1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
|
//===- IteratorTest.cpp - Unit tests for iterator utilities ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <optional>
#include <type_traits>
#include <vector>
using namespace llvm;
using testing::ElementsAre;
namespace {
template <int> struct Shadow;
struct WeirdIter
: llvm::iterator_facade_base<WeirdIter, std::input_iterator_tag, Shadow<0>,
Shadow<1>, Shadow<2>, Shadow<3>> {};
struct AdaptedIter : iterator_adaptor_base<AdaptedIter, WeirdIter> {};
// Test that iterator_adaptor_base forwards typedefs, if value_type is
// unchanged.
static_assert(std::is_same_v<typename AdaptedIter::value_type, Shadow<0>>, "");
static_assert(std::is_same_v<typename AdaptedIter::difference_type, Shadow<1>>,
"");
static_assert(std::is_same_v<typename AdaptedIter::pointer, Shadow<2>>, "");
static_assert(std::is_same_v<typename AdaptedIter::reference, Shadow<3>>, "");
// Ensure that pointe{e,r}_iterator adaptors correctly forward the category of
// the underlying iterator.
using RandomAccessIter = SmallVectorImpl<int*>::iterator;
using BidiIter = ilist<int*>::iterator;
template<class T>
using pointee_iterator_defaulted = pointee_iterator<T>;
template<class T>
using pointer_iterator_defaulted = pointer_iterator<T>;
// Ensures that an iterator and its adaptation have the same iterator_category.
template<template<typename> class A, typename It>
using IsAdaptedIterCategorySame =
std::is_same<typename std::iterator_traits<It>::iterator_category,
typename std::iterator_traits<A<It>>::iterator_category>;
// Check that dereferencing works correctly adapting pointers and proxies.
template <class T>
struct PointerWrapper : public iterator_adaptor_base<PointerWrapper<T>, T *> {
PointerWrapper(T *I) : PointerWrapper::iterator_adaptor_base(I) {}
};
struct IntProxy {
int &I;
IntProxy(int &I) : I(I) {}
void operator=(int NewValue) { I = NewValue; }
};
struct ConstIntProxy {
const int &I;
ConstIntProxy(const int &I) : I(I) {}
};
template <class T, class ProxyT>
struct PointerProxyWrapper
: public iterator_adaptor_base<PointerProxyWrapper<T, ProxyT>, T *,
std::random_access_iterator_tag, T,
ptrdiff_t, T *, ProxyT> {
PointerProxyWrapper(T *I) : PointerProxyWrapper::iterator_adaptor_base(I) {}
};
using IntIterator = PointerWrapper<int>;
using ConstIntIterator = PointerWrapper<const int>;
using IntProxyIterator = PointerProxyWrapper<int, IntProxy>;
using ConstIntProxyIterator = PointerProxyWrapper<const int, ConstIntProxy>;
// There should only be a single (const-qualified) operator*, operator->, and
// operator[]. This test confirms that there isn't a non-const overload. Rather
// than adding those, users should double-check that T, PointerT, and ReferenceT
// have the right constness, and/or make fields mutable.
static_assert(&IntIterator::operator* == &IntIterator::operator*, "");
static_assert(&IntIterator::operator-> == &IntIterator::operator->, "");
static_assert(&IntIterator::operator[] == &IntIterator::operator[], "");
template <class T, std::enable_if_t<std::is_assignable_v<T, int>, bool> = false>
constexpr bool canAssignFromInt(T &&) {
return true;
}
template <class T,
std::enable_if_t<!std::is_assignable_v<T, int>, bool> = false>
constexpr bool canAssignFromInt(T &&) {
return false;
}
TEST(IteratorAdaptorTest, Dereference) {
int Number = 1;
// Construct some iterators and check whether they can be assigned to.
