1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
; REQUIRES: asserts
; RUN: opt -passes=loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -debug-only=loop-vectorize -disable-output -S %s 2>&1 | FileCheck %s
define void @test_chained_first_order_recurrences_1(ptr %ptr) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_1'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1000> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN ir<%for.1.next> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1>, ir<%for.1.next>
; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE:%.+]]> = first-order splice ir<%for.2>, vp<[[FOR1_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%for.1.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = extract-from-end vp<[[FOR1_SPLICE]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<1000>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<22>
; CHECK-NEXT: EMIT vp<[[RESUME_2_P:%.*]]>.1 = resume-phi vp<[[RESUME_2]]>.1, ir<33>
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
; CHECK-NEXT: IR %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] (extra operand: vp<[[RESUME_2_P]]>.1 from scalar.ph)
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK: IR %exitcond.not = icmp eq i64 %iv.next, 1000
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ]
%for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ]
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%iv.next = add nuw nsw i64 %iv, 1
%gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv
%for.1.next = load i16, ptr %gep.ptr, align 2
%add = add i16 %for.1, %for.2
store i16 %add, ptr %gep.ptr
%exitcond.not = icmp eq i64 %iv.next, 1000
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @test_chained_first_order_recurrences_3(ptr %ptr) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_3'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1000> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.3> = phi ir<33>, vp<[[FOR2_SPLICE:%.+]]>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN ir<%for.1.next> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1>, ir<%for.1.next>
; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE]]> = first-order splice ir<%for.2>, vp<[[FOR1_SPLICE]]>
; CHECK-NEXT: EMIT vp<[[FOR3_SPLICE:%.+]]> = first-order splice ir<%for.3>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add.1> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add.2> = add ir<%add.1>, vp<[[FOR3_SPLICE]]>
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add.2>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%for.1.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = extract-from-end vp<[[FOR1_SPLICE]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[RESUME_3:%.+]]>.2 = extract-from-end vp<[[FOR2_SPLICE]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<1000>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<22>
; CHECK-NEXT: EMIT vp<[[RESUME_2_P:%.*]]>.1 = resume-phi vp<[[RESUME_2]]>.1, ir<33>
; CHECK-NEXT: EMIT vp<[[RESUME_3_P:%.*]]>.2 = resume-phi vp<[[RESUME_3]]>.2, ir<33>
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
; CHECK-NEXT: IR %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] (extra operand: vp<[[RESUME_2_P]]>.1 from scalar.ph)
; CHECK-NEXT: IR %for.3 = phi i16 [ 33, %entry ], [ %for.2, %loop ] (extra operand: vp<[[RESUME_3_P]]>.2 from scalar.ph)
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK: IR %exitcond.not = icmp eq i64 %iv.next, 1000
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ]
%for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ]
%for.3 = phi i16 [ 33, %entry ], [ %for.2, %loop ]
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%iv.next = add nuw nsw i64 %iv, 1
%gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv
%for.1.next = load i16, ptr %gep.ptr, align 2
%add.1 = add i16 %for.1, %for.2
%add.2 = add i16 %add.1, %for.3
store i16 %add.2, ptr %gep.ptr
%exitcond.not = icmp eq i64 %iv.next, 1000
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
; This test has two FORs (for.x and for.y) where incoming value from the previous
; iteration (for.x.prev) of one FOR (for.y) depends on another FOR (for.x).
; Sinking would require moving a recipe with side effects (store). Instead,
; for.x.next can be hoisted.
