1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=riscv32 -mattr=+m,+v < %s | FileCheck --check-prefix=RV32 %s
; RUN: llc -mtriple=riscv64 -mattr=+m,+v < %s | FileCheck --check-prefix=RV64 %s
; FIXME: We can rematerialize "addi s0, a2, 32" (ideally along the edge
; %do.call -> %exit), and shrink wrap this routine
define void @vecaddr_straightline(i32 zeroext %a, ptr %p) {
; RV32-LABEL: vecaddr_straightline:
; RV32: # %bb.0:
; RV32-NEXT: addi sp, sp, -16
; RV32-NEXT: .cfi_def_cfa_offset 16
; RV32-NEXT: sw ra, 12(sp) # 4-byte Folded Spill
; RV32-NEXT: sw s0, 8(sp) # 4-byte Folded Spill
; RV32-NEXT: .cfi_offset ra, -4
; RV32-NEXT: .cfi_offset s0, -8
; RV32-NEXT: addi s0, a1, 32
; RV32-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV32-NEXT: vle32.v v8, (s0)
; RV32-NEXT: vadd.vi v8, v8, 1
; RV32-NEXT: li a1, 57
; RV32-NEXT: vse32.v v8, (s0)
; RV32-NEXT: beq a0, a1, .LBB0_2
; RV32-NEXT: # %bb.1: # %do_call
; RV32-NEXT: call foo
; RV32-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV32-NEXT: .LBB0_2: # %exit
; RV32-NEXT: vle32.v v8, (s0)
; RV32-NEXT: vadd.vi v8, v8, 1
; RV32-NEXT: vse32.v v8, (s0)
; RV32-NEXT: lw ra, 12(sp) # 4-byte Folded Reload
; RV32-NEXT: lw s0, 8(sp) # 4-byte Folded Reload
; RV32-NEXT: .cfi_restore ra
; RV32-NEXT: .cfi_restore s0
; RV32-NEXT: addi sp, sp, 16
; RV32-NEXT: .cfi_def_cfa_offset 0
; RV32-NEXT: ret
;
; RV64-LABEL: vecaddr_straightline:
; RV64: # %bb.0:
; RV64-NEXT: addi sp, sp, -16
; RV64-NEXT: .cfi_def_cfa_offset 16
; RV64-NEXT: sd ra, 8(sp) # 8-byte Folded Spill
; RV64-NEXT: sd s0, 0(sp) # 8-byte Folded Spill
; RV64-NEXT: .cfi_offset ra, -8
; RV64-NEXT: .cfi_offset s0, -16
; RV64-NEXT: addi s0, a1, 32
; RV64-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV64-NEXT: vle32.v v8, (s0)
; RV64-NEXT: vadd.vi v8, v8, 1
; RV64-NEXT: li a1, 57
; RV64-NEXT: vse32.v v8, (s0)
; RV64-NEXT: beq a0, a1, .LBB0_2
; RV64-NEXT: # %bb.1: # %do_call
; RV64-NEXT: call foo
; RV64-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV64-NEXT: .LBB0_2: # %exit
; RV64-NEXT: vle32.v v8, (s0)
; RV64-NEXT: vadd.vi v8, v8, 1
; RV64-NEXT: vse32.v v8, (s0)
; RV64-NEXT: ld ra, 8(sp) # 8-byte Folded Reload
; RV64-NEXT: ld s0, 0(sp) # 8-byte Folded Reload
; RV64-NEXT: .cfi_restore ra
; RV64-NEXT: .cfi_restore s0
; RV64-NEXT: addi sp, sp, 16
; RV64-NEXT: .cfi_def_cfa_offset 0
; RV64-NEXT: ret
%gep = getelementptr i8, ptr %p, i32 32
%v1 = load <4 x i32>, ptr %gep
%v2 = add <4 x i32> %v1, splat (i32 1)
store <4 x i32> %v2, ptr %gep
%cmp0 = icmp eq i32 %a, 57
br i1 %cmp0, label %exit, label %do_call
do_call:
call i32 @foo()
br label %exit
exit:
%v3 = load <4 x i32>, ptr %gep
%v4 = add <4 x i32> %v3, splat (i32 1)
store <4 x i32> %v4, ptr %gep
ret void
}
; In this case, the second use is in a loop, so using a callee
; saved register to avoid a remat is the profitable choice.
