File: infer-prestart-no-wrap.ll

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.6-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,304 kB
  • sloc: cpp: 7,438,677; ansic: 1,393,822; asm: 1,012,926; python: 241,650; f90: 86,635; objc: 75,479; lisp: 42,144; pascal: 17,286; sh: 10,027; ml: 5,082; perl: 4,730; awk: 3,523; makefile: 3,349; javascript: 2,251; xml: 892; fortran: 672
file content (192 lines) | stat: -rw-r--r-- 10,190 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 5
; RUN: opt -disable-output -passes="print<scalar-evolution>" < %s 2>&1 | FileCheck %s

define void @infer.sext.0(ptr %c, i32 %start, ptr %buf) {
; CHECK-LABEL: 'infer.sext.0'
; CHECK-NEXT:  Classifying expressions for: @infer.sext.0
; CHECK-NEXT:    %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ]
; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%loop> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ]
; CHECK-NEXT:    --> {%start,+,1}<nsw><%loop> U: full-set S: full-set Exits: (1 + %start) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.inc = add nsw i32 %idx, 1
; CHECK-NEXT:    --> {(1 + %start)<nsw>,+,1}<nsw><%loop> U: full-set S: full-set Exits: (2 + %start) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.inc.sext = sext i32 %idx.inc to i64
; CHECK-NEXT:    --> {(1 + (sext i32 %start to i64))<nsw>,+,1}<nsw><%loop> U: [-2147483647,2147483650) S: [-2147483647,2147483650) Exits: (2 + (sext i32 %start to i64))<nsw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc
; CHECK-NEXT:    --> {(4 + (4 * (sext i32 %start to i64))<nsw> + %buf),+,4}<nw><%loop> U: full-set S: full-set Exits: (8 + (4 * (sext i32 %start to i64))<nsw> + %buf) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %val = load i32, ptr %buf.gep, align 4
; CHECK-NEXT:    --> %val U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
; CHECK-NEXT:    %counter.inc = add i32 %counter, 1
; CHECK-NEXT:    --> {1,+,1}<nuw><nsw><%loop> U: [1,3) S: [1,3) Exits: 2 LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @infer.sext.0
; CHECK-NEXT:  Loop %loop: backedge-taken count is i32 1
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 1
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is i32 1
; CHECK-NEXT:  Loop %loop: Trip multiple is 2
;
 entry:
  br label %loop

 loop:
  %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ]
  %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ]
  %idx.inc = add nsw i32 %idx, 1
  %idx.inc.sext = sext i32 %idx.inc to i64

  %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc
  %val = load i32, ptr %buf.gep

  %condition = icmp eq i32 %counter, 1
  %counter.inc = add i32 %counter, 1
  br i1 %condition, label %exit, label %loop

 exit:
  ret void
}

define void @infer.zext.0(ptr %c, i32 %start, ptr %buf) {
; CHECK-LABEL: 'infer.zext.0'
; CHECK-NEXT:  Classifying expressions for: @infer.zext.0
; CHECK-NEXT:    %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ]
; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%loop> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ]
; CHECK-NEXT:    --> {%start,+,1}<nuw><%loop> U: full-set S: full-set Exits: (1 + %start) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.inc = add nuw i32 %idx, 1
; CHECK-NEXT:    --> {(1 + %start)<nuw>,+,1}<nuw><%loop> U: [1,0) S: [1,0) Exits: (2 + %start) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.inc.sext = zext i32 %idx.inc to i64
; CHECK-NEXT:    --> {(1 + (zext i32 %start to i64))<nuw><nsw>,+,1}<nuw><%loop> U: [1,4294967298) S: [1,4294967298) Exits: (2 + (zext i32 %start to i64))<nuw><nsw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc
; CHECK-NEXT:    --> ((4 * (sext i32 {(1 + %start)<nuw>,+,1}<nuw><%loop> to i64))<nsw> + %buf) U: full-set S: full-set Exits: ((4 * (sext i32 (2 + %start) to i64))<nsw> + %buf) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %val = load i32, ptr %buf.gep, align 4
; CHECK-NEXT:    --> %val U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
; CHECK-NEXT:    %counter.inc = add i32 %counter, 1
; CHECK-NEXT:    --> {1,+,1}<nuw><nsw><%loop> U: [1,3) S: [1,3) Exits: 2 LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @infer.zext.0
; CHECK-NEXT:  Loop %loop: backedge-taken count is i32 1
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 1
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is i32 1
; CHECK-NEXT:  Loop %loop: Trip multiple is 2
;
 entry:
  br label %loop

 loop:
  %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ]
  %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ]
  %idx.inc = add nuw i32 %idx, 1
  %idx.inc.sext = zext i32 %idx.inc to i64

  %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc
  %val = load i32, ptr %buf.gep

