1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 5
; RUN: opt < %s -passes=aggressive-instcombine -S | FileCheck %s
; The LIT tests rely on i32, i16 and i8 being valid machine types.
; The bounds checking tests require also i64 and i128.
target datalayout = "n8:16:32:64:128"
; This LIT test checks if TruncInstCombine pass correctly recognizes the
; constraints from a signed min-max clamp. The clamp is a sequence of smin and
; smax instructions limiting a variable into a range, smin <= x <= smax.
;
; Each LIT test (except the last ones) has two versions depending on the order
; of smin and smax:
; a) y = smax(smin(x, upper_limit), lower_limit)
; b) y = smin(smax(x, lower_limit), upper_limit)
;
; The clamp is used in TruncInstCombine.cpp pass (as part of aggressive-instcombine)
; to optimize extensions and truncations of lshr. This is what is tested here.
; The pass also optimizes extensions and truncations of other binary operators,
; but in such cases the smin-smax clamp may not be used.
define i8 @test_0a(i16 %x) {
; CHECK-LABEL: define i8 @test_0a(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 31)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 0)
; CHECK-NEXT: [[A:%.*]] = trunc i16 [[TMP2]] to i8
; CHECK-NEXT: [[B:%.*]] = lshr i8 [[A]], 2
; CHECK-NEXT: ret i8 [[B]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 31)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 0)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
define i8 @test_0b(i16 %x) {
; CHECK-LABEL: define i8 @test_0b(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smax.i16(i16 [[X]], i16 0)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smin.i16(i16 [[TMP1]], i16 31)
; CHECK-NEXT: [[A:%.*]] = trunc i16 [[TMP2]] to i8
; CHECK-NEXT: [[B:%.*]] = lshr i8 [[A]], 2
; CHECK-NEXT: ret i8 [[B]]
;
%1 = tail call i16 @llvm.smax.i16(i16 %x, i16 0)
%2 = tail call i16 @llvm.smin.i16(i16 %1, i16 31)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; The following two tests contain add instead of lshr.
; The optimization works here as well.
define i8 @test_1a(i16 %x) {
; CHECK-LABEL: define i8 @test_1a(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 31)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 0)
; CHECK-NEXT: [[A:%.*]] = trunc i16 [[TMP2]] to i8
; CHECK-NEXT: [[B:%.*]] = add i8 [[A]], 2
; CHECK-NEXT: ret i8 [[B]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 31)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 0)
%a = sext i16 %2 to i32
%b = add i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
define i8 @test_1b(i16 %x) {
; CHECK-LABEL: define i8 @test_1b(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smax.i16(i16 [[X]], i16 0)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smin.i16(i16 [[TMP1]], i16 31)
; CHECK-NEXT: [[A:%.*]] = trunc i16 [[TMP2]] to i8
; CHECK-NEXT: [[B:%.*]] = add i8 [[A]], 2
; CHECK-NEXT: ret i8 [[B]]
;
%1 = tail call i16 @llvm.smax.i16(i16 %x, i16 0)
%2 = tail call i16 @llvm.smin.i16(i16 %1, i16 31)
%a = sext i16 %2 to i32
%b = add i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; Tests for clamping with negative min and max.
; With sext no optimization occurs.
define i8 @test_2a(i16 %x) {
; CHECK-LABEL: define i8 @test_2a(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 -1)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 -31)
; CHECK-NEXT: [[A:%.*]] = sext i16 [[TMP2]] to i32
; CHECK-NEXT: [[B:%.*]] = lshr i32 [[A]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i32 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 -1)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 -31)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
define i8 @test_2b(i16 %x) {
; CHECK-LABEL: define i8 @test_2b(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smax.i16(i16 [[X]], i16 -31)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smin.i16(i16 [[TMP1]], i16 -1)
; CHECK-NEXT: [[A:%.*]] = sext i16 [[TMP2]] to i32
; CHECK-NEXT: [[B:%.*]] = lshr i32 [[A]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i32 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smax.i16(i16 %x, i16 -31)
%2 = tail call i16 @llvm.smin.i16(i16 %1, i16 -1)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; With zext the optimization occurs.
define i8 @test_2c(i16 %x) {
; CHECK-LABEL: define i8 @test_2c(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 -1)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 -31)
; CHECK-NEXT: [[B:%.*]] = lshr i16 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i16 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 -1)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 -31)
%a = zext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
define i8 @test_2d(i16 %x) {
; CHECK-LABEL: define i8 @test_2d(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smax.i16(i16 [[X]], i16 -31)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smin.i16(i16 [[TMP1]], i16 -1)
; CHECK-NEXT: [[B:%.*]] = lshr i16 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i16 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smax.i16(i16 %x, i16 -31)
%2 = tail call i16 @llvm.smin.i16(i16 %1, i16 -1)
%a = zext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; Tests for clamping with mixed-signed min and max.
