val) {
return atomic_exchange_explicit(dst, val, memory_order_acquire);
}
static FORCEINLINE int atomic_cas_ptr(atomicptr_t *dst, void *val, void *ref) {
return atomic_compare_exchange_weak_explicit(
dst, &ref, val, memory_order_relaxed, memory_order_relaxed);
}
#define EXPECTED(x) __builtin_expect((x), 1)
#define UNEXPECTED(x) __builtin_expect((x), 0)
#endif
////////////
///
/// Statistics related functions (evaluate to nothing when statistics not
/// enabled)
///
//////
#if ENABLE_STATISTICS
#define _rpmalloc_stat_inc(counter) atomic_incr32(counter)
#define _rpmalloc_stat_dec(counter) atomic_decr32(counter)
#define _rpmalloc_stat_add(counter, value) \
atomic_add32(counter, (int32_t)(value))
#define _rpmalloc_stat_add64(counter, value) \
atomic_add64(counter, (int64_t)(value))
#define _rpmalloc_stat_add_peak(counter, value, peak) \
do { \
int32_t _cur_count = atomic_add32(counter, (int32_t)(value)); \
if (_cur_count > (peak)) \
peak = _cur_count; \
} while (0)
#define _rpmalloc_stat_sub(counter, value) \
atomic_add32(counter, -(int32_t)(value))
#define _rpmalloc_stat_inc_alloc(heap, class_idx) \
do { \
int32_t alloc_current = \
atomic_incr32(&heap->size_class_use[class_idx].alloc_current); \
if (alloc_current > heap->size_class_use[class_idx].alloc_peak) \
heap->size_class_use[class_idx].alloc_peak = alloc_current; \
atomic_incr32(&heap->size_class_use[class_idx].alloc_total); \
} while (0)
#define _rpmalloc_stat_inc_free(heap, class_idx) \
do { \
atomic_decr32(&heap->size_class_use[class_idx].alloc_current); \
atomic_incr32(&heap->size_class_use[class_idx].free_total); \
} while (0)
#else
#define _rpmalloc_stat_inc(counter) \
do { \
} while (0)
#define _rpmalloc_stat_dec(counter) \
do { \
} while (0)
#define _rpmalloc_stat_add(counter, value) \
do { \
} while (0)
#define _rpmalloc_stat_add64(counter, value) \
do { \
} while (0)
#define _rpmalloc_stat_add_peak(counter, value, peak) \
do { \
} while (0)
#define _rpmalloc_stat_sub(counter, value) \
do { \
} while (0)
#define _rpmalloc_stat_inc_alloc(heap, class_idx) \
do { \
} while (0)
#define _rpmalloc_stat_inc_free(heap, class_idx) \
do { \
} while (0)
#endif
///
/// Preconfigured limits and sizes
///
//! Granularity of a small allocation block (must be power of two)
#define SMALL_GRANULARITY 16
//! Small granularity shift count
#define SMALL_GRANULARITY_SHIFT 4
//! Number of small block size classes
#define SMALL_CLASS_COUNT 65
//! Maximum size of a small block
#define SMALL_SIZE_LIMIT (SMALL_GRANULARITY * (SMALL_CLASS_COUNT - 1))
//! Granularity of a medium allocation block
#define MEDIUM_GRANULARITY 512
//! Medium granularity shift count
#define MEDIUM_GRANULARITY_SHIFT 9
//! Number of medium block size classes
#define MEDIUM_CLASS_COUNT 61
//! Total number of small + medium size classes
#define SIZE_CLASS_COUNT (SMALL_CLASS_COUNT + MEDIUM_CLASS_COUNT)
//! Number of large block size classes
#define LARGE_CLASS_COUNT 63
//! Maximum size of a medium block
#define MEDIUM_SIZE_LIMIT \
(SMALL_SIZE_LIMIT + (MEDIUM_GRANULARITY * MEDIUM_CLASS_COUNT))
//! Maximum size of a large block
#define LARGE_SIZE_LIMIT \
((LARGE_CLASS_COUNT * _memory_span_size) - SPAN_HEADER_SIZE)
//! Size of a span header (must be a multiple of SMALL_GRANULARITY and a power
//! of two)
#define SPAN_HEADER_SIZE 128
//! Number of spans in thread cache
#define MAX_THREAD_SPAN_CACHE 400
//! Number of spans to transfer between thread and global cache
#define THREAD_SPAN_CACHE_TRANSFER 64
//! Number of spans in thread cache for large spans (must be greater than
//! LARGE_CLASS_COUNT / 2)
#define MAX_THREAD_SPAN_LARGE_CACHE 100
//! Number of spans to transfer between thread and global cache for large spans
#define THREAD_SPAN_LARGE_CACHE_TRANSFER 6
_Static_assert((SMALL_GRANULARITY & (SMALL_GRANULARITY - 1)) == 0,
"Small granularity must be power of two");
_Static_assert((SPAN_HEADER_SIZE & (SPAN_HEADER_SIZE - 1)) == 0,
"Span header size must be power of two");
#if ENABLE_VALIDATE_ARGS
//! Maximum allocation size to avoid integer overflow
#undef MAX_ALLOC_SIZE
#define MAX_ALLOC_SIZE (((size_t) - 1) - _memory_span_size)
#endif
#define pointer_offset(ptr, ofs) (void *)((char *)(ptr) + (ptrdiff_t)(ofs))
#define pointer_diff(first, second) \
(ptrdiff_t)((const char *)(first) - (const char *)(second))
#define INVALID_POINTER ((void *)((uintptr_t) - 1))
#define SIZE_CLASS_LARGE SIZE_CLASS_COUNT
#define SIZE_CLASS_HUGE ((uint32_t) - 1)
////////////
///
/// Data types
///
//////
//! A memory heap, per thread
typedef struct heap_t heap_t;
//! Span of memory pages
typedef struct span_t span_t;
//! Span list
typedef struct span_list_t span_list_t;
//! Span active data
typedef struct span_active_t span_active_t;
//! Size class definition
typedef struct size_class_t size_class_t;
//! Global cache
typedef struct global_cache_t global_cache_t;
//! Flag indicating span is the first (master) span of a split superspan
#define SPAN_FLAG_MASTER 1U
//! Flag indicating span is a secondary (sub) span of a split superspan
#define SPAN_FLAG_SUBSPAN 2U
//! Flag indicating span has blocks with increased alignment
#define SPAN_FLAG_ALIGNED_BLOCKS 4U
//! Flag indicating an unmapped master span
#define SPAN_FLAG_UNMAPPED_MASTER 8U
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
struct span_use_t {
//! Current number of spans used (actually used, not in cache)
atomic32_t current;
//! High water mark of spans used
atomic32_t high;
#if ENABLE_STATISTICS
//! Number of spans in deferred list
atomic32_t spans_deferred;
//! Number of spans transitioned to global cache
atomic32_t spans_to_global;
//! Number of spans transitioned from global cache
atomic32_t spans_from_global;
//! Number of spans transitioned to thread cache
atomic32_t spans_to_cache;
//! Number of spans transitioned from thread cache
atomic32_t spans_from_cache;
//! Number of spans transitioned to reserved state
atomic32_t spans_to_reserved;
//! Number of spans transitioned from reserved state
atomic32_t spans_from_reserved;
//! Number of raw memory map calls
atomic32_t spans_map_calls;
#endif
};
typedef struct span_use_t span_use_t;
#endif
#if ENABLE_STATISTICS
struct size_class_use_t {
//! Current number of allocations
atomic32_t alloc_current;
//! Peak number of allocations
int32_t alloc_peak;
//! Total number of allocations
atomic32_t alloc_total;
//! Total number of frees
atomic32_t free_total;
//! Number of spans in use
atomic32_t spans_current;
//! Number of spans transitioned to cache
int32_t spans_peak;
//! Number of spans transitioned to cache
atomic32_t spans_to_cache;
//! Number of spans transitioned from cache
atomic32_t spans_from_cache;
//! Number of spans transitioned from reserved state
atomic32_t spans_from_reserved;
//! Number of spans mapped
atomic32_t spans_map_calls;
int32_t unused;
};
typedef struct size_class_use_t size_class_use_t;
#endif
// A span can either represent a single span of memory pages with size declared
// by span_map_count configuration variable, or a set of spans in a continuous
// region, a super span. Any reference to the term "span" usually refers to both
// a single span or a super span. A super span can further be divided into
// multiple spans (or this, super spans), where the first (super)span is the
// master and subsequent (super)spans are subspans. The master span keeps track
// of how many subspans that are still alive and mapped in virtual memory, and
// once all subspans and master have been unmapped the entire superspan region
// is released and unmapped (on Windows for example, the entire superspan range
// has to be released in the same call to release the virtual memory range, but
// individual subranges can be decommitted individually to reduce physical
// memory use).
struct span_t {
//! Free list
void *free_list;
//! Total block count of size class
uint32_t block_count;
//! Size class
uint32_t size_class;
//! Index of last block initialized in free list
uint32_t free_list_limit;
//! Number of used blocks remaining when in partial state
uint32_t used_count;
//! Deferred free list
atomicptr_t free_list_deferred;
//! Size of deferred free list, or list of spans when part of a cache list
uint32_t list_size;
//! Size of a block
uint32_t block_size;
//! Flags and counters
uint32_t flags;
//! Number of spans
uint32_t span_count;
//! Total span counter for master spans
uint32_t total_spans;
//! Offset from master span for subspans
uint32_t offset_from_master;
//! Remaining span counter, for master spans
atomic32_t remaining_spans;
//! Alignment offset
uint32_t align_offset;
//! Owning heap
heap_t *heap;
//! Next span
span_t *next;
//! Previous span
span_t *prev;
};
_Static_assert(sizeof(span_t) <= SPAN_HEADER_SIZE, "span size mismatch");
struct span_cache_t {
size_t count;
span_t *span[MAX_THREAD_SPAN_CACHE];
};
typedef struct span_cache_t span_cache_t;
struct span_large_cache_t {
size_t count;
span_t *span[MAX_THREAD_SPAN_LARGE_CACHE];
};
typedef struct span_large_cache_t span_large_cache_t;
struct heap_size_class_t {
//! Free list of active span
void *free_list;
//! Double linked list of partially used spans with free blocks.
// Previous span pointer in head points to tail span of list.
span_t *partial_span;
//! Early level cache of fully free spans
span_t *cache;
};
typedef struct heap_size_class_t heap_size_class_t;
// Control structure for a heap, either a thread heap or a first class heap if
// enabled
struct heap_t {
//! Owning thread ID
uintptr_t owner_thread;
//! Free lists for each size class
heap_size_class_t size_class[SIZE_CLASS_COUNT];
#if ENABLE_THREAD_CACHE
//! Arrays of fully freed spans, single span
span_cache_t span_cache;
#endif
//! List of deferred free spans (single linked list)
atomicptr_t span_free_deferred;
//! Number of full spans
size_t full_span_count;
//! Mapped but unused spans
span_t *span_reserve;
//! Master span for mapped but unused spans
span_t *span_reserve_master;
//! Number of mapped but unused spans
uint32_t spans_reserved;
//! Child count
atomic32_t child_count;
//! Next heap in id list
heap_t *next_heap;
//! Next heap in orphan list
heap_t *next_orphan;
//! Heap ID
int32_t id;
//! Finalization state flag
int finalize;
//! Master heap owning the memory pages
heap_t *master_heap;
#if ENABLE_THREAD_CACHE
//! Arrays of fully freed spans, large spans with > 1 span count
span_large_cache_t span_large_cache[LARGE_CLASS_COUNT - 1];
#endif
#if RPMALLOC_FIRST_CLASS_HEAPS
//! Double linked list of fully utilized spans with free blocks for each size
//! class.
// Previous span pointer in head points to tail span of list.