IntIterator I(&Number);
const IntIterator IC(&Number);
ConstIntIterator CI(&Number);
const ConstIntIterator CIC(&Number);
EXPECT_EQ(true, canAssignFromInt(*I)); // int *
EXPECT_EQ(true, canAssignFromInt(*IC)); // int *const
EXPECT_EQ(false, canAssignFromInt(*CI)); // const int *
EXPECT_EQ(false, canAssignFromInt(*CIC)); // const int *const
// Prove that dereference and assignment work.
EXPECT_EQ(1, *I);
EXPECT_EQ(1, *IC);
EXPECT_EQ(1, *CI);
EXPECT_EQ(1, *CIC);
*I = 2;
EXPECT_EQ(2, Number);
*IC = 3;
EXPECT_EQ(3, Number);
// Construct some proxy iterators and check whether they can be assigned to.
IntProxyIterator P(&Number);
const IntProxyIterator PC(&Number);
ConstIntProxyIterator CP(&Number);
const ConstIntProxyIterator CPC(&Number);
EXPECT_EQ(true, canAssignFromInt(*P)); // int *
EXPECT_EQ(true, canAssignFromInt(*PC)); // int *const
EXPECT_EQ(false, canAssignFromInt(*CP)); // const int *
EXPECT_EQ(false, canAssignFromInt(*CPC)); // const int *const
// Prove that dereference and assignment work.
EXPECT_EQ(3, (*P).I);
EXPECT_EQ(3, (*PC).I);
EXPECT_EQ(3, (*CP).I);
EXPECT_EQ(3, (*CPC).I);
*P = 4;
EXPECT_EQ(4, Number);
*PC = 5;
EXPECT_EQ(5, Number);
}
// pointeE_iterator
static_assert(IsAdaptedIterCategorySame<pointee_iterator_defaulted,
RandomAccessIter>::value, "");
static_assert(IsAdaptedIterCategorySame<pointee_iterator_defaulted,
BidiIter>::value, "");
// pointeR_iterator
static_assert(IsAdaptedIterCategorySame<pointer_iterator_defaulted,
RandomAccessIter>::value, "");
static_assert(IsAdaptedIterCategorySame<pointer_iterator_defaulted,
BidiIter>::value, "");
TEST(PointeeIteratorTest, Basic) {
int arr[4] = {1, 2, 3, 4};
SmallVector<int *, 4> V;
V.push_back(&arr[0]);
V.push_back(&arr[1]);
V.push_back(&arr[2]);
V.push_back(&arr[3]);
typedef pointee_iterator<SmallVectorImpl<int *>::const_iterator>
test_iterator;
test_iterator Begin, End;
Begin = V.begin();
End = test_iterator(V.end());
test_iterator I = Begin;
for (int i = 0; i < 4; ++i) {
EXPECT_EQ(*V[i], *I);
EXPECT_EQ(I, Begin + i);
EXPECT_EQ(I, std::next(Begin, i));
test_iterator J = Begin;
J += i;
EXPECT_EQ(I, J);
EXPECT_EQ(*V[i], Begin[i]);
EXPECT_NE(I, End);
EXPECT_GT(End, I);
EXPECT_LT(I, End);
EXPECT_GE(I, Begin);
EXPECT_LE(Begin, I);
EXPECT_EQ(i, I - Begin);
EXPECT_EQ(i, std::distance(Begin, I));
EXPECT_EQ(Begin, I - i);
test_iterator K = I++;
EXPECT_EQ(K, std::prev(I));
}
EXPECT_EQ(End, I);
}
TEST(PointeeIteratorTest, SmartPointer) {
SmallVector<std::unique_ptr<int>, 4> V;
V.push_back(std::make_unique<int>(1));
V.push_back(std::make_unique<int>(2));
V.push_back(std::make_unique<int>(3));
V.push_back(std::make_unique<int>(4));
typedef pointee_iterator<
SmallVectorImpl<std::unique_ptr<int>>::const_iterator>
test_iterator;
test_iterator Begin, End;
Begin = V.begin();