; With zext the optimization occurs.
define i8 @test_3a(i16 %x) {
; CHECK-LABEL: define i8 @test_3a(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 31)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 -31)
; CHECK-NEXT: [[B:%.*]] = lshr i16 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i16 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 31)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 -31)
%a = zext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
define i8 @test_3b(i16 %x) {
; CHECK-LABEL: define i8 @test_3b(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smax.i16(i16 [[X]], i16 -31)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smin.i16(i16 [[TMP1]], i16 31)
; CHECK-NEXT: [[B:%.*]] = lshr i16 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i16 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smax.i16(i16 %x, i16 -31)
%2 = tail call i16 @llvm.smin.i16(i16 %1, i16 31)
%a = zext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; Optimizations with vector types.
define <16 x i8> @test_vec_1a(<16 x i16> %x) {
; CHECK-LABEL: define <16 x i8> @test_vec_1a(
; CHECK-SAME: <16 x i16> [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call <16 x i16> @llvm.smin.v16i16(<16 x i16> [[X]], <16 x i16> splat (i16 127))
; CHECK-NEXT: [[TMP2:%.*]] = tail call <16 x i16> @llvm.smax.v16i16(<16 x i16> [[TMP1]], <16 x i16> zeroinitializer)
; CHECK-NEXT: [[A:%.*]] = trunc <16 x i16> [[TMP2]] to <16 x i8>
; CHECK-NEXT: [[B:%.*]] = lshr <16 x i8> [[A]], splat (i8 2)
; CHECK-NEXT: ret <16 x i8> [[B]]
;
%1 = tail call <16 x i16> @llvm.smin.v16i16(<16 x i16> %x, <16 x i16> splat (i16 127))
%2 = tail call <16 x i16> @llvm.smax.v16i16(<16 x i16> %1, <16 x i16> zeroinitializer)
%a = sext <16 x i16> %2 to <16 x i32>
%b = lshr <16 x i32> %a, splat (i32 2)
%b.trunc = trunc <16 x i32> %b to <16 x i8>
ret <16 x i8> %b.trunc
}
define <16 x i8> @test_vec_1b(<16 x i16> %x) {
; CHECK-LABEL: define <16 x i8> @test_vec_1b(
; CHECK-SAME: <16 x i16> [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call <16 x i16> @llvm.smax.v16i16(<16 x i16> [[X]], <16 x i16> zeroinitializer)
; CHECK-NEXT: [[TMP2:%.*]] = tail call <16 x i16> @llvm.smin.v16i16(<16 x i16> [[TMP1]], <16 x i16> splat (i16 127))
; CHECK-NEXT: [[A:%.*]] = trunc <16 x i16> [[TMP2]] to <16 x i8>
; CHECK-NEXT: [[B:%.*]] = lshr <16 x i8> [[A]], splat (i8 2)
; CHECK-NEXT: ret <16 x i8> [[B]]
;
%1 = tail call <16 x i16> @llvm.smax.v16i16(<16 x i16> %x, <16 x i16> zeroinitializer)
%2 = tail call <16 x i16> @llvm.smin.v16i16(<16 x i16> %1, <16 x i16> splat (i16 127))
%a = sext <16 x i16> %2 to <16 x i32>
%b = lshr <16 x i32> %a, splat (i32 2)
%b.trunc = trunc <16 x i32> %b to <16 x i8>
ret <16 x i8> %b.trunc
}
; A longer test that was the original motivation for the smin-smax clamping.
define i8 @test_final(i16 %x, i16 %y) {
; CHECK-LABEL: define i8 @test_final(
; CHECK-SAME: i16 [[X:%.*]], i16 [[Y:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 127)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 0)
; CHECK-NEXT: [[TMP3:%.*]] = tail call i16 @llvm.smax.i16(i16 [[Y]], i16 0)
; CHECK-NEXT: [[TMP4:%.*]] = tail call i16 @llvm.smin.i16(i16 [[TMP3]], i16 127)
; CHECK-NEXT: [[MUL:%.*]] = mul i16 [[TMP2]], [[TMP4]]
; CHECK-NEXT: [[SHR:%.*]] = lshr i16 [[MUL]], 7
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i16 [[SHR]] to i8
; CHECK-NEXT: ret i8 [[TRUNC]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 127)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 0)
%x.clamp = zext nneg i16 %2 to i32
%3 = tail call i16 @llvm.smax.i16(i16 %y, i16 0)
%4 = tail call i16 @llvm.smin.i16(i16 %3, i16 127)
%y.clamp = zext nneg i16 %4 to i32
%mul = mul nuw nsw i32 %x.clamp, %y.clamp
%shr = lshr i32 %mul, 7
%trunc= trunc nuw nsw i32 %shr to i8
ret i8 %trunc
}
; Range tests below check if the bounds are dealt with correctly.