span_t *full_span[SIZE_CLASS_COUNT];
//! Double linked list of large and huge spans allocated by this heap
span_t *large_huge_span;
#endif
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
//! Current and high water mark of spans used per span count
span_use_t span_use[LARGE_CLASS_COUNT];
#endif
#if ENABLE_STATISTICS
//! Allocation stats per size class
size_class_use_t size_class_use[SIZE_CLASS_COUNT + 1];
//! Number of bytes transitioned thread -> global
atomic64_t thread_to_global;
//! Number of bytes transitioned global -> thread
atomic64_t global_to_thread;
#endif
};
// Size class for defining a block size bucket
struct size_class_t {
//! Size of blocks in this class
uint32_t block_size;
//! Number of blocks in each chunk
uint16_t block_count;
//! Class index this class is merged with
uint16_t class_idx;
};
_Static_assert(sizeof(size_class_t) == 8, "Size class size mismatch");
struct global_cache_t {
//! Cache lock
atomic32_t lock;
//! Cache count
uint32_t count;
#if ENABLE_STATISTICS
//! Insert count
size_t insert_count;
//! Extract count
size_t extract_count;
#endif
//! Cached spans
span_t *span[GLOBAL_CACHE_MULTIPLIER * MAX_THREAD_SPAN_CACHE];
//! Unlimited cache overflow
span_t *overflow;
};
////////////
///
/// Global data
///
//////
//! Default span size (64KiB)
#define _memory_default_span_size (64 * 1024)
#define _memory_default_span_size_shift 16
#define _memory_default_span_mask (~((uintptr_t)(_memory_span_size - 1)))
//! Initialized flag
static int _rpmalloc_initialized;
//! Main thread ID
static uintptr_t _rpmalloc_main_thread_id;
//! Configuration
static rpmalloc_config_t _memory_config;
//! Memory page size
static size_t _memory_page_size;
//! Shift to divide by page size
static size_t _memory_page_size_shift;
//! Granularity at which memory pages are mapped by OS
static size_t _memory_map_granularity;
#if RPMALLOC_CONFIGURABLE
//! Size of a span of memory pages
static size_t _memory_span_size;
//! Shift to divide by span size
static size_t _memory_span_size_shift;
//! Mask to get to start of a memory span
static uintptr_t _memory_span_mask;
#else
//! Hardwired span size
#define _memory_span_size _memory_default_span_size
#define _memory_span_size_shift _memory_default_span_size_shift
#define _memory_span_mask _memory_default_span_mask
#endif
//! Number of spans to map in each map call
static size_t _memory_span_map_count;
//! Number of spans to keep reserved in each heap
static size_t _memory_heap_reserve_count;
//! Global size classes
static size_class_t _memory_size_class[SIZE_CLASS_COUNT];
//! Run-time size limit of medium blocks
static size_t _memory_medium_size_limit;
//! Heap ID counter
static atomic32_t _memory_heap_id;
//! Huge page support
static int _memory_huge_pages;
#if ENABLE_GLOBAL_CACHE
//! Global span cache
static global_cache_t _memory_span_cache[LARGE_CLASS_COUNT];
#endif
//! Global reserved spans
static span_t *_memory_global_reserve;
//! Global reserved count
static size_t _memory_global_reserve_count;
//! Global reserved master
static span_t *_memory_global_reserve_master;
//! All heaps
static heap_t *_memory_heaps[HEAP_ARRAY_SIZE];
//! Used to restrict access to mapping memory for huge pages
static atomic32_t _memory_global_lock;
//! Orphaned heaps
static heap_t *_memory_orphan_heaps;
#if RPMALLOC_FIRST_CLASS_HEAPS
//! Orphaned heaps (first class heaps)
static heap_t *_memory_first_class_orphan_heaps;
#endif
#if ENABLE_STATISTICS
//! Allocations counter
static atomic64_t _allocation_counter;
//! Deallocations counter
static atomic64_t _deallocation_counter;
//! Active heap count
static atomic32_t _memory_active_heaps;
//! Number of currently mapped memory pages
static atomic32_t _mapped_pages;
//! Peak number of concurrently mapped memory pages
static int32_t _mapped_pages_peak;
//! Number of mapped master spans
static atomic32_t _master_spans;
//! Number of unmapped dangling master spans
static atomic32_t _unmapped_master_spans;
//! Running counter of total number of mapped memory pages since start
static atomic32_t _mapped_total;
//! Running counter of total number of unmapped memory pages since start
static atomic32_t _unmapped_total;
//! Number of currently mapped memory pages in OS calls
static atomic32_t _mapped_pages_os;
//! Number of currently allocated pages in huge allocations
static atomic32_t _huge_pages_current;
//! Peak number of currently allocated pages in huge allocations
static int32_t _huge_pages_peak;
#endif
////////////
///
/// Thread local heap and ID
///
//////
//! Current thread heap
#if ((defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD) || \
defined(__TINYC__)
static pthread_key_t _memory_thread_heap;
#else
#ifdef _MSC_VER
#define _Thread_local __declspec(thread)
#define TLS_MODEL
#else
#ifndef __HAIKU__
#define TLS_MODEL __attribute__((tls_model("initial-exec")))
#else
#define TLS_MODEL
#endif
#if !defined(__clang__) && defined(__GNUC__)
#define _Thread_local __thread
#endif
#endif
static _Thread_local heap_t *_memory_thread_heap TLS_MODEL;
#endif
static inline heap_t *get_thread_heap_raw(void) {
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
return pthread_getspecific(_memory_thread_heap);
#else
return _memory_thread_heap;
#endif
}
//! Get the current thread heap
static inline heap_t *get_thread_heap(void) {
heap_t *heap = get_thread_heap_raw();
#if ENABLE_PRELOAD
if (EXPECTED(heap != 0))
return heap;
rpmalloc_initialize();
return get_thread_heap_raw();
#else
return heap;
#endif
}
//! Fast thread ID
static inline uintptr_t get_thread_id(void) {
#if defined(_WIN32)
return (uintptr_t)((void *)NtCurrentTeb());
#elif (defined(__GNUC__) || defined(__clang__)) && !defined(__CYGWIN__)
uintptr_t tid;
#if defined(__i386__)
__asm__("movl %%gs:0, %0" : "=r"(tid) : :);
#elif defined(__x86_64__)
#if defined(__MACH__)
__asm__("movq %%gs:0, %0" : "=r"(tid) : :);
#else
__asm__("movq %%fs:0, %0" : "=r"(tid) : :);
#endif
#elif defined(__arm__)
__asm__ volatile("mrc p15, 0, %0, c13, c0, 3" : "=r"(tid));
#elif defined(__aarch64__)
#if defined(__MACH__)
// tpidr_el0 likely unused, always return 0 on iOS
__asm__ volatile("mrs %0, tpidrro_el0" : "=r"(tid));
#else
__asm__ volatile("mrs %0, tpidr_el0" : "=r"(tid));
#endif
#else
#error This platform needs implementation of get_thread_id()
#endif
return tid;
#else
#error This platform needs implementation of get_thread_id()
#endif
}
//! Set the current thread heap
static void set_thread_heap(heap_t *heap) {
#if ((defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD) || \
defined(__TINYC__)
pthread_setspecific(_memory_thread_heap, heap);
#else
_memory_thread_heap = heap;
#endif
if (heap)
heap->owner_thread = get_thread_id();
}
//! Set main thread ID
extern void rpmalloc_set_main_thread(void);
void rpmalloc_set_main_thread(void) {
_rpmalloc_main_thread_id = get_thread_id();
}
static void _rpmalloc_spin(void) {
#if defined(_MSC_VER)
#if defined(_M_ARM64)
__yield();
#else
_mm_pause();
#endif
#elif defined(__x86_64__) || defined(__i386__)
__asm__ volatile("pause" ::: "memory");
#elif defined(__aarch64__) || (defined(__arm__) && __ARM_ARCH >= 7)
__asm__ volatile("yield" ::: "memory");
#elif defined(__powerpc__) || defined(__powerpc64__)
// No idea if ever been compiled in such archs but ... as precaution
__asm__ volatile("or 27,27,27");
#elif defined(__sparc__)
__asm__ volatile("rd %ccr, %g0 \n\trd %ccr, %g0 \n\trd %ccr, %g0");
#else
struct timespec ts = {0};
nanosleep(&ts, 0);
#endif
}
#if defined(_WIN32) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
static void NTAPI _rpmalloc_thread_destructor(void *value) {
#if ENABLE_OVERRIDE
// If this is called on main thread it means rpmalloc_finalize
// has not been called and shutdown is forced (through _exit) or unclean
if (get_thread_id() == _rpmalloc_main_thread_id)
return;
#endif
if (value)
rpmalloc_thread_finalize(1);
}
#endif
////////////
///
/// Low level memory map/unmap
///
//////
static void _rpmalloc_set_name(void *address, size_t size) {
#if defined(__linux__) || defined(__ANDROID__)
const char *name = _memory_huge_pages ? _memory_config.huge_page_name
: _memory_config.page_name;
if (address == MAP_FAILED || !name)
return;
// If the kernel does not support CONFIG_ANON_VMA_NAME or if the call fails
// (e.g. invalid name) it is a no-op basically.
(void)prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, (uintptr_t)address, size,
(uintptr_t)name);
#else
(void)sizeof(size);
(void)sizeof(address);
#endif
}
//! Map more virtual memory
// size is number of bytes to map
// offset receives the offset in bytes from start of mapped region
// returns address to start of mapped region to use
static void *_rpmalloc_mmap(size_t size, size_t *offset) {
rpmalloc_assert(!(size % _memory_page_size), "Invalid mmap size");
rpmalloc_assert(size >= _memory_page_size, "Invalid mmap size");
void *address = _memory_config.memory_map(size, offset);
if (EXPECTED(address != 0)) {
_rpmalloc_stat_add_peak(&_mapped_pages, (size >> _memory_page_size_shift),
_mapped_pages_peak);
_rpmalloc_stat_add(&_mapped_total, (size >> _memory_page_size_shift));
}
return address;
}
//! Unmap virtual memory
// address is the memory address to unmap, as returned from _memory_map
// size is the number of bytes to unmap, which might be less than full region
// for a partial unmap offset is the offset in bytes to the actual mapped
// region, as set by _memory_map release is set to 0 for partial unmap, or size
// of entire range for a full unmap
static void _rpmalloc_unmap(void *address, size_t size, size_t offset,
size_t release) {
rpmalloc_assert(!release || (release >= size), "Invalid unmap size");
rpmalloc_assert(!release || (release >= _memory_page_size),
"Invalid unmap size");
if (release) {
rpmalloc_assert(!(release % _memory_page_size), "Invalid unmap size");
_rpmalloc_stat_sub(&_mapped_pages, (release >> _memory_page_size_shift));
_rpmalloc_stat_add(&_unmapped_total, (release >> _memory_page_size_shift));
}
_memory_config.memory_unmap(address, size, offset, release);
}
//! Default implementation to map new pages to virtual memory
static void *_rpmalloc_mmap_os(size_t size, size_t *offset) {
// Either size is a heap (a single page) or a (multiple) span - we only need
// to align spans, and only if larger than map granularity
size_t padding = ((size >= _memory_span_size) &&
(_memory_span_size > _memory_map_granularity))
? _memory_span_size
: 0;
rpmalloc_assert(size >= _memory_page_size, "Invalid mmap size");
#if PLATFORM_WINDOWS
// Ok to MEM_COMMIT - according to MSDN, "actual physical pages are not
// allocated unless/until the virtual addresses are actually accessed"
void *ptr = VirtualAlloc(0, size + padding,
(_memory_huge_pages ? MEM_LARGE_PAGES : 0) |
MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);
if (!ptr) {
if (_memory_config.map_fail_callback) {
if (_memory_config.map_fail_callback(size + padding))
return _rpmalloc_mmap_os(size, offset);
} else {
rpmalloc_assert(ptr, "Failed to map virtual memory block");
}
return 0;
}
#else
int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_UNINITIALIZED;
#if defined(__APPLE__) && !TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
int fd = (int)VM_MAKE_TAG(240U);
if (_memory_huge_pages)
fd |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
void *ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, flags, fd, 0);
#elif defined(MAP_HUGETLB)
void *ptr = mmap(0, size + padding,
PROT_READ | PROT_WRITE | PROT_MAX(PROT_READ | PROT_WRITE),
(_memory_huge_pages ? MAP_HUGETLB : 0) | flags, -1, 0);
#if defined(MADV_HUGEPAGE)
// In some configurations, huge pages allocations might fail thus
// we fallback to normal allocations and promote the region as transparent
// huge page
if ((ptr == MAP_FAILED || !ptr) && _memory_huge_pages) {
ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, flags, -1, 0);
if (ptr && ptr != MAP_FAILED) {
int prm = madvise(ptr, size + padding, MADV_HUGEPAGE);
(void)prm;
rpmalloc_assert((prm == 0), "Failed to promote the page to THP");
}
}
#endif
_rpmalloc_set_name(ptr, size + padding);
#elif defined(MAP_ALIGNED)
const size_t align =
(sizeof(size_t) * 8) - (size_t)(__builtin_clzl(size - 1));
void *ptr =
mmap(0, size + padding, PROT_READ | PROT_WRITE,
(_memory_huge_pages ? MAP_ALIGNED(align) : 0) | flags, -1, 0);
#elif defined(MAP_ALIGN)
caddr_t base = (_memory_huge_pages ? (caddr_t)(4 << 20) : 0);
void *ptr = mmap(base, size + padding, PROT_READ | PROT_WRITE,
(_memory_huge_pages ? MAP_ALIGN : 0) | flags, -1, 0);
#else
void *ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, flags, -1, 0);
#endif
if ((ptr == MAP_FAILED) || !ptr) {
if (_memory_config.map_fail_callback) {
if (_memory_config.map_fail_callback(size + padding))
return _rpmalloc_mmap_os(size, offset);
} else if (errno != ENOMEM) {
rpmalloc_assert((ptr != MAP_FAILED) && ptr,
"Failed to map virtual memory block");
}
return 0;
}
#endif
_rpmalloc_stat_add(&_mapped_pages_os,
(int32_t)((size + padding) >> _memory_page_size_shift));
if (padding) {
size_t final_padding = padding - ((uintptr_t)ptr & ~_memory_span_mask);
rpmalloc_assert(final_padding <= _memory_span_size,
"Internal failure in padding");
rpmalloc_assert(final_padding <= padding, "Internal failure in padding");
rpmalloc_assert(!(final_padding % 8), "Internal failure in padding");
ptr = pointer_offset(ptr, final_padding);
*offset = final_padding >> 3;
}
rpmalloc_assert((size < _memory_span_size) ||
!((uintptr_t)ptr & ~_memory_span_mask),
"Internal failure in padding");
return ptr;
}
//! Default implementation to unmap pages from virtual memory
static void _rpmalloc_unmap_os(void *address, size_t size, size_t offset,
size_t release) {
rpmalloc_assert(release || (offset == 0), "Invalid unmap size");
rpmalloc_assert(!release || (release >= _memory_page_size),
"Invalid unmap size");
rpmalloc_assert(size >= _memory_page_size, "Invalid unmap size");
if (release && offset) {
offset <<= 3;
address = pointer_offset(address, -(int32_t)offset);
if ((release >= _memory_span_size) &&
(_memory_span_size > _memory_map_granularity)) {
// Padding is always one span size
release += _memory_span_size;
}
}
#if !DISABLE_UNMAP
#if PLATFORM_WINDOWS
if (!VirtualFree(address, release ? 0 : size,
release ? MEM_RELEASE : MEM_DECOMMIT)) {
rpmalloc_assert(0, "Failed to unmap virtual memory block");
}
#else
if (release) {
if (munmap(address, release)) {
rpmalloc_assert(0, "Failed to unmap virtual memory block");
}
} else {
#if defined(MADV_FREE_REUSABLE)
int ret;
while ((ret = madvise(address, size, MADV_FREE_REUSABLE)) == -1 &&
(errno == EAGAIN))
errno = 0;
if ((ret == -1) && (errno != 0)) {
#elif defined(MADV_DONTNEED)
if (madvise(address, size, MADV_DONTNEED)) {
#elif defined(MADV_PAGEOUT)
if (madvise(address, size, MADV_PAGEOUT)) {
#elif defined(MADV_FREE)
if (madvise(address, size, MADV_FREE)) {
#else
if (posix_madvise(address, size, POSIX_MADV_DONTNEED)) {
#endif
rpmalloc_assert(0, "Failed to madvise virtual memory block as free");
}
}
#endif
#endif
if (release)
_rpmalloc_stat_sub(&_mapped_pages_os, release >> _memory_page_size_shift);
}
static void _rpmalloc_span_mark_as_subspan_unless_master(span_t *master,
span_t *subspan,
size_t span_count);
//! Use global reserved spans to fulfill a memory map request (reserve size must
//! be checked by caller)
static span_t *_rpmalloc_global_get_reserved_spans(size_t span_count) {
span_t *span = _memory_global_reserve;
_rpmalloc_span_mark_as_subspan_unless_master(_memory_global_reserve_master,
span, span_count);
_memory_global_reserve_count -= span_count;
if (_memory_global_reserve_count)
_memory_global_reserve =
(span_t *)pointer_offset(span, span_count << _memory_span_size_shift);
else
_memory_global_reserve = 0;
return span;
}
//! Store the given spans as global reserve (must only be called from within new
//! heap allocation, not thread safe)
static void _rpmalloc_global_set_reserved_spans(span_t *master, span_t *reserve,
size_t reserve_span_count) {
_memory_global_reserve_master = master;
_memory_global_reserve_count = reserve_span_count;
_memory_global_reserve = reserve;
}
////////////
///
/// Span linked list management
///
//////
//! Add a span to double linked list at the head