End = test_iterator(V.end());
test_iterator I = Begin;
for (int i = 0; i < 4; ++i) {
EXPECT_EQ(*V[i], *I);
EXPECT_EQ(I, Begin + i);
EXPECT_EQ(I, std::next(Begin, i));
test_iterator J = Begin;
J += i;
EXPECT_EQ(I, J);
EXPECT_EQ(*V[i], Begin[i]);
EXPECT_NE(I, End);
EXPECT_GT(End, I);
EXPECT_LT(I, End);
EXPECT_GE(I, Begin);
EXPECT_LE(Begin, I);
EXPECT_EQ(i, I - Begin);
EXPECT_EQ(i, std::distance(Begin, I));
EXPECT_EQ(Begin, I - i);
test_iterator K = I++;
EXPECT_EQ(K, std::prev(I));
}
EXPECT_EQ(End, I);
}
TEST(PointeeIteratorTest, Range) {
int A[] = {1, 2, 3, 4};
SmallVector<int *, 4> V{&A[0], &A[1], &A[2], &A[3]};
int I = 0;
for (int II : make_pointee_range(V))
EXPECT_EQ(A[I++], II);
}
TEST(PointeeIteratorTest, PointeeType) {
struct S {
int X;
bool operator==(const S &RHS) const { return X == RHS.X; };
};
S A[] = {S{0}, S{1}};
SmallVector<S *, 2> V{&A[0], &A[1]};
pointee_iterator<SmallVectorImpl<S *>::const_iterator, const S> I = V.begin();
for (int j = 0; j < 2; ++j, ++I) {
EXPECT_EQ(*V[j], *I);
}
}
TEST(FilterIteratorTest, Lambda) {
auto IsOdd = [](int N) { return N % 2 == 1; };
int A[] = {0, 1, 2, 3, 4, 5, 6};
auto Range = make_filter_range(A, IsOdd);
SmallVector<int, 3> Actual(Range.begin(), Range.end());
EXPECT_EQ((SmallVector<int, 3>{1, 3, 5}), Actual);
}
TEST(FilterIteratorTest, Enumerate) {
auto IsOdd = [](auto N) { return N.value() % 2 == 1; };
int A[] = {0, 1, 2, 3, 4, 5, 6};
auto Enumerate = llvm::enumerate(A);
SmallVector<int> Actual;
for (const auto &IndexedValue : make_filter_range(Enumerate, IsOdd))
Actual.push_back(IndexedValue.value());
EXPECT_EQ((SmallVector<int, 3>{1, 3, 5}), Actual);
}
TEST(FilterIteratorTest, CallableObject) {
int Counter = 0;
struct Callable {
int &Counter;
Callable(int &Counter) : Counter(Counter) {}
bool operator()(int N) {
Counter++;
return N % 2 == 1;
}
};
Callable IsOdd(Counter);
int A[] = {0, 1, 2, 3, 4, 5, 6};
auto Range = make_filter_range(A, IsOdd);
EXPECT_EQ(2, Counter);
SmallVector<int, 3> Actual(Range.begin(), Range.end());
EXPECT_GE(Counter, 7);
EXPECT_EQ((SmallVector<int, 3>{1, 3, 5}), Actual);
}
TEST(FilterIteratorTest, FunctionPointer) {
bool (*IsOdd)(int) = [](int N) { return N % 2 == 1; };
int A[] = {0, 1, 2, 3, 4, 5, 6};
auto Range = make_filter_range(A, IsOdd);
SmallVector<int, 3> Actual(Range.begin(), Range.end());
EXPECT_EQ((SmallVector<int, 3>{1, 3, 5}), Actual);
}
TEST(FilterIteratorTest, Composition) {
auto IsOdd = [](int N) { return N % 2 == 1; };
std::unique_ptr<int> A[] = {std::make_unique<int>(0), std::make_unique<int>(1),
std::make_unique<int>(2), std::make_unique<int>(3),
std::make_unique<int>(4), std::make_unique<int>(5),
std::make_unique<int>(6)};
using PointeeIterator = pointee_iterator<std::unique_ptr<int> *>;
auto Range = make_filter_range(