; This gets optimized.
define i8 @test_bounds_1(i16 %x) {
; CHECK-LABEL: define i8 @test_bounds_1(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 127)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 0)
; CHECK-NEXT: [[A:%.*]] = trunc i16 [[TMP2]] to i8
; CHECK-NEXT: [[B:%.*]] = lshr i8 [[A]], 7
; CHECK-NEXT: ret i8 [[B]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 127)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 0)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 7
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; While this does not.
define i8 @test_bounds_2(i16 %x) {
; CHECK-LABEL: define i8 @test_bounds_2(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 128)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 0)
; CHECK-NEXT: [[A:%.*]] = trunc i16 [[TMP2]] to i8
; CHECK-NEXT: [[B:%.*]] = lshr i8 [[A]], 7
; CHECK-NEXT: ret i8 [[B]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 128)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 0)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 7
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; This should get optimized. We test here if the optimization works correctly
; if the upper limit is signed max int.
define i8 @test_bounds_3(i16 %x) {
; CHECK-LABEL: define i8 @test_bounds_3(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 32767)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 32752)
; CHECK-NEXT: [[B:%.*]] = lshr i16 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i16 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 32767)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 32752)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; Here min = 128 is greater than max = 0.
define i8 @test_bounds_4(i16 %x) {
; CHECK-LABEL: define i8 @test_bounds_4(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 0)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 128)
; CHECK-NEXT: [[B:%.*]] = lshr i16 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i16 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 0)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 128)
%a = sext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
; The following 3 tests check the situation where min and max are minimal and
; maximal signed values. No transformations should occur here.
define i8 @test_bounds_5(i16 %x) {
; CHECK-LABEL: define i8 @test_bounds_5(
; CHECK-SAME: i16 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i16 @llvm.smin.i16(i16 [[X]], i16 32767)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i16 @llvm.smax.i16(i16 [[TMP1]], i16 -32768)
; CHECK-NEXT: [[B:%.*]] = lshr i16 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i16 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i16 @llvm.smin.i16(i16 %x, i16 32767)
%2 = tail call i16 @llvm.smax.i16(i16 %1, i16 -32768)
%a = zext i16 %2 to i32
%b = lshr i32 %a, 2
%b.trunc = trunc i32 %b to i8
ret i8 %b.trunc
}
define i8 @test_bounds_6(i32 %x) {
; CHECK-LABEL: define i8 @test_bounds_6(
; CHECK-SAME: i32 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i32 @llvm.smin.i32(i32 [[X]], i32 2147483647)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i32 @llvm.smax.i32(i32 [[TMP1]], i32 -2147483648)
; CHECK-NEXT: [[B:%.*]] = lshr i32 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i32 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i32 @llvm.smin.i32(i32 %x, i32 2147483647)
%2 = tail call i32 @llvm.smax.i32(i32 %1, i32 -2147483648)
%a = zext i32 %2 to i64
%b = lshr i64 %a, 2
%b.trunc = trunc i64 %b to i8
ret i8 %b.trunc
}
define i8 @test_bounds_7(i64 %x) {
; CHECK-LABEL: define i8 @test_bounds_7(
; CHECK-SAME: i64 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = tail call i64 @llvm.smin.i64(i64 [[X]], i64 9223372036854775807)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i64 @llvm.smax.i64(i64 [[TMP1]], i64 -9223372036854775808)
; CHECK-NEXT: [[B:%.*]] = lshr i64 [[TMP2]], 2
; CHECK-NEXT: [[B_TRUNC:%.*]] = trunc i64 [[B]] to i8
; CHECK-NEXT: ret i8 [[B_TRUNC]]
;
%1 = tail call i64 @llvm.smin.i64(i64 %x, i64 9223372036854775807)
%2 = tail call i64 @llvm.smax.i64(i64 %1, i64 -9223372036854775808)
%a = zext i64 %2 to i128
%b = lshr i128 %a, 2
%b.trunc = trunc i128 %b to i8
ret i8 %b.trunc
}
|