static void _rpmalloc_span_double_link_list_add(span_t **head, span_t *span) {
if (*head)
(*head)->prev = span;
span->next = *head;
*head = span;
}
//! Pop head span from double linked list
static void _rpmalloc_span_double_link_list_pop_head(span_t **head,
span_t *span) {
rpmalloc_assert(*head == span, "Linked list corrupted");
span = *head;
*head = span->next;
}
//! Remove a span from double linked list
static void _rpmalloc_span_double_link_list_remove(span_t **head,
span_t *span) {
rpmalloc_assert(*head, "Linked list corrupted");
if (*head == span) {
*head = span->next;
} else {
span_t *next_span = span->next;
span_t *prev_span = span->prev;
prev_span->next = next_span;
if (EXPECTED(next_span != 0))
next_span->prev = prev_span;
}
}
////////////
///
/// Span control
///
//////
static void _rpmalloc_heap_cache_insert(heap_t *heap, span_t *span);
static void _rpmalloc_heap_finalize(heap_t *heap);
static void _rpmalloc_heap_set_reserved_spans(heap_t *heap, span_t *master,
span_t *reserve,
size_t reserve_span_count);
//! Declare the span to be a subspan and store distance from master span and
//! span count
static void _rpmalloc_span_mark_as_subspan_unless_master(span_t *master,
span_t *subspan,
size_t span_count) {
rpmalloc_assert((subspan != master) || (subspan->flags & SPAN_FLAG_MASTER),
"Span master pointer and/or flag mismatch");
if (subspan != master) {
subspan->flags = SPAN_FLAG_SUBSPAN;
subspan->offset_from_master =
(uint32_t)((uintptr_t)pointer_diff(subspan, master) >>
_memory_span_size_shift);
subspan->align_offset = 0;
}
subspan->span_count = (uint32_t)span_count;
}
//! Use reserved spans to fulfill a memory map request (reserve size must be
//! checked by caller)
static span_t *_rpmalloc_span_map_from_reserve(heap_t *heap,
size_t span_count) {
// Update the heap span reserve
span_t *span = heap->span_reserve;
heap->span_reserve =
(span_t *)pointer_offset(span, span_count * _memory_span_size);
heap->spans_reserved -= (uint32_t)span_count;
_rpmalloc_span_mark_as_subspan_unless_master(heap->span_reserve_master, span,
span_count);
if (span_count <= LARGE_CLASS_COUNT)
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_from_reserved);
return span;
}
//! Get the aligned number of spans to map in based on wanted count, configured
//! mapping granularity and the page size
static size_t _rpmalloc_span_align_count(size_t span_count) {
size_t request_count = (span_count > _memory_span_map_count)
? span_count
: _memory_span_map_count;
if ((_memory_page_size > _memory_span_size) &&
((request_count * _memory_span_size) % _memory_page_size))
request_count +=
_memory_span_map_count - (request_count % _memory_span_map_count);
return request_count;
}
//! Setup a newly mapped span
static void _rpmalloc_span_initialize(span_t *span, size_t total_span_count,
size_t span_count, size_t align_offset) {
span->total_spans = (uint32_t)total_span_count;
span->span_count = (uint32_t)span_count;
span->align_offset = (uint32_t)align_offset;
span->flags = SPAN_FLAG_MASTER;
atomic_store32(&span->remaining_spans, (int32_t)total_span_count);
}
static void _rpmalloc_span_unmap(span_t *span);
//! Map an aligned set of spans, taking configured mapping granularity and the
//! page size into account
static span_t *_rpmalloc_span_map_aligned_count(heap_t *heap,
size_t span_count) {
// If we already have some, but not enough, reserved spans, release those to
// heap cache and map a new full set of spans. Otherwise we would waste memory
// if page size > span size (huge pages)
size_t aligned_span_count = _rpmalloc_span_align_count(span_count);
size_t align_offset = 0;
span_t *span = (span_t *)_rpmalloc_mmap(
aligned_span_count * _memory_span_size, &align_offset);
if (!span)
return 0;
_rpmalloc_span_initialize(span, aligned_span_count, span_count, align_offset);
_rpmalloc_stat_inc(&_master_spans);
if (span_count <= LARGE_CLASS_COUNT)
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_map_calls);
if (aligned_span_count > span_count) {
span_t *reserved_spans =
(span_t *)pointer_offset(span, span_count * _memory_span_size);
size_t reserved_count = aligned_span_count - span_count;
if (heap->spans_reserved) {
_rpmalloc_span_mark_as_subspan_unless_master(
heap->span_reserve_master, heap->span_reserve, heap->spans_reserved);
_rpmalloc_heap_cache_insert(heap, heap->span_reserve);
}
if (reserved_count > _memory_heap_reserve_count) {
// If huge pages or eager spam map count, the global reserve spin lock is
// held by caller, _rpmalloc_span_map
rpmalloc_assert(atomic_load32(&_memory_global_lock) == 1,
"Global spin lock not held as expected");
size_t remain_count = reserved_count - _memory_heap_reserve_count;
reserved_count = _memory_heap_reserve_count;
span_t *remain_span = (span_t *)pointer_offset(
reserved_spans, reserved_count * _memory_span_size);
if (_memory_global_reserve) {
_rpmalloc_span_mark_as_subspan_unless_master(
_memory_global_reserve_master, _memory_global_reserve,
_memory_global_reserve_count);
_rpmalloc_span_unmap(_memory_global_reserve);
}
_rpmalloc_global_set_reserved_spans(span, remain_span, remain_count);
}
_rpmalloc_heap_set_reserved_spans(heap, span, reserved_spans,
reserved_count);
}
return span;
}
//! Map in memory pages for the given number of spans (or use previously
//! reserved pages)
static span_t *_rpmalloc_span_map(heap_t *heap, size_t span_count) {
if (span_count <= heap->spans_reserved)
return _rpmalloc_span_map_from_reserve(heap, span_count);
span_t *span = 0;
int use_global_reserve =
(_memory_page_size > _memory_span_size) ||
(_memory_span_map_count > _memory_heap_reserve_count);
if (use_global_reserve) {
// If huge pages, make sure only one thread maps more memory to avoid bloat
while (!atomic_cas32_acquire(&_memory_global_lock, 1, 0))
_rpmalloc_spin();
if (_memory_global_reserve_count >= span_count) {
size_t reserve_count =
(!heap->spans_reserved ? _memory_heap_reserve_count : span_count);
if (_memory_global_reserve_count < reserve_count)
reserve_count = _memory_global_reserve_count;
span = _rpmalloc_global_get_reserved_spans(reserve_count);
if (span) {
if (reserve_count > span_count) {
span_t *reserved_span = (span_t *)pointer_offset(
span, span_count << _memory_span_size_shift);
_rpmalloc_heap_set_reserved_spans(heap, _memory_global_reserve_master,
reserved_span,
reserve_count - span_count);
}
// Already marked as subspan in _rpmalloc_global_get_reserved_spans
span->span_count = (uint32_t)span_count;
}
}
}
if (!span)
span = _rpmalloc_span_map_aligned_count(heap, span_count);
if (use_global_reserve)
atomic_store32_release(&_memory_global_lock, 0);
return span;
}
//! Unmap memory pages for the given number of spans (or mark as unused if no
//! partial unmappings)
static void _rpmalloc_span_unmap(span_t *span) {
rpmalloc_assert((span->flags & SPAN_FLAG_MASTER) ||
(span->flags & SPAN_FLAG_SUBSPAN),
"Span flag corrupted");
rpmalloc_assert(!(span->flags & SPAN_FLAG_MASTER) ||
!(span->flags & SPAN_FLAG_SUBSPAN),
"Span flag corrupted");
int is_master = !!(span->flags & SPAN_FLAG_MASTER);
span_t *master =
is_master ? span
: ((span_t *)pointer_offset(
span, -(intptr_t)((uintptr_t)span->offset_from_master *
_memory_span_size)));
rpmalloc_assert(is_master || (span->flags & SPAN_FLAG_SUBSPAN),
"Span flag corrupted");
rpmalloc_assert(master->flags & SPAN_FLAG_MASTER, "Span flag corrupted");
size_t span_count = span->span_count;
if (!is_master) {
// Directly unmap subspans (unless huge pages, in which case we defer and
// unmap entire page range with master)
rpmalloc_assert(span->align_offset == 0, "Span align offset corrupted");
if (_memory_span_size >= _memory_page_size)
_rpmalloc_unmap(span, span_count * _memory_span_size, 0, 0);
} else {
// Special double flag to denote an unmapped master
// It must be kept in memory since span header must be used
span->flags |=
SPAN_FLAG_MASTER | SPAN_FLAG_SUBSPAN | SPAN_FLAG_UNMAPPED_MASTER;
_rpmalloc_stat_add(&_unmapped_master_spans, 1);
}
if (atomic_add32(&master->remaining_spans, -(int32_t)span_count) <= 0) {
// Everything unmapped, unmap the master span with release flag to unmap the
// entire range of the super span
rpmalloc_assert(!!(master->flags & SPAN_FLAG_MASTER) &&
!!(master->flags & SPAN_FLAG_SUBSPAN),
"Span flag corrupted");
size_t unmap_count = master->span_count;
if (_memory_span_size < _memory_page_size)
unmap_count = master->total_spans;
_rpmalloc_stat_sub(&_master_spans, 1);
_rpmalloc_stat_sub(&_unmapped_master_spans, 1);
_rpmalloc_unmap(master, unmap_count * _memory_span_size,
master->align_offset,
(size_t)master->total_spans * _memory_span_size);
}
}
//! Move the span (used for small or medium allocations) to the heap thread
//! cache
static void _rpmalloc_span_release_to_cache(heap_t *heap, span_t *span) {
rpmalloc_assert(heap == span->heap, "Span heap pointer corrupted");
rpmalloc_assert(span->size_class < SIZE_CLASS_COUNT,
"Invalid span size class");
rpmalloc_assert(span->span_count == 1, "Invalid span count");
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
atomic_decr32(&heap->span_use[0].current);
#endif
_rpmalloc_stat_dec(&heap->size_class_use[span->size_class].spans_current);
if (!heap->finalize) {
_rpmalloc_stat_inc(&heap->span_use[0].spans_to_cache);
_rpmalloc_stat_inc(&heap->size_class_use[span->size_class].spans_to_cache);
if (heap->size_class[span->size_class].cache)
_rpmalloc_heap_cache_insert(heap,
heap->size_class[span->size_class].cache);
heap->size_class[span->size_class].cache = span;
} else {
_rpmalloc_span_unmap(span);
}
}
//! Initialize a (partial) free list up to next system memory page, while
//! reserving the first block as allocated, returning number of blocks in list
static uint32_t free_list_partial_init(void **list, void **first_block,
void *page_start, void *block_start,
uint32_t block_count,
uint32_t block_size) {
rpmalloc_assert(block_count, "Internal failure");
*first_block = block_start;
if (block_count > 1) {
void *free_block = pointer_offset(block_start, block_size);
void *block_end =
pointer_offset(block_start, (size_t)block_size * block_count);
// If block size is less than half a memory page, bound init to next memory
// page boundary
if (block_size < (_memory_page_size >> 1)) {
void *page_end = pointer_offset(page_start, _memory_page_size);
if (page_end < block_end)
block_end = page_end;
}
*list = free_block;
block_count = 2;
void *next_block = pointer_offset(free_block, block_size);
while (next_block < block_end) {
*((void **)free_block) = next_block;
free_block = next_block;
++block_count;
next_block = pointer_offset(next_block, block_size);
}
*((void **)free_block) = 0;
} else {
*list = 0;
}
return block_count;
}
//! Initialize an unused span (from cache or mapped) to be new active span,
//! putting the initial free list in heap class free list
static void *_rpmalloc_span_initialize_new(heap_t *heap,
heap_size_class_t *heap_size_class,
span_t *span, uint32_t class_idx) {
rpmalloc_assert(span->span_count == 1, "Internal failure");
size_class_t *size_class = _memory_size_class + class_idx;
span->size_class = class_idx;
span->heap = heap;
span->flags &= ~SPAN_FLAG_ALIGNED_BLOCKS;
span->block_size = size_class->block_size;
span->block_count = size_class->block_count;
span->free_list = 0;
span->list_size = 0;
atomic_store_ptr_release(&span->free_list_deferred, 0);
// Setup free list. Only initialize one system page worth of free blocks in
// list
void *block;
span->free_list_limit =
free_list_partial_init(&heap_size_class->free_list, &block, span,
pointer_offset(span, SPAN_HEADER_SIZE),
size_class->block_count, size_class->block_size);
// Link span as partial if there remains blocks to be initialized as free
// list, or full if fully initialized
if (span->free_list_limit < span->block_count) {
_rpmalloc_span_double_link_list_add(&heap_size_class->partial_span, span);
span->used_count = span->free_list_limit;
} else {
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->full_span[class_idx], span);
#endif
++heap->full_span_count;
span->used_count = span->block_count;
}
return block;
}
static void _rpmalloc_span_extract_free_list_deferred(span_t *span) {
// We need acquire semantics on the CAS operation since we are interested in
// the list size Refer to _rpmalloc_deallocate_defer_small_or_medium for
// further comments on this dependency
do {
span->free_list =
atomic_exchange_ptr_acquire(&span->free_list_deferred, INVALID_POINTER);
} while (span->free_list == INVALID_POINTER);
span->used_count -= span->list_size;
span->list_size = 0;
atomic_store_ptr_release(&span->free_list_deferred, 0);
}
static int _rpmalloc_span_is_fully_utilized(span_t *span) {
rpmalloc_assert(span->free_list_limit <= span->block_count,
"Span free list corrupted");
return !span->free_list && (span->free_list_limit >= span->block_count);
}
static int _rpmalloc_span_finalize(heap_t *heap, size_t iclass, span_t *span,
span_t **list_head) {
void *free_list = heap->size_class[iclass].free_list;
span_t *class_span = (span_t *)((uintptr_t)free_list & _memory_span_mask);
if (span == class_span) {
// Adopt the heap class free list back into the span free list
void *block = span->free_list;
void *last_block = 0;
while (block) {
last_block = block;
block = *((void **)block);
}
uint32_t free_count = 0;
block = free_list;
while (block) {
++free_count;
block = *((void **)block);
}
if (last_block) {
*((void **)last_block) = free_list;
} else {
span->free_list = free_list;
}
heap->size_class[iclass].free_list = 0;
span->used_count -= free_count;
}
// If this assert triggers you have memory leaks
rpmalloc_assert(span->list_size == span->used_count, "Memory leak detected");
if (span->list_size == span->used_count) {
_rpmalloc_stat_dec(&heap->span_use[0].current);
_rpmalloc_stat_dec(&heap->size_class_use[iclass].spans_current);
// This function only used for spans in double linked lists
if (list_head)
_rpmalloc_span_double_link_list_remove(list_head, span);
_rpmalloc_span_unmap(span);
return 1;
}
return 0;
}
////////////
///
/// Global cache
///
//////
#if ENABLE_GLOBAL_CACHE
//! Finalize a global cache
static void _rpmalloc_global_cache_finalize(global_cache_t *cache) {
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
_rpmalloc_spin();
for (size_t ispan = 0; ispan < cache->count; ++ispan)
_rpmalloc_span_unmap(cache->span[ispan]);
cache->count = 0;
while (cache->overflow) {
span_t *span = cache->overflow;
cache->overflow = span->next;
_rpmalloc_span_unmap(span);
}
atomic_store32_release(&cache->lock, 0);
}
static void _rpmalloc_global_cache_insert_spans(span_t **span,
size_t span_count,
size_t count) {
const size_t cache_limit =
(span_count == 1) ? GLOBAL_CACHE_MULTIPLIER * MAX_THREAD_SPAN_CACHE
: GLOBAL_CACHE_MULTIPLIER *
(MAX_THREAD_SPAN_LARGE_CACHE - (span_count >> 1));
global_cache_t *cache = &_memory_span_cache[span_count - 1];
size_t insert_count = count;
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
_rpmalloc_spin();
#if ENABLE_STATISTICS
cache->insert_count += count;
#endif
if ((cache->count + insert_count) > cache_limit)
insert_count = cache_limit - cache->count;
memcpy(cache->span + cache->count, span, sizeof(span_t *) * insert_count);
cache->count += (uint32_t)insert_count;
#if ENABLE_UNLIMITED_CACHE
while (insert_count < count) {
#else
// Enable unlimited cache if huge pages, or we will leak since it is unlikely
// that an entire huge page will be unmapped, and we're unable to partially
// decommit a huge page
while ((_memory_page_size > _memory_span_size) && (insert_count < count)) {
#endif
span_t *current_span = span[insert_count++];
current_span->next = cache->overflow;
cache->overflow = current_span;
}
atomic_store32_release(&cache->lock, 0);
span_t *keep = 0;
for (size_t ispan = insert_count; ispan < count; ++ispan) {
span_t *current_span = span[ispan];
// Keep master spans that has remaining subspans to avoid dangling them
if ((current_span->flags & SPAN_FLAG_MASTER) &&
(atomic_load32(¤t_span->remaining_spans) >
(int32_t)current_span->span_count)) {
current_span->next = keep;
keep = current_span;
} else {
_rpmalloc_span_unmap(current_span);
}
}
if (keep) {
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
_rpmalloc_spin();
size_t islot = 0;
while (keep) {
for (; islot < cache->count; ++islot) {