make_range(PointeeIterator(std::begin(A)), PointeeIterator(std::end(A))),
IsOdd);
SmallVector<int, 3> Actual(Range.begin(), Range.end());
EXPECT_EQ((SmallVector<int, 3>{1, 3, 5}), Actual);
}
TEST(FilterIteratorTest, InputIterator) {
struct InputIterator
: iterator_adaptor_base<InputIterator, int *, std::input_iterator_tag> {
InputIterator(int *It) : InputIterator::iterator_adaptor_base(It) {}
};
auto IsOdd = [](int N) { return N % 2 == 1; };
int A[] = {0, 1, 2, 3, 4, 5, 6};
auto Range = make_filter_range(
make_range(InputIterator(std::begin(A)), InputIterator(std::end(A))),
IsOdd);
SmallVector<int, 3> Actual(Range.begin(), Range.end());
EXPECT_EQ((SmallVector<int, 3>{1, 3, 5}), Actual);
}
TEST(FilterIteratorTest, ReverseFilterRange) {
auto IsOdd = [](int N) { return N % 2 == 1; };
int A[] = {0, 1, 2, 3, 4, 5, 6};
// Check basic reversal.
auto Range = reverse(make_filter_range(A, IsOdd));
SmallVector<int, 3> Actual(Range.begin(), Range.end());
EXPECT_EQ((SmallVector<int, 3>{5, 3, 1}), Actual);
// Check that the reverse of the reverse is the original.
auto Range2 = reverse(reverse(make_filter_range(A, IsOdd)));
SmallVector<int, 3> Actual2(Range2.begin(), Range2.end());
EXPECT_EQ((SmallVector<int, 3>{1, 3, 5}), Actual2);
// Check empty ranges.
auto Range3 = reverse(make_filter_range(ArrayRef<int>(), IsOdd));
SmallVector<int, 0> Actual3(Range3.begin(), Range3.end());
EXPECT_EQ((SmallVector<int, 0>{}), Actual3);
// Check that we don't skip the first element, provided it isn't filtered
// away.
auto IsEven = [](int N) { return N % 2 == 0; };
auto Range4 = reverse(make_filter_range(A, IsEven));
SmallVector<int, 4> Actual4(Range4.begin(), Range4.end());
EXPECT_EQ((SmallVector<int, 4>{6, 4, 2, 0}), Actual4);
}
TEST(PointerIterator, Basic) {
int A[] = {1, 2, 3, 4};
pointer_iterator<int *> Begin(std::begin(A)), End(std::end(A));
EXPECT_EQ(A, *Begin);
++Begin;
EXPECT_EQ(A + 1, *Begin);
++Begin;
EXPECT_EQ(A + 2, *Begin);
++Begin;
EXPECT_EQ(A + 3, *Begin);
++Begin;
EXPECT_EQ(Begin, End);
}
TEST(PointerIterator, Const) {
int A[] = {1, 2, 3, 4};
const pointer_iterator<int *> Begin(std::begin(A));
EXPECT_EQ(A, *Begin);
EXPECT_EQ(A + 1, std::next(*Begin, 1));
EXPECT_EQ(A + 2, std::next(*Begin, 2));
EXPECT_EQ(A + 3, std::next(*Begin, 3));
EXPECT_EQ(A + 4, std::next(*Begin, 4));
}
TEST(PointerIterator, Range) {
int A[] = {1, 2, 3, 4};
int I = 0;
for (int *P : make_pointer_range(A))
EXPECT_EQ(A + I++, P);
}
namespace rbegin_detail {
struct WithFreeRBegin {
int data[3] = {42, 43, 44};
};
auto rbegin(const WithFreeRBegin &X) { return std::rbegin(X.data); }
auto rend(const WithFreeRBegin &X) { return std::rend(X.data); }
} // namespace rbegin_detail
TEST(ReverseTest, ADL) {
// Check that we can find the rbegin/rend functions via ADL.