; FIXME: We can shrink wrap the frame setup around the loop
; and avoid it along the %bb.0 -> %exit edge
define void @vecaddr_loop(i32 zeroext %a, ptr %p) {
; RV32-LABEL: vecaddr_loop:
; RV32: # %bb.0:
; RV32-NEXT: addi sp, sp, -16
; RV32-NEXT: .cfi_def_cfa_offset 16
; RV32-NEXT: sw ra, 12(sp) # 4-byte Folded Spill
; RV32-NEXT: sw s0, 8(sp) # 4-byte Folded Spill
; RV32-NEXT: .cfi_offset ra, -4
; RV32-NEXT: .cfi_offset s0, -8
; RV32-NEXT: addi s0, a1, 32
; RV32-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV32-NEXT: vle32.v v8, (s0)
; RV32-NEXT: vadd.vi v8, v8, 1
; RV32-NEXT: li a1, 57
; RV32-NEXT: vse32.v v8, (s0)
; RV32-NEXT: beq a0, a1, .LBB1_2
; RV32-NEXT: .LBB1_1: # %do_call
; RV32-NEXT: # =>This Inner Loop Header: Depth=1
; RV32-NEXT: call foo
; RV32-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV32-NEXT: vle32.v v8, (s0)
; RV32-NEXT: vadd.vi v8, v8, 1
; RV32-NEXT: vse32.v v8, (s0)
; RV32-NEXT: bnez a0, .LBB1_1
; RV32-NEXT: .LBB1_2: # %exit
; RV32-NEXT: lw ra, 12(sp) # 4-byte Folded Reload
; RV32-NEXT: lw s0, 8(sp) # 4-byte Folded Reload
; RV32-NEXT: .cfi_restore ra
; RV32-NEXT: .cfi_restore s0
; RV32-NEXT: addi sp, sp, 16
; RV32-NEXT: .cfi_def_cfa_offset 0
; RV32-NEXT: ret
;
; RV64-LABEL: vecaddr_loop:
; RV64: # %bb.0:
; RV64-NEXT: addi sp, sp, -16
; RV64-NEXT: .cfi_def_cfa_offset 16
; RV64-NEXT: sd ra, 8(sp) # 8-byte Folded Spill
; RV64-NEXT: sd s0, 0(sp) # 8-byte Folded Spill
; RV64-NEXT: .cfi_offset ra, -8
; RV64-NEXT: .cfi_offset s0, -16
; RV64-NEXT: addi s0, a1, 32
; RV64-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV64-NEXT: vle32.v v8, (s0)
; RV64-NEXT: vadd.vi v8, v8, 1
; RV64-NEXT: li a1, 57
; RV64-NEXT: vse32.v v8, (s0)
; RV64-NEXT: beq a0, a1, .LBB1_2
; RV64-NEXT: .LBB1_1: # %do_call
; RV64-NEXT: # =>This Inner Loop Header: Depth=1
; RV64-NEXT: call foo
; RV64-NEXT: vsetivli zero, 4, e32, m1, ta, ma
; RV64-NEXT: vle32.v v8, (s0)
; RV64-NEXT: vadd.vi v8, v8, 1
; RV64-NEXT: vse32.v v8, (s0)
; RV64-NEXT: bnez a0, .LBB1_1
; RV64-NEXT: .LBB1_2: # %exit
; RV64-NEXT: ld ra, 8(sp) # 8-byte Folded Reload
; RV64-NEXT: ld s0, 0(sp) # 8-byte Folded Reload
; RV64-NEXT: .cfi_restore ra
; RV64-NEXT: .cfi_restore s0
; RV64-NEXT: addi sp, sp, 16
; RV64-NEXT: .cfi_def_cfa_offset 0
; RV64-NEXT: ret
%gep = getelementptr i8, ptr %p, i32 32
%v1 = load <4 x i32>, ptr %gep
%v2 = add <4 x i32> %v1, splat (i32 1)
store <4 x i32> %v2, ptr %gep
%cmp0 = icmp eq i32 %a, 57
br i1 %cmp0, label %exit, label %do_call
do_call:
%b = call i32 @foo()
%v3 = load <4 x i32>, ptr %gep
%v4 = add <4 x i32> %v3, splat (i32 1)
store <4 x i32> %v4, ptr %gep
%cmp1 = icmp eq i32 %b, 0
br i1 %cmp1, label %exit, label %do_call
exit:
ret void
}
declare zeroext i32 @foo()
|