span_t *current_span = cache->span[islot];
if (!(current_span->flags & SPAN_FLAG_MASTER) ||
((current_span->flags & SPAN_FLAG_MASTER) &&
(atomic_load32(¤t_span->remaining_spans) <=
(int32_t)current_span->span_count))) {
_rpmalloc_span_unmap(current_span);
cache->span[islot] = keep;
break;
}
}
if (islot == cache->count)
break;
keep = keep->next;
}
if (keep) {
span_t *tail = keep;
while (tail->next)
tail = tail->next;
tail->next = cache->overflow;
cache->overflow = keep;
}
atomic_store32_release(&cache->lock, 0);
}
}
static size_t _rpmalloc_global_cache_extract_spans(span_t **span,
size_t span_count,
size_t count) {
global_cache_t *cache = &_memory_span_cache[span_count - 1];
size_t extract_count = 0;
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
_rpmalloc_spin();
#if ENABLE_STATISTICS
cache->extract_count += count;
#endif
size_t want = count - extract_count;
if (want > cache->count)
want = cache->count;
memcpy(span + extract_count, cache->span + (cache->count - want),
sizeof(span_t *) * want);
cache->count -= (uint32_t)want;
extract_count += want;
while ((extract_count < count) && cache->overflow) {
span_t *current_span = cache->overflow;
span[extract_count++] = current_span;
cache->overflow = current_span->next;
}
#if ENABLE_ASSERTS
for (size_t ispan = 0; ispan < extract_count; ++ispan) {
rpmalloc_assert(span[ispan]->span_count == span_count,
"Global cache span count mismatch");
}
#endif
atomic_store32_release(&cache->lock, 0);
return extract_count;
}
#endif
////////////
///
/// Heap control
///
//////
static void _rpmalloc_deallocate_huge(span_t *);
//! Store the given spans as reserve in the given heap
static void _rpmalloc_heap_set_reserved_spans(heap_t *heap, span_t *master,
span_t *reserve,
size_t reserve_span_count) {
heap->span_reserve_master = master;
heap->span_reserve = reserve;
heap->spans_reserved = (uint32_t)reserve_span_count;
}
//! Adopt the deferred span cache list, optionally extracting the first single
//! span for immediate re-use
static void _rpmalloc_heap_cache_adopt_deferred(heap_t *heap,
span_t **single_span) {
span_t *span = (span_t *)((void *)atomic_exchange_ptr_acquire(
&heap->span_free_deferred, 0));
while (span) {
span_t *next_span = (span_t *)span->free_list;
rpmalloc_assert(span->heap == heap, "Span heap pointer corrupted");
if (EXPECTED(span->size_class < SIZE_CLASS_COUNT)) {
rpmalloc_assert(heap->full_span_count, "Heap span counter corrupted");
--heap->full_span_count;
_rpmalloc_stat_dec(&heap->span_use[0].spans_deferred);
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&heap->full_span[span->size_class],
span);
#endif
_rpmalloc_stat_dec(&heap->span_use[0].current);
_rpmalloc_stat_dec(&heap->size_class_use[span->size_class].spans_current);
if (single_span && !*single_span)
*single_span = span;
else
_rpmalloc_heap_cache_insert(heap, span);
} else {
if (span->size_class == SIZE_CLASS_HUGE) {
_rpmalloc_deallocate_huge(span);
} else {
rpmalloc_assert(span->size_class == SIZE_CLASS_LARGE,
"Span size class invalid");
rpmalloc_assert(heap->full_span_count, "Heap span counter corrupted");
--heap->full_span_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&heap->large_huge_span, span);
#endif
uint32_t idx = span->span_count - 1;
_rpmalloc_stat_dec(&heap->span_use[idx].spans_deferred);
_rpmalloc_stat_dec(&heap->span_use[idx].current);
if (!idx && single_span && !*single_span)
*single_span = span;
else
_rpmalloc_heap_cache_insert(heap, span);
}
}
span = next_span;
}
}
static void _rpmalloc_heap_unmap(heap_t *heap) {
if (!heap->master_heap) {
if ((heap->finalize > 1) && !atomic_load32(&heap->child_count)) {
span_t *span = (span_t *)((uintptr_t)heap & _memory_span_mask);
_rpmalloc_span_unmap(span);
}
} else {
if (atomic_decr32(&heap->master_heap->child_count) == 0) {
_rpmalloc_heap_unmap(heap->master_heap);
}
}
}
static void _rpmalloc_heap_global_finalize(heap_t *heap) {
if (heap->finalize++ > 1) {
--heap->finalize;
return;
}
_rpmalloc_heap_finalize(heap);
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t *span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t *)(heap->span_large_cache + (iclass - 1));
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
span_cache->count = 0;
}
#endif
if (heap->full_span_count) {
--heap->finalize;
return;
}
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
if (heap->size_class[iclass].free_list ||
heap->size_class[iclass].partial_span) {
--heap->finalize;
return;
}
}
// Heap is now completely free, unmap and remove from heap list
size_t list_idx = (size_t)heap->id % HEAP_ARRAY_SIZE;
heap_t *list_heap = _memory_heaps[list_idx];
if (list_heap == heap) {
_memory_heaps[list_idx] = heap->next_heap;
} else {
while (list_heap->next_heap != heap)
list_heap = list_heap->next_heap;
list_heap->next_heap = heap->next_heap;
}
_rpmalloc_heap_unmap(heap);
}
//! Insert a single span into thread heap cache, releasing to global cache if
//! overflow
static void _rpmalloc_heap_cache_insert(heap_t *heap, span_t *span) {
if (UNEXPECTED(heap->finalize != 0)) {
_rpmalloc_span_unmap(span);
_rpmalloc_heap_global_finalize(heap);
return;
}
#if ENABLE_THREAD_CACHE
size_t span_count = span->span_count;
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_to_cache);
if (span_count == 1) {
span_cache_t *span_cache = &heap->span_cache;
span_cache->span[span_cache->count++] = span;
if (span_cache->count == MAX_THREAD_SPAN_CACHE) {
const size_t remain_count =
MAX_THREAD_SPAN_CACHE - THREAD_SPAN_CACHE_TRANSFER;
#if ENABLE_GLOBAL_CACHE
_rpmalloc_stat_add64(&heap->thread_to_global,
THREAD_SPAN_CACHE_TRANSFER * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_to_global,
THREAD_SPAN_CACHE_TRANSFER);
_rpmalloc_global_cache_insert_spans(span_cache->span + remain_count,
span_count,
THREAD_SPAN_CACHE_TRANSFER);
#else
for (size_t ispan = 0; ispan < THREAD_SPAN_CACHE_TRANSFER; ++ispan)
_rpmalloc_span_unmap(span_cache->span[remain_count + ispan]);
#endif
span_cache->count = remain_count;
}
} else {
size_t cache_idx = span_count - 2;
span_large_cache_t *span_cache = heap->span_large_cache + cache_idx;
span_cache->span[span_cache->count++] = span;
const size_t cache_limit =
(MAX_THREAD_SPAN_LARGE_CACHE - (span_count >> 1));
if (span_cache->count == cache_limit) {
const size_t transfer_limit = 2 + (cache_limit >> 2);
const size_t transfer_count =
(THREAD_SPAN_LARGE_CACHE_TRANSFER <= transfer_limit
? THREAD_SPAN_LARGE_CACHE_TRANSFER
: transfer_limit);
const size_t remain_count = cache_limit - transfer_count;
#if ENABLE_GLOBAL_CACHE
_rpmalloc_stat_add64(&heap->thread_to_global,
transfer_count * span_count * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_to_global,
transfer_count);
_rpmalloc_global_cache_insert_spans(span_cache->span + remain_count,
span_count, transfer_count);
#else
for (size_t ispan = 0; ispan < transfer_count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[remain_count + ispan]);
#endif
span_cache->count = remain_count;
}
}
#else
(void)sizeof(heap);
_rpmalloc_span_unmap(span);
#endif
}
//! Extract the given number of spans from the different cache levels
static span_t *_rpmalloc_heap_thread_cache_extract(heap_t *heap,
size_t span_count) {
span_t *span = 0;
#if ENABLE_THREAD_CACHE
span_cache_t *span_cache;
if (span_count == 1)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t *)(heap->span_large_cache + (span_count - 2));
if (span_cache->count) {
_rpmalloc_stat_inc(&heap->span_use[span_count - 1].spans_from_cache);
return span_cache->span[--span_cache->count];
}
#endif
return span;
}
static span_t *_rpmalloc_heap_thread_cache_deferred_extract(heap_t *heap,
size_t span_count) {
span_t *span = 0;
if (span_count == 1) {
_rpmalloc_heap_cache_adopt_deferred(heap, &span);
} else {
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
span = _rpmalloc_heap_thread_cache_extract(heap, span_count);
}
return span;
}
static span_t *_rpmalloc_heap_reserved_extract(heap_t *heap,
size_t span_count) {
if (heap->spans_reserved >= span_count)
return _rpmalloc_span_map(heap, span_count);
return 0;
}
//! Extract a span from the global cache
static span_t *_rpmalloc_heap_global_cache_extract(heap_t *heap,
size_t span_count) {
#if ENABLE_GLOBAL_CACHE
#if ENABLE_THREAD_CACHE
span_cache_t *span_cache;
size_t wanted_count;
if (span_count == 1) {
span_cache = &heap->span_cache;
wanted_count = THREAD_SPAN_CACHE_TRANSFER;
} else {
span_cache = (span_cache_t *)(heap->span_large_cache + (span_count - 2));
wanted_count = THREAD_SPAN_LARGE_CACHE_TRANSFER;
}
span_cache->count = _rpmalloc_global_cache_extract_spans(
span_cache->span, span_count, wanted_count);
if (span_cache->count) {
_rpmalloc_stat_add64(&heap->global_to_thread,
span_count * span_cache->count * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_from_global,
span_cache->count);
return span_cache->span[--span_cache->count];
}
#else
span_t *span = 0;
size_t count = _rpmalloc_global_cache_extract_spans(&span, span_count, 1);
if (count) {
_rpmalloc_stat_add64(&heap->global_to_thread,
span_count * count * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[span_count - 1].spans_from_global,
count);
return span;
}
#endif
#endif
(void)sizeof(heap);
(void)sizeof(span_count);
return 0;
}
static void _rpmalloc_inc_span_statistics(heap_t *heap, size_t span_count,
uint32_t class_idx) {
(void)sizeof(heap);
(void)sizeof(span_count);
(void)sizeof(class_idx);
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
uint32_t idx = (uint32_t)span_count - 1;
uint32_t current_count =
(uint32_t)atomic_incr32(&heap->span_use[idx].current);
if (current_count > (uint32_t)atomic_load32(&heap->span_use[idx].high))
atomic_store32(&heap->span_use[idx].high, (int32_t)current_count);
_rpmalloc_stat_add_peak(&heap->size_class_use[class_idx].spans_current, 1,
heap->size_class_use[class_idx].spans_peak);
#endif
}
//! Get a span from one of the cache levels (thread cache, reserved, global
//! cache) or fallback to mapping more memory
static span_t *
_rpmalloc_heap_extract_new_span(heap_t *heap,
heap_size_class_t *heap_size_class,
size_t span_count, uint32_t class_idx) {
span_t *span;
#if ENABLE_THREAD_CACHE
if (heap_size_class && heap_size_class->cache) {
span = heap_size_class->cache;
heap_size_class->cache =
(heap->span_cache.count
? heap->span_cache.span[--heap->span_cache.count]
: 0);
_rpmalloc_inc_span_statistics(heap, span_count, class_idx);
return span;
}
#endif
(void)sizeof(class_idx);
// Allow 50% overhead to increase cache hits
size_t base_span_count = span_count;
size_t limit_span_count =
(span_count > 2) ? (span_count + (span_count >> 1)) : span_count;
if (limit_span_count > LARGE_CLASS_COUNT)
limit_span_count = LARGE_CLASS_COUNT;
do {
span = _rpmalloc_heap_thread_cache_extract(heap, span_count);
if (EXPECTED(span != 0)) {
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_from_cache);
_rpmalloc_inc_span_statistics(heap, span_count, class_idx);
return span;
}
span = _rpmalloc_heap_thread_cache_deferred_extract(heap, span_count);
if (EXPECTED(span != 0)) {
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_from_cache);
_rpmalloc_inc_span_statistics(heap, span_count, class_idx);
return span;
}
span = _rpmalloc_heap_global_cache_extract(heap, span_count);
if (EXPECTED(span != 0)) {
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_from_cache);
_rpmalloc_inc_span_statistics(heap, span_count, class_idx);
return span;
}
span = _rpmalloc_heap_reserved_extract(heap, span_count);
if (EXPECTED(span != 0)) {
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_from_reserved);
_rpmalloc_inc_span_statistics(heap, span_count, class_idx);
return span;
}
++span_count;
} while (span_count <= limit_span_count);
// Final fallback, map in more virtual memory
span = _rpmalloc_span_map(heap, base_span_count);
_rpmalloc_inc_span_statistics(heap, base_span_count, class_idx);
_rpmalloc_stat_inc(&heap->size_class_use[class_idx].spans_map_calls);
return span;
}
static void _rpmalloc_heap_initialize(heap_t *heap) {
_rpmalloc_memset_const(heap, 0, sizeof(heap_t));
// Get a new heap ID
heap->id = 1 + atomic_incr32(&_memory_heap_id);
// Link in heap in heap ID map
size_t list_idx = (size_t)heap->id % HEAP_ARRAY_SIZE;
heap->next_heap = _memory_heaps[list_idx];
_memory_heaps[list_idx] = heap;
}
static void _rpmalloc_heap_orphan(heap_t *heap, int first_class) {
heap->owner_thread = (uintptr_t)-1;
#if RPMALLOC_FIRST_CLASS_HEAPS
heap_t **heap_list =
(first_class ? &_memory_first_class_orphan_heaps : &_memory_orphan_heaps);
#else
(void)sizeof(first_class);
heap_t **heap_list = &_memory_orphan_heaps;
#endif
heap->next_orphan = *heap_list;
*heap_list = heap;
}
//! Allocate a new heap from newly mapped memory pages
static heap_t *_rpmalloc_heap_allocate_new(void) {
// Map in pages for a 16 heaps. If page size is greater than required size for
// this, map a page and use first part for heaps and remaining part for spans
// for allocations. Adds a lot of complexity, but saves a lot of memory on
// systems where page size > 64 spans (4MiB)
size_t heap_size = sizeof(heap_t);
size_t aligned_heap_size = 16 * ((heap_size + 15) / 16);
size_t request_heap_count = 16;
size_t heap_span_count = ((aligned_heap_size * request_heap_count) +
sizeof(span_t) + _memory_span_size - 1) /
_memory_span_size;
size_t block_size = _memory_span_size * heap_span_count;
size_t span_count = heap_span_count;
span_t *span = 0;
// If there are global reserved spans, use these first
if (_memory_global_reserve_count >= heap_span_count) {
span = _rpmalloc_global_get_reserved_spans(heap_span_count);
}
if (!span) {
if (_memory_page_size > block_size) {
span_count = _memory_page_size / _memory_span_size;
block_size = _memory_page_size;
// If using huge pages, make sure to grab enough heaps to avoid
// reallocating a huge page just to serve new heaps
size_t possible_heap_count =
(block_size - sizeof(span_t)) / aligned_heap_size;
if (possible_heap_count >= (request_heap_count * 16))
request_heap_count *= 16;
else if (possible_heap_count < request_heap_count)
request_heap_count = possible_heap_count;
heap_span_count = ((aligned_heap_size * request_heap_count) +
sizeof(span_t) + _memory_span_size - 1) /
_memory_span_size;
}
size_t align_offset = 0;
span = (span_t *)_rpmalloc_mmap(block_size, &align_offset);
if (!span)
return 0;
// Master span will contain the heaps
_rpmalloc_stat_inc(&_master_spans);
_rpmalloc_span_initialize(span, span_count, heap_span_count, align_offset);
}
size_t remain_size = _memory_span_size - sizeof(span_t);
heap_t *heap = (heap_t *)pointer_offset(span, sizeof(span_t));
_rpmalloc_heap_initialize(heap);
// Put extra heaps as orphans
size_t num_heaps = remain_size / aligned_heap_size;
if (num_heaps < request_heap_count)
num_heaps = request_heap_count;
atomic_store32(&heap->child_count, (int32_t)num_heaps - 1);
heap_t *extra_heap = (heap_t *)pointer_offset(heap, aligned_heap_size);
while (num_heaps > 1) {
_rpmalloc_heap_initialize(extra_heap);
extra_heap->master_heap = heap;
_rpmalloc_heap_orphan(extra_heap, 1);
extra_heap = (heap_t *)pointer_offset(extra_heap, aligned_heap_size);
--num_heaps;
}
if (span_count > heap_span_count) {
// Cap reserved spans
size_t remain_count = span_count - heap_span_count;
size_t reserve_count =
(remain_count > _memory_heap_reserve_count ? _memory_heap_reserve_count
: remain_count);
span_t *remain_span =
(span_t *)pointer_offset(span, heap_span_count * _memory_span_size);
_rpmalloc_heap_set_reserved_spans(heap, span, remain_span, reserve_count);
if (remain_count > reserve_count) {
// Set to global reserved spans
remain_span = (span_t *)pointer_offset(remain_span,
reserve_count * _memory_span_size);
reserve_count = remain_count - reserve_count;
_rpmalloc_global_set_reserved_spans(span, remain_span, reserve_count);
}
}
return heap;
}
static heap_t *_rpmalloc_heap_extract_orphan(heap_t **heap_list) {
heap_t *heap = *heap_list;
*heap_list = (heap ? heap->next_orphan : 0);
return heap;
}
//! Allocate a new heap, potentially reusing a previously orphaned heap
static heap_t *_rpmalloc_heap_allocate(int first_class) {
heap_t *heap = 0;
while (!atomic_cas32_acquire(&_memory_global_lock, 1, 0))
_rpmalloc_spin();
if (first_class == 0)
heap = _rpmalloc_heap_extract_orphan(&_memory_orphan_heaps);