rbegin_detail::WithFreeRBegin Foo;
EXPECT_THAT(reverse(Foo), ElementsAre(44, 43, 42));
}
TEST(ZipIteratorTest, Basic) {
using namespace std;
const SmallVector<unsigned, 6> pi{3, 1, 4, 1, 5, 9};
SmallVector<bool, 6> odd{1, 1, 0, 1, 1, 1};
const char message[] = "yynyyy\0";
std::array<int, 2> shortArr = {42, 43};
for (auto tup : zip(pi, odd, message)) {
EXPECT_EQ(get<0>(tup) & 0x01, get<1>(tup));
EXPECT_EQ(get<0>(tup) & 0x01 ? 'y' : 'n', get<2>(tup));
}
// Note the rvalue.
for (auto tup : zip(pi, SmallVector<bool, 0>{1, 1, 0, 1, 1})) {
EXPECT_EQ(get<0>(tup) & 0x01, get<1>(tup));
}
// Iterate until we run out elements in the *shortest* range.
for (auto [idx, elem] : enumerate(zip(odd, shortArr))) {
EXPECT_LT(idx, static_cast<size_t>(2));
}
for (auto [idx, elem] : enumerate(zip(shortArr, odd))) {
EXPECT_LT(idx, static_cast<size_t>(2));
}
}
TEST(ZipIteratorTest, ZipEqualBasic) {
const SmallVector<unsigned, 6> pi = {3, 1, 4, 1, 5, 8};
const SmallVector<bool, 6> vals = {1, 1, 0, 1, 1, 0};
unsigned iters = 0;
for (auto [lhs, rhs] : zip_equal(vals, pi)) {
EXPECT_EQ(lhs, rhs & 0x01);
++iters;
}
EXPECT_EQ(iters, 6u);
}
template <typename T>
constexpr bool IsConstRef =
std::is_reference_v<T> && std::is_const_v<std::remove_reference_t<T>>;
template <typename T>
constexpr bool IsBoolConstRef =
std::is_same_v<llvm::remove_cvref_t<T>, std::vector<bool>::const_reference>;
/// Returns a `const` copy of the passed value. The `const` on the returned
/// value is intentional here so that `MakeConst` can be used in range-for
/// loops.
template <typename T> const T MakeConst(T &&value) {
return std::forward<T>(value);
}
TEST(ZipIteratorTest, ZipEqualConstCorrectness) {
const std::vector<unsigned> c_first = {3, 1, 4};
std::vector<unsigned> first = c_first;
const SmallVector<bool> c_second = {1, 1, 0};
SmallVector<bool> second = c_second;
for (auto [a, b, c, d] : zip_equal(c_first, first, c_second, second)) {
b = 0;
d = true;
static_assert(IsConstRef<decltype(a)>);
static_assert(!IsConstRef<decltype(b)>);
static_assert(IsConstRef<decltype(c)>);
static_assert(!IsConstRef<decltype(d)>);
}
EXPECT_THAT(first, ElementsAre(0, 0, 0));
EXPECT_THAT(second, ElementsAre(true, true, true));
std::vector<bool> nemesis = {true, false, true};
const std::vector<bool> c_nemesis = nemesis;
for (auto &&[a, b, c, d] : zip_equal(first, c_first, nemesis, c_nemesis)) {
a = 2;
c = true;
static_assert(!IsConstRef<decltype(a)>);
static_assert(IsConstRef<decltype(b)>);
static_assert(!IsBoolConstRef<decltype(c)>);
static_assert(IsBoolConstRef<decltype(d)>);
}
EXPECT_THAT(first, ElementsAre(2, 2, 2));
EXPECT_THAT(nemesis, ElementsAre(true, true, true));
unsigned iters = 0;
for (const auto &[a, b, c, d] :
zip_equal(first, c_first, nemesis, c_nemesis)) {
static_assert(!IsConstRef<decltype(a)>);
static_assert(IsConstRef<decltype(b)>);
static_assert(!IsBoolConstRef<decltype(c)>);
static_assert(IsBoolConstRef<decltype(d)>);
++iters;
}
EXPECT_EQ(iters, 3u);
iters = 0;
for (const auto &[a, b, c, d] :
MakeConst(zip_equal(first, c_first, nemesis, c_nemesis))) {
static_assert(!IsConstRef<decltype(a)>);
static_assert(IsConstRef<decltype(b)>);
static_assert(!IsBoolConstRef<decltype(c)>);
static_assert(IsBoolConstRef<decltype(d)>);
++iters;
}
EXPECT_EQ(iters, 3u);
}
TEST(ZipIteratorTest, ZipEqualTemporaries) {
unsigned iters = 0;
// These temporary ranges get moved into the `tuple<...> storage;` inside
// `zippy`. From then on, we can use references obtained from this storage to
// access them. This does not rely on any lifetime extensions on the
// temporaries passed to `zip_equal`.