define i32 @test_chained_first_order_recurrences_4(ptr %base, i64 %x) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_4'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<4098> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: WIDEN ir<%for.x.next> = mul ir<%x>, ir<2>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.x> = phi ir<0>, ir<%for.x.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.y> = phi ir<0>, ir<%for.x.prev>
; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep> = getelementptr ir<%base>, vp<[[SCALAR_STEPS]]>
; CHECK-NEXT: EMIT vp<[[SPLICE_X:%.]]> = first-order splice ir<%for.x>, ir<%for.x.next>
; CHECK-NEXT: WIDEN-CAST ir<%for.x.prev> = trunc vp<[[SPLICE_X]]> to i32
; CHECK-NEXT: EMIT vp<[[SPLICE_Y:%.+]]> = first-order splice ir<%for.y>, ir<%for.x.prev>
; CHECK-NEXT: WIDEN-CAST ir<%for.y.i64> = sext vp<[[SPLICE_Y]]> to i64
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%for.y.i64>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[EXT_X:%.+]]> = extract-from-end ir<%for.x.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[EXT_Y:%.+]]>.1 = extract-from-end ir<%for.x.prev>, ir<1>
; CHECK-NEXT: EMIT vp<[[MIDDLE_C:%.+]]> = icmp eq ir<4098>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[MIDDLE_C]]>
; CHECK-NEXT: Successor(s): ir-bb<ret>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_X:%.+]]> = resume-phi vp<[[EXT_X]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_Y:%.+]]>.1 = resume-phi vp<[[EXT_Y]]>.1, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK-NEXT: IR %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_X]]> from scalar.ph)
; CHECK-NEXT: IR %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_Y]]>.1 from scalar.ph)
; CHECK: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<ret>:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ]
%for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ]
%for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ]
%iv.next = add i64 %iv, 1
%gep = getelementptr i64, ptr %base, i64 %iv
%for.x.prev = trunc i64 %for.x to i32
%for.y.i64 = sext i32 %for.y to i64
store i64 %for.y.i64, ptr %gep
%for.x.next = mul i64 %x, 2
%icmp = icmp ugt i64 %iv, 4096
br i1 %icmp, label %ret, label %loop
ret:
ret i32 0
}
define i32 @test_chained_first_order_recurrences_5_hoist_to_load(ptr %base) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_5_hoist_to_load'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<4098> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.x> = phi ir<0>, ir<%for.x.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.y> = phi ir<0>, ir<%for.x.prev>
; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep> = getelementptr ir<%base>, vp<[[SCALAR_STEPS]]>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep>
; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: WIDEN ir<%for.x.next> = mul ir<%l>, ir<2>
; CHECK-NEXT: EMIT vp<[[SPLICE_X:%.]]> = first-order splice ir<%for.x>, ir<%for.x.next>
; CHECK-NEXT: WIDEN-CAST ir<%for.x.prev> = trunc vp<[[SPLICE_X]]> to i32
; CHECK-NEXT: EMIT vp<[[SPLICE_Y:%.+]]> = first-order splice ir<%for.y>, ir<%for.x.prev>
; CHECK-NEXT: WIDEN-CAST ir<%for.y.i64> = sext vp<[[SPLICE_Y]]> to i64
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%for.y.i64>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[EXT_X:%.+]]> = extract-from-end ir<%for.x.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[EXT_Y:%.+]]>.1 = extract-from-end ir<%for.x.prev>, ir<1>
; CHECK-NEXT: EMIT vp<[[MIDDLE_C:%.+]]> = icmp eq ir<4098>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[MIDDLE_C]]>
; CHECK-NEXT: Successor(s): ir-bb<ret>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_X:%.+]]> = resume-phi vp<[[EXT_X]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_Y:%.+]]>.1 = resume-phi vp<[[EXT_Y]]>.1, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK-NEXT: IR %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_X]]> from scalar.ph)
; CHECK-NEXT: IR %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_Y]]>.1 from scalar.ph)
; CHECK: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<ret>:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ]
%for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ]
%for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ]
%iv.next = add i64 %iv, 1
%gep = getelementptr i64, ptr %base, i64 %iv
%l = load i64, ptr %gep
%for.x.prev = trunc i64 %for.x to i32
%for.y.i64 = sext i32 %for.y to i64
store i64 %for.y.i64, ptr %gep
%for.x.next = mul i64 %l, 2
%icmp = icmp ugt i64 %iv, 4096
br i1 %icmp, label %ret, label %loop
ret:
ret i32 0
}
|