#if RPMALLOC_FIRST_CLASS_HEAPS
if (!heap)
heap = _rpmalloc_heap_extract_orphan(&_memory_first_class_orphan_heaps);
#endif
if (!heap)
heap = _rpmalloc_heap_allocate_new();
atomic_store32_release(&_memory_global_lock, 0);
if (heap)
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
return heap;
}
static void _rpmalloc_heap_release(void *heapptr, int first_class,
int release_cache) {
heap_t *heap = (heap_t *)heapptr;
if (!heap)
return;
// Release thread cache spans back to global cache
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
if (release_cache || heap->finalize) {
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t *span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t *)(heap->span_large_cache + (iclass - 1));
if (!span_cache->count)
continue;
#if ENABLE_GLOBAL_CACHE
if (heap->finalize) {
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
} else {
_rpmalloc_stat_add64(&heap->thread_to_global, span_cache->count *
(iclass + 1) *
_memory_span_size);
_rpmalloc_stat_add(&heap->span_use[iclass].spans_to_global,
span_cache->count);
_rpmalloc_global_cache_insert_spans(span_cache->span, iclass + 1,
span_cache->count);
}
#else
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
#endif
span_cache->count = 0;
}
#endif
}
if (get_thread_heap_raw() == heap)
set_thread_heap(0);
#if ENABLE_STATISTICS
atomic_decr32(&_memory_active_heaps);
rpmalloc_assert(atomic_load32(&_memory_active_heaps) >= 0,
"Still active heaps during finalization");
#endif
// If we are forcibly terminating with _exit the state of the
// lock atomic is unknown and it's best to just go ahead and exit
if (get_thread_id() != _rpmalloc_main_thread_id) {
while (!atomic_cas32_acquire(&_memory_global_lock, 1, 0))
_rpmalloc_spin();
}
_rpmalloc_heap_orphan(heap, first_class);
atomic_store32_release(&_memory_global_lock, 0);
}
static void _rpmalloc_heap_release_raw(void *heapptr, int release_cache) {
_rpmalloc_heap_release(heapptr, 0, release_cache);
}
static void _rpmalloc_heap_release_raw_fc(void *heapptr) {
_rpmalloc_heap_release_raw(heapptr, 1);
}
static void _rpmalloc_heap_finalize(heap_t *heap) {
if (heap->spans_reserved) {
span_t *span = _rpmalloc_span_map(heap, heap->spans_reserved);
_rpmalloc_span_unmap(span);
heap->spans_reserved = 0;
}
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
if (heap->size_class[iclass].cache)
_rpmalloc_span_unmap(heap->size_class[iclass].cache);
heap->size_class[iclass].cache = 0;
span_t *span = heap->size_class[iclass].partial_span;
while (span) {
span_t *next = span->next;
_rpmalloc_span_finalize(heap, iclass, span,
&heap->size_class[iclass].partial_span);
span = next;
}
// If class still has a free list it must be a full span
if (heap->size_class[iclass].free_list) {
span_t *class_span =
(span_t *)((uintptr_t)heap->size_class[iclass].free_list &
_memory_span_mask);
span_t **list = 0;
#if RPMALLOC_FIRST_CLASS_HEAPS
list = &heap->full_span[iclass];
#endif
--heap->full_span_count;
if (!_rpmalloc_span_finalize(heap, iclass, class_span, list)) {
if (list)
_rpmalloc_span_double_link_list_remove(list, class_span);
_rpmalloc_span_double_link_list_add(
&heap->size_class[iclass].partial_span, class_span);
}
}
}
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t *span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t *)(heap->span_large_cache + (iclass - 1));
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
span_cache->count = 0;
}
#endif
rpmalloc_assert(!atomic_load_ptr(&heap->span_free_deferred),
"Heaps still active during finalization");
}
////////////
///
/// Allocation entry points
///
//////
//! Pop first block from a free list
static void *free_list_pop(void **list) {
void *block = *list;
*list = *((void **)block);
return block;
}
//! Allocate a small/medium sized memory block from the given heap
static void *_rpmalloc_allocate_from_heap_fallback(
heap_t *heap, heap_size_class_t *heap_size_class, uint32_t class_idx) {
span_t *span = heap_size_class->partial_span;
rpmalloc_assume(heap != 0);
if (EXPECTED(span != 0)) {
rpmalloc_assert(span->block_count ==
_memory_size_class[span->size_class].block_count,
"Span block count corrupted");
rpmalloc_assert(!_rpmalloc_span_is_fully_utilized(span),
"Internal failure");
void *block;
if (span->free_list) {
// Span local free list is not empty, swap to size class free list
block = free_list_pop(&span->free_list);
heap_size_class->free_list = span->free_list;
span->free_list = 0;
} else {
// If the span did not fully initialize free list, link up another page
// worth of blocks
void *block_start = pointer_offset(
span, SPAN_HEADER_SIZE +
((size_t)span->free_list_limit * span->block_size));
span->free_list_limit += free_list_partial_init(
&heap_size_class->free_list, &block,
(void *)((uintptr_t)block_start & ~(_memory_page_size - 1)),
block_start, span->block_count - span->free_list_limit,
span->block_size);
}
rpmalloc_assert(span->free_list_limit <= span->block_count,
"Span block count corrupted");
span->used_count = span->free_list_limit;
// Swap in deferred free list if present
if (atomic_load_ptr(&span->free_list_deferred))
_rpmalloc_span_extract_free_list_deferred(span);
// If span is still not fully utilized keep it in partial list and early
// return block
if (!_rpmalloc_span_is_fully_utilized(span))
return block;
// The span is fully utilized, unlink from partial list and add to fully
// utilized list
_rpmalloc_span_double_link_list_pop_head(&heap_size_class->partial_span,
span);
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->full_span[class_idx], span);
#endif
++heap->full_span_count;
return block;
}
// Find a span in one of the cache levels
span = _rpmalloc_heap_extract_new_span(heap, heap_size_class, 1, class_idx);
if (EXPECTED(span != 0)) {
// Mark span as owned by this heap and set base data, return first block
return _rpmalloc_span_initialize_new(heap, heap_size_class, span,
class_idx);
}
return 0;
}
//! Allocate a small sized memory block from the given heap
static void *_rpmalloc_allocate_small(heap_t *heap, size_t size) {
rpmalloc_assert(heap, "No thread heap");
// Small sizes have unique size classes
const uint32_t class_idx =
(uint32_t)((size + (SMALL_GRANULARITY - 1)) >> SMALL_GRANULARITY_SHIFT);
heap_size_class_t *heap_size_class = heap->size_class + class_idx;
_rpmalloc_stat_inc_alloc(heap, class_idx);
if (EXPECTED(heap_size_class->free_list != 0))
return free_list_pop(&heap_size_class->free_list);
return _rpmalloc_allocate_from_heap_fallback(heap, heap_size_class,
class_idx);
}
//! Allocate a medium sized memory block from the given heap
static void *_rpmalloc_allocate_medium(heap_t *heap, size_t size) {
rpmalloc_assert(heap, "No thread heap");
// Calculate the size class index and do a dependent lookup of the final class
// index (in case of merged classes)
const uint32_t base_idx =
(uint32_t)(SMALL_CLASS_COUNT +
((size - (SMALL_SIZE_LIMIT + 1)) >> MEDIUM_GRANULARITY_SHIFT));
const uint32_t class_idx = _memory_size_class[base_idx].class_idx;
heap_size_class_t *heap_size_class = heap->size_class + class_idx;
_rpmalloc_stat_inc_alloc(heap, class_idx);
if (EXPECTED(heap_size_class->free_list != 0))
return free_list_pop(&heap_size_class->free_list);
return _rpmalloc_allocate_from_heap_fallback(heap, heap_size_class,
class_idx);
}
//! Allocate a large sized memory block from the given heap
static void *_rpmalloc_allocate_large(heap_t *heap, size_t size) {
rpmalloc_assert(heap, "No thread heap");
// Calculate number of needed max sized spans (including header)
// Since this function is never called if size > LARGE_SIZE_LIMIT
// the span_count is guaranteed to be <= LARGE_CLASS_COUNT
size += SPAN_HEADER_SIZE;
size_t span_count = size >> _memory_span_size_shift;
if (size & (_memory_span_size - 1))
++span_count;
// Find a span in one of the cache levels
span_t *span =
_rpmalloc_heap_extract_new_span(heap, 0, span_count, SIZE_CLASS_LARGE);
if (!span)
return span;
// Mark span as owned by this heap and set base data
rpmalloc_assert(span->span_count >= span_count, "Internal failure");
span->size_class = SIZE_CLASS_LARGE;
span->heap = heap;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->large_huge_span, span);
#endif
++heap->full_span_count;
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//! Allocate a huge block by mapping memory pages directly
static void *_rpmalloc_allocate_huge(heap_t *heap, size_t size) {
rpmalloc_assert(heap, "No thread heap");
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
size += SPAN_HEADER_SIZE;
size_t num_pages = size >> _memory_page_size_shift;
if (size & (_memory_page_size - 1))
++num_pages;
size_t align_offset = 0;
span_t *span =
(span_t *)_rpmalloc_mmap(num_pages * _memory_page_size, &align_offset);
if (!span)
return span;
// Store page count in span_count
span->size_class = SIZE_CLASS_HUGE;
span->span_count = (uint32_t)num_pages;
span->align_offset = (uint32_t)align_offset;
span->heap = heap;
_rpmalloc_stat_add_peak(&_huge_pages_current, num_pages, _huge_pages_peak);
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->large_huge_span, span);
#endif
++heap->full_span_count;
return pointer_offset(span, SPAN_HEADER_SIZE);
}
//! Allocate a block of the given size
static void *_rpmalloc_allocate(heap_t *heap, size_t size) {
_rpmalloc_stat_add64(&_allocation_counter, 1);
if (EXPECTED(size <= SMALL_SIZE_LIMIT))
return _rpmalloc_allocate_small(heap, size);
else if (size <= _memory_medium_size_limit)
return _rpmalloc_allocate_medium(heap, size);
else if (size <= LARGE_SIZE_LIMIT)
return _rpmalloc_allocate_large(heap, size);
return _rpmalloc_allocate_huge(heap, size);
}
static void *_rpmalloc_aligned_allocate(heap_t *heap, size_t alignment,
size_t size) {
if (alignment <= SMALL_GRANULARITY)
return _rpmalloc_allocate(heap, size);
#if ENABLE_VALIDATE_ARGS
if ((size + alignment) < size) {
errno = EINVAL;
return 0;
}
if (alignment & (alignment - 1)) {
errno = EINVAL;
return 0;
}
#endif
if ((alignment <= SPAN_HEADER_SIZE) &&
((size + SPAN_HEADER_SIZE) < _memory_medium_size_limit)) {
// If alignment is less or equal to span header size (which is power of
// two), and size aligned to span header size multiples is less than size +
// alignment, then use natural alignment of blocks to provide alignment
size_t multiple_size = size ? (size + (SPAN_HEADER_SIZE - 1)) &
~(uintptr_t)(SPAN_HEADER_SIZE - 1)
: SPAN_HEADER_SIZE;
rpmalloc_assert(!(multiple_size % SPAN_HEADER_SIZE),
"Failed alignment calculation");
if (multiple_size <= (size + alignment))
return _rpmalloc_allocate(heap, multiple_size);
}
void *ptr = 0;
size_t align_mask = alignment - 1;
if (alignment <= _memory_page_size) {
ptr = _rpmalloc_allocate(heap, size + alignment);
if ((uintptr_t)ptr & align_mask) {
ptr = (void *)(((uintptr_t)ptr & ~(uintptr_t)align_mask) + alignment);
// Mark as having aligned blocks
span_t *span = (span_t *)((uintptr_t)ptr & _memory_span_mask);
span->flags |= SPAN_FLAG_ALIGNED_BLOCKS;
}
return ptr;
}
// Fallback to mapping new pages for this request. Since pointers passed
// to rpfree must be able to reach the start of the span by bitmasking of
// the address with the span size, the returned aligned pointer from this
// function must be with a span size of the start of the mapped area.
// In worst case this requires us to loop and map pages until we get a
// suitable memory address. It also means we can never align to span size
// or greater, since the span header will push alignment more than one
// span size away from span start (thus causing pointer mask to give us
// an invalid span start on free)
if (alignment & align_mask) {
errno = EINVAL;
return 0;
}
if (alignment >= _memory_span_size) {
errno = EINVAL;
return 0;
}
size_t extra_pages = alignment / _memory_page_size;
// Since each span has a header, we will at least need one extra memory page
size_t num_pages = 1 + (size / _memory_page_size);
if (size & (_memory_page_size - 1))
++num_pages;
if (extra_pages > num_pages)
num_pages = 1 + extra_pages;
size_t original_pages = num_pages;
size_t limit_pages = (_memory_span_size / _memory_page_size) * 2;
if (limit_pages < (original_pages * 2))
limit_pages = original_pages * 2;
size_t mapped_size, align_offset;
span_t *span;
retry:
align_offset = 0;
mapped_size = num_pages * _memory_page_size;
span = (span_t *)_rpmalloc_mmap(mapped_size, &align_offset);
if (!span) {
errno = ENOMEM;
return 0;
}
ptr = pointer_offset(span, SPAN_HEADER_SIZE);
if ((uintptr_t)ptr & align_mask)
ptr = (void *)(((uintptr_t)ptr & ~(uintptr_t)align_mask) + alignment);
if (((size_t)pointer_diff(ptr, span) >= _memory_span_size) ||
(pointer_offset(ptr, size) > pointer_offset(span, mapped_size)) ||
(((uintptr_t)ptr & _memory_span_mask) != (uintptr_t)span)) {
_rpmalloc_unmap(span, mapped_size, align_offset, mapped_size);
++num_pages;
if (num_pages > limit_pages) {
errno = EINVAL;
return 0;
}
goto retry;
}
// Store page count in span_count
span->size_class = SIZE_CLASS_HUGE;
span->span_count = (uint32_t)num_pages;
span->align_offset = (uint32_t)align_offset;
span->heap = heap;
_rpmalloc_stat_add_peak(&_huge_pages_current, num_pages, _huge_pages_peak);
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_add(&heap->large_huge_span, span);
#endif
++heap->full_span_count;
_rpmalloc_stat_add64(&_allocation_counter, 1);
return ptr;
}
////////////
///
/// Deallocation entry points
///
//////
//! Deallocate the given small/medium memory block in the current thread local
//! heap
static void _rpmalloc_deallocate_direct_small_or_medium(span_t *span,
void *block) {
heap_t *heap = span->heap;
rpmalloc_assert(heap->owner_thread == get_thread_id() ||
!heap->owner_thread || heap->finalize,
"Internal failure");
// Add block to free list
if (UNEXPECTED(_rpmalloc_span_is_fully_utilized(span))) {
span->used_count = span->block_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&heap->full_span[span->size_class],
span);
#endif
_rpmalloc_span_double_link_list_add(
&heap->size_class[span->size_class].partial_span, span);
--heap->full_span_count;
}
*((void **)block) = span->free_list;
--span->used_count;
span->free_list = block;
if (UNEXPECTED(span->used_count == span->list_size)) {
// If there are no used blocks it is guaranteed that no other external
// thread is accessing the span
if (span->used_count) {
// Make sure we have synchronized the deferred list and list size by using
// acquire semantics and guarantee that no external thread is accessing
// span concurrently
void *free_list;
do {
free_list = atomic_exchange_ptr_acquire(&span->free_list_deferred,
INVALID_POINTER);
} while (free_list == INVALID_POINTER);
atomic_store_ptr_release(&span->free_list_deferred, free_list);
}
_rpmalloc_span_double_link_list_remove(
&heap->size_class[span->size_class].partial_span, span);
_rpmalloc_span_release_to_cache(heap, span);
}
}
static void _rpmalloc_deallocate_defer_free_span(heap_t *heap, span_t *span) {
if (span->size_class != SIZE_CLASS_HUGE)
_rpmalloc_stat_inc(&heap->span_use[span->span_count - 1].spans_deferred);
// This list does not need ABA protection, no mutable side state
do {
span->free_list = (void *)atomic_load_ptr(&heap->span_free_deferred);
} while (!atomic_cas_ptr(&heap->span_free_deferred, span, span->free_list));
}
//! Put the block in the deferred free list of the owning span
static void _rpmalloc_deallocate_defer_small_or_medium(span_t *span,
void *block) {
// The memory ordering here is a bit tricky, to avoid having to ABA protect
// the deferred free list to avoid desynchronization of list and list size
// we need to have acquire semantics on successful CAS of the pointer to
// guarantee the list_size variable validity + release semantics on pointer
// store
void *free_list;
do {
free_list =
atomic_exchange_ptr_acquire(&span->free_list_deferred, INVALID_POINTER);
} while (free_list == INVALID_POINTER);
*((void **)block) = free_list;
uint32_t free_count = ++span->list_size;
int all_deferred_free = (free_count == span->block_count);
atomic_store_ptr_release(&span->free_list_deferred, block);
if (all_deferred_free) {
// Span was completely freed by this block. Due to the INVALID_POINTER spin
// lock no other thread can reach this state simultaneously on this span.