for (auto [a, b, c] : zip_equal(SmallVector<int>{1, 2, 3}, std::string("abc"),
std::vector<bool>{true, false, true})) {
a = 3;
b = 'c';
c = false;
static_assert(!IsConstRef<decltype(a)>);
static_assert(!IsConstRef<decltype(b)>);
static_assert(!IsBoolConstRef<decltype(c)>);
++iters;
}
EXPECT_EQ(iters, 3u);
iters = 0;
for (auto [a, b, c] :
MakeConst(zip_equal(SmallVector<int>{1, 2, 3}, std::string("abc"),
std::vector<bool>{true, false, true}))) {
static_assert(IsConstRef<decltype(a)>);
static_assert(IsConstRef<decltype(b)>);
static_assert(IsBoolConstRef<decltype(c)>);
++iters;
}
EXPECT_EQ(iters, 3u);
}
#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST
// Check that an assertion is triggered when ranges passed to `zip_equal` differ
// in length.
TEST(ZipIteratorTest, ZipEqualNotEqual) {
const SmallVector<unsigned, 6> pi = {3, 1, 4, 1, 5, 8};
const SmallVector<bool, 2> vals = {1, 1};
EXPECT_DEATH(zip_equal(pi, vals), "Iteratees do not have equal length");
EXPECT_DEATH(zip_equal(vals, pi), "Iteratees do not have equal length");
EXPECT_DEATH(zip_equal(pi, pi, vals), "Iteratees do not have equal length");
EXPECT_DEATH(zip_equal(vals, vals, pi), "Iteratees do not have equal length");
}
#endif
TEST(ZipIteratorTest, ZipFirstBasic) {
using namespace std;
const SmallVector<unsigned, 6> pi{3, 1, 4, 1, 5, 9};
unsigned iters = 0;
for (auto tup : zip_first(SmallVector<bool, 0>{1, 1, 0, 1}, pi)) {
EXPECT_EQ(get<0>(tup), get<1>(tup) & 0x01);
iters += 1;
}
EXPECT_EQ(iters, 4u);
}
#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST
// Make sure that we can detect when the first range is not the shortest.
TEST(ZipIteratorTest, ZipFirstNotShortest) {
const std::array<unsigned, 6> longer = {};
const std::array<unsigned, 4> shorter = {};
EXPECT_DEATH(zip_first(longer, shorter),
"First iteratee is not the shortest");
EXPECT_DEATH(zip_first(longer, shorter, longer),
"First iteratee is not the shortest");
EXPECT_DEATH(zip_first(longer, longer, shorter),
"First iteratee is not the shortest");
}
#endif
TEST(ZipIteratorTest, ZipLongestBasic) {
using namespace std;
const vector<unsigned> pi{3, 1, 4, 1, 5, 9};
const vector<StringRef> e{"2", "7", "1", "8"};
{
// Check left range longer than right.