  %condition = icmp eq i32 %counter, 1
  %counter.inc = add i32 %counter, 1
  br i1 %condition, label %exit, label %loop

 exit:
  ret void
}

define void @infer.sext.1(i32 %start, ptr %c) {
; CHECK-LABEL: 'infer.sext.1'
; CHECK-NEXT:  Classifying expressions for: @infer.sext.1
; CHECK-NEXT:    %start.mul = mul i32 %start, 4
; CHECK-NEXT:    --> (4 * %start) U: [0,-3) S: [-2147483648,2147483645)
; CHECK-NEXT:    %start.real = add i32 %start.mul, 2
; CHECK-NEXT:    --> (2 + (4 * %start))<nuw><nsw> U: [2,-1) S: [-2147483646,2147483647)
; CHECK-NEXT:    %idx = phi i32 [ %start.real, %entry ], [ %idx.inc, %loop ]
; CHECK-NEXT:    --> {(2 + (4 * %start))<nuw><nsw>,+,2}<nsw><%loop> U: [0,-1) S: [-2147483646,2147483647) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.sext = sext i32 %idx to i64
; CHECK-NEXT:    --> {(2 + (sext i32 (4 * %start) to i64))<nuw><nsw>,+,2}<nsw><%loop> U: [0,-1) S: [-2147483646,9223372036854775807) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.inc = add nsw i32 %idx, 2
; CHECK-NEXT:    --> {(4 + (4 * %start)),+,2}<nw><%loop> U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %condition = load i1, ptr %c, align 1
; CHECK-NEXT:    --> %condition U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
; CHECK-NEXT:  Determining loop execution counts for: @infer.sext.1
; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
;
 entry:
  %start.mul = mul i32 %start, 4
  %start.real = add i32 %start.mul, 2
  br label %loop

 loop:
  %idx = phi i32 [ %start.real, %entry ], [ %idx.inc, %loop ]
  %idx.sext = sext i32 %idx to i64
  %idx.inc = add nsw i32 %idx, 2
  %condition = load i1, ptr %c
  br i1 %condition, label %exit, label %loop

 exit:
  ret void
}

define void @infer.sext.2(ptr %c, i8 %start) {
; CHECK-LABEL: 'infer.sext.2'
; CHECK-NEXT:  Classifying expressions for: @infer.sext.2
; CHECK-NEXT:    %start.inc = add i8 %start, 1
; CHECK-NEXT:    --> (1 + %start) U: full-set S: full-set
; CHECK-NEXT:    %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ]
; CHECK-NEXT:    --> {(1 + %start),+,1}<nsw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.sext = sext i8 %idx to i16
; CHECK-NEXT:    --> {(1 + (sext i8 %start to i16))<nsw>,+,1}<nsw><%loop> U: [-127,-32768) S: [-127,-32768) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.inc = add nsw i8 %idx, 1
; CHECK-NEXT:    --> {(2 + %start),+,1}<nw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %condition = load volatile i1, ptr %c, align 1
; CHECK-NEXT:    --> %condition U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
; CHECK-NEXT:  Determining loop execution counts for: @infer.sext.2
; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
;
 entry:
  %start.inc = add i8 %start, 1
  %entry.condition = icmp slt i8 %start, 127
  br i1 %entry.condition, label %loop, label %exit

 loop:
  %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ]
  %idx.sext = sext i8 %idx to i16
  %idx.inc = add nsw i8 %idx, 1
  %condition = load volatile i1, ptr %c
  br i1 %condition, label %exit, label %loop

 exit:
  ret void
}

define void @infer.zext.1(ptr %c, i8 %start) {
; CHECK-LABEL: 'infer.zext.1'
; CHECK-NEXT:  Classifying expressions for: @infer.zext.1
; CHECK-NEXT:    %start.inc = add i8 %start, 1
; CHECK-NEXT:    --> (1 + %start) U: full-set S: full-set
; CHECK-NEXT:    %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ]
; CHECK-NEXT:    --> {(1 + %start),+,1}<nuw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.zext = zext i8 %idx to i16
; CHECK-NEXT:    --> {(1 + (zext i8 %start to i16))<nuw><nsw>,+,1}<nuw><%loop> U: [1,0) S: [1,0) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %idx.inc = add nuw i8 %idx, 1
; CHECK-NEXT:    --> {(2 + %start),+,1}<nw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %condition = load volatile i1, ptr %c, align 1
; CHECK-NEXT:    --> %condition U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
; CHECK-NEXT:  Determining loop execution counts for: @infer.zext.1
; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
;
 entry:
  %start.inc = add i8 %start, 1
  %entry.condition = icmp ult i8 %start, 255
  br i1 %entry.condition, label %loop, label %exit

 loop:
  %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ]
  %idx.zext = zext i8 %idx to i16
  %idx.inc = add nuw i8 %idx, 1
  %condition = load volatile i1, ptr %c
  br i1 %condition, label %exit, label %loop

 exit:
  ret void
}