// Safe to move to owner heap deferred cache
_rpmalloc_deallocate_defer_free_span(span->heap, span);
}
}
static void _rpmalloc_deallocate_small_or_medium(span_t *span, void *p) {
_rpmalloc_stat_inc_free(span->heap, span->size_class);
if (span->flags & SPAN_FLAG_ALIGNED_BLOCKS) {
// Realign pointer to block start
void *blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
uint32_t block_offset = (uint32_t)pointer_diff(p, blocks_start);
p = pointer_offset(p, -(int32_t)(block_offset % span->block_size));
}
// Check if block belongs to this heap or if deallocation should be deferred
#if RPMALLOC_FIRST_CLASS_HEAPS
int defer =
(span->heap->owner_thread &&
(span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#else
int defer =
((span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#endif
if (!defer)
_rpmalloc_deallocate_direct_small_or_medium(span, p);
else
_rpmalloc_deallocate_defer_small_or_medium(span, p);
}
//! Deallocate the given large memory block to the current heap
static void _rpmalloc_deallocate_large(span_t *span) {
rpmalloc_assert(span->size_class == SIZE_CLASS_LARGE, "Bad span size class");
rpmalloc_assert(!(span->flags & SPAN_FLAG_MASTER) ||
!(span->flags & SPAN_FLAG_SUBSPAN),
"Span flag corrupted");
rpmalloc_assert((span->flags & SPAN_FLAG_MASTER) ||
(span->flags & SPAN_FLAG_SUBSPAN),
"Span flag corrupted");
// We must always defer (unless finalizing) if from another heap since we
// cannot touch the list or counters of another heap
#if RPMALLOC_FIRST_CLASS_HEAPS
int defer =
(span->heap->owner_thread &&
(span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#else
int defer =
((span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#endif
if (defer) {
_rpmalloc_deallocate_defer_free_span(span->heap, span);
return;
}
rpmalloc_assert(span->heap->full_span_count, "Heap span counter corrupted");
--span->heap->full_span_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&span->heap->large_huge_span, span);
#endif
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
// Decrease counter
size_t idx = span->span_count - 1;
atomic_decr32(&span->heap->span_use[idx].current);
#endif
heap_t *heap = span->heap;
rpmalloc_assert(heap, "No thread heap");
#if ENABLE_THREAD_CACHE
const int set_as_reserved =
((span->span_count > 1) && (heap->span_cache.count == 0) &&
!heap->finalize && !heap->spans_reserved);
#else
const int set_as_reserved =
((span->span_count > 1) && !heap->finalize && !heap->spans_reserved);
#endif
if (set_as_reserved) {
heap->span_reserve = span;
heap->spans_reserved = span->span_count;
if (span->flags & SPAN_FLAG_MASTER) {
heap->span_reserve_master = span;
} else { // SPAN_FLAG_SUBSPAN
span_t *master = (span_t *)pointer_offset(
span,
-(intptr_t)((size_t)span->offset_from_master * _memory_span_size));
heap->span_reserve_master = master;
rpmalloc_assert(master->flags & SPAN_FLAG_MASTER, "Span flag corrupted");
rpmalloc_assert(atomic_load32(&master->remaining_spans) >=
(int32_t)span->span_count,
"Master span count corrupted");
}
_rpmalloc_stat_inc(&heap->span_use[idx].spans_to_reserved);
} else {
// Insert into cache list
_rpmalloc_heap_cache_insert(heap, span);
}
}
//! Deallocate the given huge span
static void _rpmalloc_deallocate_huge(span_t *span) {
rpmalloc_assert(span->heap, "No span heap");
#if RPMALLOC_FIRST_CLASS_HEAPS
int defer =
(span->heap->owner_thread &&
(span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#else
int defer =
((span->heap->owner_thread != get_thread_id()) && !span->heap->finalize);
#endif
if (defer) {
_rpmalloc_deallocate_defer_free_span(span->heap, span);
return;
}
rpmalloc_assert(span->heap->full_span_count, "Heap span counter corrupted");
--span->heap->full_span_count;
#if RPMALLOC_FIRST_CLASS_HEAPS
_rpmalloc_span_double_link_list_remove(&span->heap->large_huge_span, span);
#endif
// Oversized allocation, page count is stored in span_count
size_t num_pages = span->span_count;
_rpmalloc_unmap(span, num_pages * _memory_page_size, span->align_offset,
num_pages * _memory_page_size);
_rpmalloc_stat_sub(&_huge_pages_current, num_pages);
}
//! Deallocate the given block
static void _rpmalloc_deallocate(void *p) {
_rpmalloc_stat_add64(&_deallocation_counter, 1);
// Grab the span (always at start of span, using span alignment)
span_t *span = (span_t *)((uintptr_t)p & _memory_span_mask);
if (UNEXPECTED(!span))
return;
if (EXPECTED(span->size_class < SIZE_CLASS_COUNT))
_rpmalloc_deallocate_small_or_medium(span, p);
else if (span->size_class == SIZE_CLASS_LARGE)
_rpmalloc_deallocate_large(span);
else
_rpmalloc_deallocate_huge(span);
}
////////////
///
/// Reallocation entry points
///
//////
static size_t _rpmalloc_usable_size(void *p);
//! Reallocate the given block to the given size
static void *_rpmalloc_reallocate(heap_t *heap, void *p, size_t size,
size_t oldsize, unsigned int flags) {
if (p) {
// Grab the span using guaranteed span alignment
span_t *span = (span_t *)((uintptr_t)p & _memory_span_mask);
if (EXPECTED(span->size_class < SIZE_CLASS_COUNT)) {
// Small/medium sized block
rpmalloc_assert(span->span_count == 1, "Span counter corrupted");
void *blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
uint32_t block_offset = (uint32_t)pointer_diff(p, blocks_start);
uint32_t block_idx = block_offset / span->block_size;
void *block =
pointer_offset(blocks_start, (size_t)block_idx * span->block_size);
if (!oldsize)
oldsize =
(size_t)((ptrdiff_t)span->block_size - pointer_diff(p, block));
if ((size_t)span->block_size >= size) {
// Still fits in block, never mind trying to save memory, but preserve
// data if alignment changed
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
memmove(block, p, oldsize);
return block;
}
} else if (span->size_class == SIZE_CLASS_LARGE) {
// Large block
size_t total_size = size + SPAN_HEADER_SIZE;
size_t num_spans = total_size >> _memory_span_size_shift;
if (total_size & (_memory_span_mask - 1))
++num_spans;
size_t current_spans = span->span_count;
void *block = pointer_offset(span, SPAN_HEADER_SIZE);
if (!oldsize)
oldsize = (current_spans * _memory_span_size) -
(size_t)pointer_diff(p, block) - SPAN_HEADER_SIZE;
if ((current_spans >= num_spans) && (total_size >= (oldsize / 2))) {
// Still fits in block, never mind trying to save memory, but preserve
// data if alignment changed
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
memmove(block, p, oldsize);
return block;
}
} else {
// Oversized block
size_t total_size = size + SPAN_HEADER_SIZE;
size_t num_pages = total_size >> _memory_page_size_shift;
if (total_size & (_memory_page_size - 1))
++num_pages;
// Page count is stored in span_count
size_t current_pages = span->span_count;
void *block = pointer_offset(span, SPAN_HEADER_SIZE);
if (!oldsize)
oldsize = (current_pages * _memory_page_size) -
(size_t)pointer_diff(p, block) - SPAN_HEADER_SIZE;
if ((current_pages >= num_pages) && (num_pages >= (current_pages / 2))) {
// Still fits in block, never mind trying to save memory, but preserve
// data if alignment changed
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
memmove(block, p, oldsize);
return block;
}
}
} else {
oldsize = 0;
}
if (!!(flags & RPMALLOC_GROW_OR_FAIL))
return 0;
// Size is greater than block size, need to allocate a new block and
// deallocate the old Avoid hysteresis by overallocating if increase is small
// (below 37%)
size_t lower_bound = oldsize + (oldsize >> 2) + (oldsize >> 3);
size_t new_size =
(size > lower_bound) ? size : ((size > oldsize) ? lower_bound : size);
void *block = _rpmalloc_allocate(heap, new_size);
if (p && block) {
if (!(flags & RPMALLOC_NO_PRESERVE))
memcpy(block, p, oldsize < new_size ? oldsize : new_size);
_rpmalloc_deallocate(p);
}
return block;
}
static void *_rpmalloc_aligned_reallocate(heap_t *heap, void *ptr,
size_t alignment, size_t size,
size_t oldsize, unsigned int flags) {
if (alignment <= SMALL_GRANULARITY)
return _rpmalloc_reallocate(heap, ptr, size, oldsize, flags);
int no_alloc = !!(flags & RPMALLOC_GROW_OR_FAIL);
size_t usablesize = (ptr ? _rpmalloc_usable_size(ptr) : 0);
if ((usablesize >= size) && !((uintptr_t)ptr & (alignment - 1))) {
if (no_alloc || (size >= (usablesize / 2)))
return ptr;
}
// Aligned alloc marks span as having aligned blocks
void *block =
(!no_alloc ? _rpmalloc_aligned_allocate(heap, alignment, size) : 0);
if (EXPECTED(block != 0)) {
if (!(flags & RPMALLOC_NO_PRESERVE) && ptr) {
if (!oldsize)
oldsize = usablesize;
memcpy(block, ptr, oldsize < size ? oldsize : size);
}
_rpmalloc_deallocate(ptr);
}
return block;
}
////////////
///
/// Initialization, finalization and utility
///
//////
//! Get the usable size of the given block
static size_t _rpmalloc_usable_size(void *p) {
// Grab the span using guaranteed span alignment
span_t *span = (span_t *)((uintptr_t)p & _memory_span_mask);
if (span->size_class < SIZE_CLASS_COUNT) {
// Small/medium block
void *blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
return span->block_size -
((size_t)pointer_diff(p, blocks_start) % span->block_size);
}
if (span->size_class == SIZE_CLASS_LARGE) {
// Large block
size_t current_spans = span->span_count;
return (current_spans * _memory_span_size) - (size_t)pointer_diff(p, span);
}
// Oversized block, page count is stored in span_count
size_t current_pages = span->span_count;
return (current_pages * _memory_page_size) - (size_t)pointer_diff(p, span);
}
//! Adjust and optimize the size class properties for the given class
static void _rpmalloc_adjust_size_class(size_t iclass) {
size_t block_size = _memory_size_class[iclass].block_size;
size_t block_count = (_memory_span_size - SPAN_HEADER_SIZE) / block_size;
_memory_size_class[iclass].block_count = (uint16_t)block_count;
_memory_size_class[iclass].class_idx = (uint16_t)iclass;
// Check if previous size classes can be merged
if (iclass >= SMALL_CLASS_COUNT) {
size_t prevclass = iclass;
while (prevclass > 0) {
--prevclass;
// A class can be merged if number of pages and number of blocks are equal
if (_memory_size_class[prevclass].block_count ==
_memory_size_class[iclass].block_count)
_rpmalloc_memcpy_const(_memory_size_class + prevclass,
_memory_size_class + iclass,
sizeof(_memory_size_class[iclass]));
else
break;
}
}
}
//! Initialize the allocator and setup global data
extern inline int rpmalloc_initialize(void) {
if (_rpmalloc_initialized) {
rpmalloc_thread_initialize();
return 0;
}
return rpmalloc_initialize_config(0);
}
int rpmalloc_initialize_config(const rpmalloc_config_t *config) {
if (_rpmalloc_initialized) {
rpmalloc_thread_initialize();
return 0;
}
_rpmalloc_initialized = 1;
if (config)
memcpy(&_memory_config, config, sizeof(rpmalloc_config_t));
else
_rpmalloc_memset_const(&_memory_config, 0, sizeof(rpmalloc_config_t));
if (!_memory_config.memory_map || !_memory_config.memory_unmap) {
_memory_config.memory_map = _rpmalloc_mmap_os;
_memory_config.memory_unmap = _rpmalloc_unmap_os;
}
#if PLATFORM_WINDOWS
SYSTEM_INFO system_info;
memset(&system_info, 0, sizeof(system_info));
GetSystemInfo(&system_info);
_memory_map_granularity = system_info.dwAllocationGranularity;
#else
_memory_map_granularity = (size_t)sysconf(_SC_PAGESIZE);
#endif
#if RPMALLOC_CONFIGURABLE
_memory_page_size = _memory_config.page_size;
#else
_memory_page_size = 0;
#endif
_memory_huge_pages = 0;
if (!_memory_page_size) {
#if PLATFORM_WINDOWS
_memory_page_size = system_info.dwPageSize;
#else
_memory_page_size = _memory_map_granularity;
if (_memory_config.enable_huge_pages) {
#if defined(__linux__)
size_t huge_page_size = 0;
FILE *meminfo = fopen("/proc/meminfo", "r");
if (meminfo) {
char line[128];
while (!huge_page_size && fgets(line, sizeof(line) - 1, meminfo)) {
line[sizeof(line) - 1] = 0;
if (strstr(line, "Hugepagesize:"))
huge_page_size = (size_t)strtol(line + 13, 0, 10) * 1024;
}
fclose(meminfo);
}
if (huge_page_size) {
_memory_huge_pages = 1;
_memory_page_size = huge_page_size;
_memory_map_granularity = huge_page_size;
}
#elif defined(__FreeBSD__)
int rc;
size_t sz = sizeof(rc);
if (sysctlbyname("vm.pmap.pg_ps_enabled", &rc, &sz, NULL, 0) == 0 &&
rc == 1) {
static size_t defsize = 2 * 1024 * 1024;
int nsize = 0;
size_t sizes[4] = {0};
_memory_huge_pages = 1;
_memory_page_size = defsize;
if ((nsize = getpagesizes(sizes, 4)) >= 2) {
nsize--;
for (size_t csize = sizes[nsize]; nsize >= 0 && csize;
--nsize, csize = sizes[nsize]) {
//! Unlikely, but as a precaution..