const vector<tuple<optional<unsigned>, optional<StringRef>>> expected{
make_tuple(3, StringRef("2")), make_tuple(1, StringRef("7")),
make_tuple(4, StringRef("1")), make_tuple(1, StringRef("8")),
make_tuple(5, std::nullopt), make_tuple(9, std::nullopt)};
size_t iters = 0;
for (auto tup : zip_longest(pi, e)) {
EXPECT_EQ(tup, expected[iters]);
iters += 1;
}
EXPECT_EQ(iters, expected.size());
}
{
// Check right range longer than left.
const vector<tuple<optional<StringRef>, optional<unsigned>>> expected{
make_tuple(StringRef("2"), 3), make_tuple(StringRef("7"), 1),
make_tuple(StringRef("1"), 4), make_tuple(StringRef("8"), 1),
make_tuple(std::nullopt, 5), make_tuple(std::nullopt, 9)};
size_t iters = 0;
for (auto tup : zip_longest(e, pi)) {
EXPECT_EQ(tup, expected[iters]);
iters += 1;
}
EXPECT_EQ(iters, expected.size());
}
}
TEST(ZipIteratorTest, Mutability) {
using namespace std;
const SmallVector<unsigned, 4> pi{3, 1, 4, 1, 5, 9};
char message[] = "hello zip\0";
for (auto tup : zip(pi, message, message)) {
EXPECT_EQ(get<1>(tup), get<2>(tup));
get<2>(tup) = get<0>(tup) & 0x01 ? 'y' : 'n';
}
// note the rvalue
for (auto tup : zip(message, "yynyyyzip\0")) {
EXPECT_EQ(get<0>(tup), get<1>(tup));
}
}
TEST(ZipIteratorTest, ZipFirstMutability) {
using namespace std;
vector<unsigned> pi{3, 1, 4, 1, 5, 9};
unsigned iters = 0;
for (auto tup : zip_first(SmallVector<bool, 0>{1, 1, 0, 1}, pi)) {
get<1>(tup) = get<0>(tup);
iters += 1;
}
EXPECT_EQ(iters, 4u);
for (auto tup : zip_first(SmallVector<bool, 0>{1, 1, 0, 1}, pi)) {
EXPECT_EQ(get<0>(tup), get<1>(tup));
}
}
TEST(ZipIteratorTest, Filter) {
using namespace std;
vector<unsigned> pi{3, 1, 4, 1, 5, 9};
unsigned iters = 0;
// pi is length 6, but the zip RHS is length 7.
auto zipped = zip_first(pi, vector<bool>{1, 1, 0, 1, 1, 1, 0});
for (auto tup : make_filter_range(
zipped, [](decltype(zipped)::value_type t) { return get<1>(t); })) {
EXPECT_EQ(get<0>(tup) & 0x01, get<1>(tup));
get<0>(tup) += 1;
iters += 1;
}
// Should have skipped pi[2].
EXPECT_EQ(iters, 5u);
// Ensure that in-place mutation works.
EXPECT_TRUE(all_of(pi, [](unsigned n) { return (n & 0x01) == 0; }));
}
TEST(ZipIteratorTest, Reverse) {
using namespace std;
vector<unsigned> ascending{0, 1, 2, 3, 4, 5};
auto zipped = zip_first(ascending, vector<bool>{0, 1, 0, 1, 0, 1});
unsigned last = 6;
for (auto tup : reverse(zipped)) {
// Check that this is in reverse.
EXPECT_LT(get<0>(tup), last);
last = get<0>(tup);
EXPECT_EQ(get<0>(tup) & 0x01, get<1>(tup));
}
auto odds = [](decltype(zipped)::value_type tup) { return get<1>(tup); };
last = 6;
for (auto tup : make_filter_range(reverse(zipped), odds)) {
EXPECT_LT(get<0>(tup), last);
last = get<0>(tup);
EXPECT_TRUE(get<0>(tup) & 0x01);
get<0>(tup) += 1;
}
// Ensure that in-place mutation works.