rpmalloc_assert(!(csize & (csize - 1)) && !(csize % 1024),
"Invalid page size");
if (defsize < csize) {
_memory_page_size = csize;
break;
}
}
}
_memory_map_granularity = _memory_page_size;
}
#elif defined(__APPLE__) || defined(__NetBSD__)
_memory_huge_pages = 1;
_memory_page_size = 2 * 1024 * 1024;
_memory_map_granularity = _memory_page_size;
#endif
}
#endif
} else {
if (_memory_config.enable_huge_pages)
_memory_huge_pages = 1;
}
#if PLATFORM_WINDOWS
if (_memory_config.enable_huge_pages) {
HANDLE token = 0;
size_t large_page_minimum = GetLargePageMinimum();
if (large_page_minimum)
OpenProcessToken(GetCurrentProcess(),
TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
if (token) {
LUID luid;
if (LookupPrivilegeValue(0, SE_LOCK_MEMORY_NAME, &luid)) {
TOKEN_PRIVILEGES token_privileges;
memset(&token_privileges, 0, sizeof(token_privileges));
token_privileges.PrivilegeCount = 1;
token_privileges.Privileges[0].Luid = luid;
token_privileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
if (AdjustTokenPrivileges(token, FALSE, &token_privileges, 0, 0, 0)) {
if (GetLastError() == ERROR_SUCCESS)
_memory_huge_pages = 1;
}
}
CloseHandle(token);
}
if (_memory_huge_pages) {
if (large_page_minimum > _memory_page_size)
_memory_page_size = large_page_minimum;
if (large_page_minimum > _memory_map_granularity)
_memory_map_granularity = large_page_minimum;
}
}
#endif
size_t min_span_size = 256;
size_t max_page_size;
#if UINTPTR_MAX > 0xFFFFFFFF
max_page_size = 4096ULL * 1024ULL * 1024ULL;
#else
max_page_size = 4 * 1024 * 1024;
#endif
if (_memory_page_size < min_span_size)
_memory_page_size = min_span_size;
if (_memory_page_size > max_page_size)
_memory_page_size = max_page_size;
_memory_page_size_shift = 0;
size_t page_size_bit = _memory_page_size;
while (page_size_bit != 1) {
++_memory_page_size_shift;
page_size_bit >>= 1;
}
_memory_page_size = ((size_t)1 << _memory_page_size_shift);
#if RPMALLOC_CONFIGURABLE
if (!_memory_config.span_size) {
_memory_span_size = _memory_default_span_size;
_memory_span_size_shift = _memory_default_span_size_shift;
_memory_span_mask = _memory_default_span_mask;
} else {
size_t span_size = _memory_config.span_size;
if (span_size > (256 * 1024))
span_size = (256 * 1024);
_memory_span_size = 4096;
_memory_span_size_shift = 12;
while (_memory_span_size < span_size) {
_memory_span_size <<= 1;
++_memory_span_size_shift;
}
_memory_span_mask = ~(uintptr_t)(_memory_span_size - 1);
}
#endif
_memory_span_map_count =
(_memory_config.span_map_count ? _memory_config.span_map_count
: DEFAULT_SPAN_MAP_COUNT);
if ((_memory_span_size * _memory_span_map_count) < _memory_page_size)
_memory_span_map_count = (_memory_page_size / _memory_span_size);
if ((_memory_page_size >= _memory_span_size) &&
((_memory_span_map_count * _memory_span_size) % _memory_page_size))
_memory_span_map_count = (_memory_page_size / _memory_span_size);
_memory_heap_reserve_count = (_memory_span_map_count > DEFAULT_SPAN_MAP_COUNT)
? DEFAULT_SPAN_MAP_COUNT
: _memory_span_map_count;
_memory_config.page_size = _memory_page_size;
_memory_config.span_size = _memory_span_size;
_memory_config.span_map_count = _memory_span_map_count;
_memory_config.enable_huge_pages = _memory_huge_pages;
#if ((defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD) || \
defined(__TINYC__)
if (pthread_key_create(&_memory_thread_heap, _rpmalloc_heap_release_raw_fc))
return -1;
#endif
#if defined(_WIN32) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
fls_key = FlsAlloc(&_rpmalloc_thread_destructor);
#endif
// Setup all small and medium size classes
size_t iclass = 0;
_memory_size_class[iclass].block_size = SMALL_GRANULARITY;
_rpmalloc_adjust_size_class(iclass);
for (iclass = 1; iclass < SMALL_CLASS_COUNT; ++iclass) {
size_t size = iclass * SMALL_GRANULARITY;
_memory_size_class[iclass].block_size = (uint32_t)size;
_rpmalloc_adjust_size_class(iclass);
}
// At least two blocks per span, then fall back to large allocations
_memory_medium_size_limit = (_memory_span_size - SPAN_HEADER_SIZE) >> 1;
if (_memory_medium_size_limit > MEDIUM_SIZE_LIMIT)
_memory_medium_size_limit = MEDIUM_SIZE_LIMIT;
for (iclass = 0; iclass < MEDIUM_CLASS_COUNT; ++iclass) {
size_t size = SMALL_SIZE_LIMIT + ((iclass + 1) * MEDIUM_GRANULARITY);
if (size > _memory_medium_size_limit) {
_memory_medium_size_limit =
SMALL_SIZE_LIMIT + (iclass * MEDIUM_GRANULARITY);
break;
}
_memory_size_class[SMALL_CLASS_COUNT + iclass].block_size = (uint32_t)size;
_rpmalloc_adjust_size_class(SMALL_CLASS_COUNT + iclass);
}
_memory_orphan_heaps = 0;
#if RPMALLOC_FIRST_CLASS_HEAPS
_memory_first_class_orphan_heaps = 0;
#endif
#if ENABLE_STATISTICS
atomic_store32(&_memory_active_heaps, 0);
atomic_store32(&_mapped_pages, 0);
_mapped_pages_peak = 0;
atomic_store32(&_master_spans, 0);
atomic_store32(&_mapped_total, 0);
atomic_store32(&_unmapped_total, 0);
atomic_store32(&_mapped_pages_os, 0);
atomic_store32(&_huge_pages_current, 0);
_huge_pages_peak = 0;
#endif
memset(_memory_heaps, 0, sizeof(_memory_heaps));
atomic_store32_release(&_memory_global_lock, 0);
rpmalloc_linker_reference();
// Initialize this thread
rpmalloc_thread_initialize();
return 0;
}
//! Finalize the allocator
void rpmalloc_finalize(void) {
rpmalloc_thread_finalize(1);
// rpmalloc_dump_statistics(stdout);
if (_memory_global_reserve) {
atomic_add32(&_memory_global_reserve_master->remaining_spans,
-(int32_t)_memory_global_reserve_count);
_memory_global_reserve_master = 0;
_memory_global_reserve_count = 0;
_memory_global_reserve = 0;
}
atomic_store32_release(&_memory_global_lock, 0);
// Free all thread caches and fully free spans
for (size_t list_idx = 0; list_idx < HEAP_ARRAY_SIZE; ++list_idx) {
heap_t *heap = _memory_heaps[list_idx];
while (heap) {
heap_t *next_heap = heap->next_heap;
heap->finalize = 1;
_rpmalloc_heap_global_finalize(heap);
heap = next_heap;
}
}
#if ENABLE_GLOBAL_CACHE
// Free global caches
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass)
_rpmalloc_global_cache_finalize(&_memory_span_cache[iclass]);
#endif
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
pthread_key_delete(_memory_thread_heap);
#endif
#if defined(_WIN32) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
FlsFree(fls_key);
fls_key = 0;
#endif
#if ENABLE_STATISTICS
// If you hit these asserts you probably have memory leaks (perhaps global
// scope data doing dynamic allocations) or double frees in your code
rpmalloc_assert(atomic_load32(&_mapped_pages) == 0, "Memory leak detected");
rpmalloc_assert(atomic_load32(&_mapped_pages_os) == 0,
"Memory leak detected");
#endif
_rpmalloc_initialized = 0;
}
//! Initialize thread, assign heap
extern inline void rpmalloc_thread_initialize(void) {
if (!get_thread_heap_raw()) {
heap_t *heap = _rpmalloc_heap_allocate(0);
if (heap) {
_rpmalloc_stat_inc(&_memory_active_heaps);
set_thread_heap(heap);
#if defined(_WIN32) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
FlsSetValue(fls_key, heap);
#endif
}
}
}
//! Finalize thread, orphan heap
void rpmalloc_thread_finalize(int release_caches) {
heap_t *heap = get_thread_heap_raw();
if (heap)
_rpmalloc_heap_release_raw(heap, release_caches);
set_thread_heap(0);
#if defined(_WIN32) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
FlsSetValue(fls_key, 0);
#endif
}
int rpmalloc_is_thread_initialized(void) {
return (get_thread_heap_raw() != 0) ? 1 : 0;
}
const rpmalloc_config_t *rpmalloc_config(void) { return &_memory_config; }
// Extern interface
extern inline RPMALLOC_ALLOCATOR void *rpmalloc(size_t size) {
#if ENABLE_VALIDATE_ARGS
if (size >= MAX_ALLOC_SIZE) {
errno = EINVAL;
return 0;
}
#endif
heap_t *heap = get_thread_heap();
return _rpmalloc_allocate(heap, size);
}
extern inline void rpfree(void *ptr) { _rpmalloc_deallocate(ptr); }
extern inline RPMALLOC_ALLOCATOR void *rpcalloc(size_t num, size_t size) {
size_t total;
#if ENABLE_VALIDATE_ARGS
#if PLATFORM_WINDOWS
int err = SizeTMult(num, size, &total);
if ((err != S_OK) || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#else
int err = __builtin_umull_overflow(num, size, &total);
if (err || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#endif
#else
total = num * size;
#endif
heap_t *heap = get_thread_heap();
void *block = _rpmalloc_allocate(heap, total);
if (block)
memset(block, 0, total);
return block;
}
extern inline RPMALLOC_ALLOCATOR void *rprealloc(void *ptr, size_t size) {
#if ENABLE_VALIDATE_ARGS
if (size >= MAX_ALLOC_SIZE) {
errno = EINVAL;
return ptr;
}
#endif
heap_t *heap = get_thread_heap();
return _rpmalloc_reallocate(heap, ptr, size, 0, 0);
}
extern RPMALLOC_ALLOCATOR void *rpaligned_realloc(void *ptr, size_t alignment,
size_t size, size_t oldsize,
unsigned int flags) {
#if ENABLE_VALIDATE_ARGS
if ((size + alignment < size) || (alignment > _memory_page_size)) {
errno = EINVAL;
return 0;
}
#endif
heap_t *heap = get_thread_heap();
return _rpmalloc_aligned_reallocate(heap, ptr, alignment, size, oldsize,
flags);
}
extern RPMALLOC_ALLOCATOR void *rpaligned_alloc(size_t alignment, size_t size) {
heap_t *heap = get_thread_heap();
return _rpmalloc_aligned_allocate(heap, alignment, size);
}
extern inline RPMALLOC_ALLOCATOR void *
rpaligned_calloc(size_t alignment, size_t num, size_t size) {
size_t total;
#if ENABLE_VALIDATE_ARGS
#if PLATFORM_WINDOWS
int err = SizeTMult(num, size, &total);
if ((err != S_OK) || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#else
int err = __builtin_umull_overflow(num, size, &total);
if (err || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#endif
#else
total = num * size;
#endif
void *block = rpaligned_alloc(alignment, total);
if (block)
memset(block, 0, total);
return block;
}
extern inline RPMALLOC_ALLOCATOR void *rpmemalign(size_t alignment,
size_t size) {
return rpaligned_alloc(alignment, size);
}
extern inline int rpposix_memalign(void **memptr, size_t alignment,
size_t size) {
if (memptr)
*memptr = rpaligned_alloc(alignment, size);
else
return EINVAL;
return *memptr ? 0 : ENOMEM;
}
extern inline size_t rpmalloc_usable_size(void *ptr) {
return (ptr ? _rpmalloc_usable_size(ptr) : 0);
}
extern inline void rpmalloc_thread_collect(void) {}
void rpmalloc_thread_statistics(rpmalloc_thread_statistics_t *stats) {
memset(stats, 0, sizeof(rpmalloc_thread_statistics_t));
heap_t *heap = get_thread_heap_raw();
if (!heap)
return;
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
size_class_t *size_class = _memory_size_class + iclass;
span_t *span = heap->size_class[iclass].partial_span;
while (span) {
size_t free_count = span->list_size;
size_t block_count = size_class->block_count;
if (span->free_list_limit < block_count)
block_count = span->free_list_limit;
free_count += (block_count - span->used_count);
stats->sizecache += free_count * size_class->block_size;
span = span->next;
}
}
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t *span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t *)(heap->span_large_cache + (iclass - 1));
stats->spancache += span_cache->count * (iclass + 1) * _memory_span_size;
}
#endif
span_t *deferred = (span_t *)atomic_load_ptr(&heap->span_free_deferred);
while (deferred) {
if (deferred->size_class != SIZE_CLASS_HUGE)
stats->spancache += (size_t)deferred->span_count * _memory_span_size;
deferred = (span_t *)deferred->free_list;
}
#if ENABLE_STATISTICS
stats->thread_to_global = (size_t)atomic_load64(&heap->thread_to_global);
stats->global_to_thread = (size_t)atomic_load64(&heap->global_to_thread);
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
stats->span_use[iclass].current =
(size_t)atomic_load32(&heap->span_use[iclass].current);
stats->span_use[iclass].peak =
(size_t)atomic_load32(&heap->span_use[iclass].high);
stats->span_use[iclass].to_global =
(size_t)atomic_load32(&heap->span_use[iclass].spans_to_global);
stats->span_use[iclass].from_global =
(size_t)atomic_load32(&heap->span_use[iclass].spans_from_global);
stats->span_use[iclass].to_cache =
(size_t)atomic_load32(&heap->span_use[iclass].spans_to_cache);
stats->span_use[iclass].from_cache =
(size_t)atomic_load32(&heap->span_use[iclass].spans_from_cache);
stats->span_use[iclass].to_reserved =
(size_t)atomic_load32(&heap->span_use[iclass].spans_to_reserved);
stats->span_use[iclass].from_reserved =
(size_t)atomic_load32(&heap->span_use[iclass].spans_from_reserved);
stats->span_use[iclass].map_calls =
(size_t)atomic_load32(&heap->span_use[iclass].spans_map_calls);
}
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
stats->size_use[iclass].alloc_current =
(size_t)atomic_load32(&heap->size_class_use[iclass].alloc_current);
stats->size_use[iclass].alloc_peak =
(size_t)heap->size_class_use[iclass].alloc_peak;
stats->size_use[iclass].alloc_total =
(size_t)atomic_load32(&heap->size_class_use[iclass].alloc_total);
stats->size_use[iclass].free_total =
(size_t)atomic_load32(&heap->size_class_use[iclass].free_total);
stats->size_use[iclass].spans_to_cache =
(size_t)atomic_load32(&heap->size_class_use[iclass].spans_to_cache);
stats->size_use[iclass].spans_from_cache =
(size_t)atomic_load32(&heap->size_class_use[iclass].spans_from_cache);
stats->size_use[iclass].spans_from_reserved = (size_t)atomic_load32(
&heap->size_class_use[iclass].spans_from_reserved);
stats->size_use[iclass].map_calls =