EXPECT_TRUE(all_of(ascending, [](unsigned n) { return (n & 0x01) == 0; }));
}
// Int iterator that keeps track of the number of its copies.
struct CountingIntIterator : IntIterator {
unsigned *cnt;
CountingIntIterator(int *it, unsigned &counter)
: IntIterator(it), cnt(&counter) {}
CountingIntIterator(const CountingIntIterator &other)
: IntIterator(other.I), cnt(other.cnt) {
++(*cnt);
}
CountingIntIterator &operator=(const CountingIntIterator &other) {
this->I = other.I;
this->cnt = other.cnt;
++(*cnt);
return *this;
}
};
// Check that the iterators do not get copied with each `zippy` iterator
// increment.
TEST(ZipIteratorTest, IteratorCopies) {
std::vector<int> ints(1000, 42);
unsigned total_copy_count = 0;
CountingIntIterator begin(ints.data(), total_copy_count);
CountingIntIterator end(ints.data() + ints.size(), total_copy_count);
size_t iters = 0;
auto zippy = zip_equal(ints, llvm::make_range(begin, end));
const unsigned creation_copy_count = total_copy_count;
for (auto [a, b] : zippy) {
EXPECT_EQ(a, b);
++iters;
}
EXPECT_EQ(iters, ints.size());
// We expect the number of copies to be much smaller than the number of loop
// iterations.
unsigned loop_copy_count = total_copy_count - creation_copy_count;
EXPECT_LT(loop_copy_count, 10u);
}
TEST(RangeTest, Distance) {
std::vector<int> v1;
std::vector<int> v2{1, 2, 3};
EXPECT_EQ(std::distance(v1.begin(), v1.end()), size(v1));
EXPECT_EQ(std::distance(v2.begin(), v2.end()), size(v2));
}
TEST(RangeSizeTest, CommonRangeTypes) {
SmallVector<int> v1 = {1, 2, 3};
EXPECT_EQ(range_size(v1), 3u);
std::map<int, int> m1 = {{1, 1}, {2, 2}};
EXPECT_EQ(range_size(m1), 2u);
auto it_range = llvm::make_range(m1.begin(), m1.end());
EXPECT_EQ(range_size(it_range), 2u);
static constexpr int c_arr[5] = {};
static_assert(range_size(c_arr) == 5u);
static constexpr std::array<int, 6> cpp_arr = {};
static_assert(range_size(cpp_arr) == 6u);
}
struct FooWithMemberSize {
size_t size() const { return 42; }
auto begin() { return Data.begin(); }
auto end() { return Data.end(); }
std::set<int> Data;
};
TEST(RangeSizeTest, MemberSize) {
// Make sure that member `.size()` is preferred over the free fuction and
// `std::distance`.
FooWithMemberSize container;
EXPECT_EQ(range_size(container), 42u);
}
struct FooWithFreeSize {
friend size_t size(const FooWithFreeSize &) { return 13; }
auto begin() { return Data.begin(); }
auto end() { return Data.end(); }
std::set<int> Data;
};
TEST(RangeSizeTest, FreeSize) {
// Make sure that `size(x)` is preferred over `std::distance`.
FooWithFreeSize container;
EXPECT_EQ(range_size(container), 13u);
}
struct FooWithDistance {
auto begin() { return Data.begin(); }
auto end() { return Data.end(); }
std::set<int> Data;
};
TEST(RangeSizeTest, Distance) {
// Make sure that we can fall back to `std::distance` even the iterator is not
// random-access.
FooWithDistance container;
EXPECT_EQ(range_size(container), 0u);
container.Data = {1, 2, 3, 4};
EXPECT_EQ(range_size(container), 4u);
}
} // anonymous namespace
|