(size_t)atomic_load32(&heap->size_class_use[iclass].spans_map_calls);
}
#endif
}
void rpmalloc_global_statistics(rpmalloc_global_statistics_t *stats) {
memset(stats, 0, sizeof(rpmalloc_global_statistics_t));
#if ENABLE_STATISTICS
stats->mapped = (size_t)atomic_load32(&_mapped_pages) * _memory_page_size;
stats->mapped_peak = (size_t)_mapped_pages_peak * _memory_page_size;
stats->mapped_total =
(size_t)atomic_load32(&_mapped_total) * _memory_page_size;
stats->unmapped_total =
(size_t)atomic_load32(&_unmapped_total) * _memory_page_size;
stats->huge_alloc =
(size_t)atomic_load32(&_huge_pages_current) * _memory_page_size;
stats->huge_alloc_peak = (size_t)_huge_pages_peak * _memory_page_size;
#endif
#if ENABLE_GLOBAL_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
global_cache_t *cache = &_memory_span_cache[iclass];
while (!atomic_cas32_acquire(&cache->lock, 1, 0))
_rpmalloc_spin();
uint32_t count = cache->count;
#if ENABLE_UNLIMITED_CACHE
span_t *current_span = cache->overflow;
while (current_span) {
++count;
current_span = current_span->next;
}
#endif
atomic_store32_release(&cache->lock, 0);
stats->cached += count * (iclass + 1) * _memory_span_size;
}
#endif
}
#if ENABLE_STATISTICS
static void _memory_heap_dump_statistics(heap_t *heap, void *file) {
fprintf(file, "Heap %d stats:\n", heap->id);
fprintf(file, "Class CurAlloc PeakAlloc TotAlloc TotFree BlkSize "
"BlkCount SpansCur SpansPeak PeakAllocMiB ToCacheMiB "
"FromCacheMiB FromReserveMiB MmapCalls\n");
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
if (!atomic_load32(&heap->size_class_use[iclass].alloc_total))
continue;
fprintf(
file,
"%3u: %10u %10u %10u %10u %8u %8u %8d %9d %13zu %11zu %12zu %14zu "
"%9u\n",
(uint32_t)iclass,
atomic_load32(&heap->size_class_use[iclass].alloc_current),
heap->size_class_use[iclass].alloc_peak,
atomic_load32(&heap->size_class_use[iclass].alloc_total),
atomic_load32(&heap->size_class_use[iclass].free_total),
_memory_size_class[iclass].block_size,
_memory_size_class[iclass].block_count,
atomic_load32(&heap->size_class_use[iclass].spans_current),
heap->size_class_use[iclass].spans_peak,
((size_t)heap->size_class_use[iclass].alloc_peak *
(size_t)_memory_size_class[iclass].block_size) /
(size_t)(1024 * 1024),
((size_t)atomic_load32(&heap->size_class_use[iclass].spans_to_cache) *
_memory_span_size) /
(size_t)(1024 * 1024),
((size_t)atomic_load32(&heap->size_class_use[iclass].spans_from_cache) *
_memory_span_size) /
(size_t)(1024 * 1024),
((size_t)atomic_load32(
&heap->size_class_use[iclass].spans_from_reserved) *
_memory_span_size) /
(size_t)(1024 * 1024),
atomic_load32(&heap->size_class_use[iclass].spans_map_calls));
}
fprintf(file, "Spans Current Peak Deferred PeakMiB Cached ToCacheMiB "
"FromCacheMiB ToReserveMiB FromReserveMiB ToGlobalMiB "
"FromGlobalMiB MmapCalls\n");
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
if (!atomic_load32(&heap->span_use[iclass].high) &&
!atomic_load32(&heap->span_use[iclass].spans_map_calls))
continue;
fprintf(
file,
"%4u: %8d %8u %8u %8zu %7u %11zu %12zu %12zu %14zu %11zu %13zu %10u\n",
(uint32_t)(iclass + 1), atomic_load32(&heap->span_use[iclass].current),
atomic_load32(&heap->span_use[iclass].high),
atomic_load32(&heap->span_use[iclass].spans_deferred),
((size_t)atomic_load32(&heap->span_use[iclass].high) *
(size_t)_memory_span_size * (iclass + 1)) /
(size_t)(1024 * 1024),
#if ENABLE_THREAD_CACHE
(unsigned int)(!iclass ? heap->span_cache.count
: heap->span_large_cache[iclass - 1].count),
((size_t)atomic_load32(&heap->span_use[iclass].spans_to_cache) *
(iclass + 1) * _memory_span_size) /
(size_t)(1024 * 1024),
((size_t)atomic_load32(&heap->span_use[iclass].spans_from_cache) *
(iclass + 1) * _memory_span_size) /
(size_t)(1024 * 1024),
#else
0, (size_t)0, (size_t)0,
#endif
((size_t)atomic_load32(&heap->span_use[iclass].spans_to_reserved) *
(iclass + 1) * _memory_span_size) /
(size_t)(1024 * 1024),
((size_t)atomic_load32(&heap->span_use[iclass].spans_from_reserved) *
(iclass + 1) * _memory_span_size) /
(size_t)(1024 * 1024),
((size_t)atomic_load32(&heap->span_use[iclass].spans_to_global) *
(size_t)_memory_span_size * (iclass + 1)) /
(size_t)(1024 * 1024),
((size_t)atomic_load32(&heap->span_use[iclass].spans_from_global) *
(size_t)_memory_span_size * (iclass + 1)) /
(size_t)(1024 * 1024),
atomic_load32(&heap->span_use[iclass].spans_map_calls));
}
fprintf(file, "Full spans: %zu\n", heap->full_span_count);
fprintf(file, "ThreadToGlobalMiB GlobalToThreadMiB\n");
fprintf(
file, "%17zu %17zu\n",
(size_t)atomic_load64(&heap->thread_to_global) / (size_t)(1024 * 1024),
(size_t)atomic_load64(&heap->global_to_thread) / (size_t)(1024 * 1024));
}
#endif
void rpmalloc_dump_statistics(void *file) {
#if ENABLE_STATISTICS
for (size_t list_idx = 0; list_idx < HEAP_ARRAY_SIZE; ++list_idx) {
heap_t *heap = _memory_heaps[list_idx];
while (heap) {
int need_dump = 0;
for (size_t iclass = 0; !need_dump && (iclass < SIZE_CLASS_COUNT);
++iclass) {
if (!atomic_load32(&heap->size_class_use[iclass].alloc_total)) {
rpmalloc_assert(
!atomic_load32(&heap->size_class_use[iclass].free_total),
"Heap statistics counter mismatch");
rpmalloc_assert(
!atomic_load32(&heap->size_class_use[iclass].spans_map_calls),
"Heap statistics counter mismatch");
continue;
}
need_dump = 1;
}
for (size_t iclass = 0; !need_dump && (iclass < LARGE_CLASS_COUNT);
++iclass) {
if (!atomic_load32(&heap->span_use[iclass].high) &&
!atomic_load32(&heap->span_use[iclass].spans_map_calls))
continue;
need_dump = 1;
}
if (need_dump)
_memory_heap_dump_statistics(heap, file);
heap = heap->next_heap;
}
}
fprintf(file, "Global stats:\n");
size_t huge_current =
(size_t)atomic_load32(&_huge_pages_current) * _memory_page_size;
size_t huge_peak = (size_t)_huge_pages_peak * _memory_page_size;
fprintf(file, "HugeCurrentMiB HugePeakMiB\n");
fprintf(file, "%14zu %11zu\n", huge_current / (size_t)(1024 * 1024),
huge_peak / (size_t)(1024 * 1024));
#if ENABLE_GLOBAL_CACHE
fprintf(file, "GlobalCacheMiB\n");
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
global_cache_t *cache = _memory_span_cache + iclass;
size_t global_cache = (size_t)cache->count * iclass * _memory_span_size;
size_t global_overflow_cache = 0;
span_t *span = cache->overflow;
while (span) {
global_overflow_cache += iclass * _memory_span_size;
span = span->next;
}
if (global_cache || global_overflow_cache || cache->insert_count ||
cache->extract_count)
fprintf(file,
"%4zu: %8zuMiB (%8zuMiB overflow) %14zu insert %14zu extract\n",
iclass + 1, global_cache / (size_t)(1024 * 1024),
global_overflow_cache / (size_t)(1024 * 1024),
cache->insert_count, cache->extract_count);
}
#endif
size_t mapped = (size_t)atomic_load32(&_mapped_pages) * _memory_page_size;
size_t mapped_os =
(size_t)atomic_load32(&_mapped_pages_os) * _memory_page_size;
size_t mapped_peak = (size_t)_mapped_pages_peak * _memory_page_size;
size_t mapped_total =
(size_t)atomic_load32(&_mapped_total) * _memory_page_size;
size_t unmapped_total =
(size_t)atomic_load32(&_unmapped_total) * _memory_page_size;
fprintf(
file,
"MappedMiB MappedOSMiB MappedPeakMiB MappedTotalMiB UnmappedTotalMiB\n");
fprintf(file, "%9zu %11zu %13zu %14zu %16zu\n",
mapped / (size_t)(1024 * 1024), mapped_os / (size_t)(1024 * 1024),
mapped_peak / (size_t)(1024 * 1024),
mapped_total / (size_t)(1024 * 1024),
unmapped_total / (size_t)(1024 * 1024));
fprintf(file, "\n");
#if 0
int64_t allocated = atomic_load64(&_allocation_counter);
int64_t deallocated = atomic_load64(&_deallocation_counter);
fprintf(file, "Allocation count: %lli\n", allocated);
fprintf(file, "Deallocation count: %lli\n", deallocated);
fprintf(file, "Current allocations: %lli\n", (allocated - deallocated));
fprintf(file, "Master spans: %d\n", atomic_load32(&_master_spans));
fprintf(file, "Dangling master spans: %d\n", atomic_load32(&_unmapped_master_spans));
#endif
#endif
(void)sizeof(file);
}
#if RPMALLOC_FIRST_CLASS_HEAPS
extern inline rpmalloc_heap_t *rpmalloc_heap_acquire(void) {
// Must be a pristine heap from newly mapped memory pages, or else memory
// blocks could already be allocated from the heap which would (wrongly) be
// released when heap is cleared with rpmalloc_heap_free_all(). Also heaps
// guaranteed to be pristine from the dedicated orphan list can be used.
heap_t *heap = _rpmalloc_heap_allocate(1);
rpmalloc_assume(heap != NULL);
heap->owner_thread = 0;
_rpmalloc_stat_inc(&_memory_active_heaps);
return heap;
}
extern inline void rpmalloc_heap_release(rpmalloc_heap_t *heap) {
if (heap)
_rpmalloc_heap_release(heap, 1, 1);
}
extern inline RPMALLOC_ALLOCATOR void *
rpmalloc_heap_alloc(rpmalloc_heap_t *heap, size_t size) {
#if ENABLE_VALIDATE_ARGS
if (size >= MAX_ALLOC_SIZE) {
errno = EINVAL;
return 0;
}
#endif
return _rpmalloc_allocate(heap, size);
}
extern inline RPMALLOC_ALLOCATOR void *
rpmalloc_heap_aligned_alloc(rpmalloc_heap_t *heap, size_t alignment,
size_t size) {
#if ENABLE_VALIDATE_ARGS
if (size >= MAX_ALLOC_SIZE) {
errno = EINVAL;
return 0;
}
#endif
return _rpmalloc_aligned_allocate(heap, alignment, size);
}
extern inline RPMALLOC_ALLOCATOR void *
rpmalloc_heap_calloc(rpmalloc_heap_t *heap, size_t num, size_t size) {
return rpmalloc_heap_aligned_calloc(heap, 0, num, size);
}
extern inline RPMALLOC_ALLOCATOR void *
rpmalloc_heap_aligned_calloc(rpmalloc_heap_t *heap, size_t alignment,
size_t num, size_t size) {
size_t total;
#if ENABLE_VALIDATE_ARGS
#if PLATFORM_WINDOWS
int err = SizeTMult(num, size, &total);
if ((err != S_OK) || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#else
int err = __builtin_umull_overflow(num, size, &total);
if (err || (total >= MAX_ALLOC_SIZE)) {
errno = EINVAL;
return 0;
}
#endif
#else
total = num * size;
#endif
void *block = _rpmalloc_aligned_allocate(heap, alignment, total);
if (block)
memset(block, 0, total);
return block;
}
extern inline RPMALLOC_ALLOCATOR void *
rpmalloc_heap_realloc(rpmalloc_heap_t *heap, void *ptr, size_t size,
unsigned int flags) {
#if ENABLE_VALIDATE_ARGS
if (size >= MAX_ALLOC_SIZE) {
errno = EINVAL;
return ptr;
}
#endif
return _rpmalloc_reallocate(heap, ptr, size, 0, flags);
}
extern inline RPMALLOC_ALLOCATOR void *
rpmalloc_heap_aligned_realloc(rpmalloc_heap_t *heap, void *ptr,
size_t alignment, size_t size,
unsigned int flags) {
#if ENABLE_VALIDATE_ARGS
if ((size + alignment < size) || (alignment > _memory_page_size)) {
errno = EINVAL;
return 0;
}
#endif
return _rpmalloc_aligned_reallocate(heap, ptr, alignment, size, 0, flags);
}
extern inline void rpmalloc_heap_free(rpmalloc_heap_t *heap, void *ptr) {
(void)sizeof(heap);
_rpmalloc_deallocate(ptr);
}
extern inline void rpmalloc_heap_free_all(rpmalloc_heap_t *heap) {
span_t *span;
span_t *next_span;
_rpmalloc_heap_cache_adopt_deferred(heap, 0);
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
span = heap->size_class[iclass].partial_span;
while (span) {
next_span = span->next;
_rpmalloc_heap_cache_insert(heap, span);
span = next_span;
}
heap->size_class[iclass].partial_span = 0;
span = heap->full_span[iclass];
while (span) {
next_span = span->next;
_rpmalloc_heap_cache_insert(heap, span);
span = next_span;
}
span = heap->size_class[iclass].cache;
if (span)
_rpmalloc_heap_cache_insert(heap, span);
heap->size_class[iclass].cache = 0;
}
memset(heap->size_class, 0, sizeof(heap->size_class));
memset(heap->full_span, 0, sizeof(heap->full_span));
span = heap->large_huge_span;
while (span) {
next_span = span->next;
if (UNEXPECTED(span->size_class == SIZE_CLASS_HUGE))
_rpmalloc_deallocate_huge(span);
else
_rpmalloc_heap_cache_insert(heap, span);
span = next_span;
}
heap->large_huge_span = 0;
heap->full_span_count = 0;
#if ENABLE_THREAD_CACHE
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
span_cache_t *span_cache;
if (!iclass)
span_cache = &heap->span_cache;
else
span_cache = (span_cache_t *)(heap->span_large_cache + (iclass - 1));
if (!span_cache->count)
continue;
#if ENABLE_GLOBAL_CACHE
_rpmalloc_stat_add64(&heap->thread_to_global,
span_cache->count * (iclass + 1) * _memory_span_size);
_rpmalloc_stat_add(&heap->span_use[iclass].spans_to_global,
span_cache->count);
_rpmalloc_global_cache_insert_spans(span_cache->span, iclass + 1,
span_cache->count);
#else
for (size_t ispan = 0; ispan < span_cache->count; ++ispan)
_rpmalloc_span_unmap(span_cache->span[ispan]);
#endif
span_cache->count = 0;
}
#endif
#if ENABLE_STATISTICS
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
atomic_store32(&heap->size_class_use[iclass].alloc_current, 0);
atomic_store32(&heap->size_class_use[iclass].spans_current, 0);
}
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
atomic_store32(&heap->span_use[iclass].current, 0);
}
#endif
}
extern inline void rpmalloc_heap_thread_set_current(rpmalloc_heap_t *heap) {
heap_t *prev_heap = get_thread_heap_raw();
if (prev_heap != heap) {
set_thread_heap(heap);
if (prev_heap)
rpmalloc_heap_release(prev_heap);
}
}
extern inline rpmalloc_heap_t *rpmalloc_get_heap_for_ptr(void *ptr) {
// Grab the span, and then the heap from the span
span_t *span = (span_t *)((uintptr_t)ptr & _memory_span_mask);
if (span) {
return span->heap;
}
return 0;
}
#endif
#if ENABLE_PRELOAD || ENABLE_OVERRIDE
#include "malloc.c"
#endif
void rpmalloc_linker_reference(void) { (void)sizeof(_rpmalloc_initialized); }
|