1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
#include "llvm/Analysis/CallGraph.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Module.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
namespace llvm {
namespace {
void anchor() {}
static std::string libPath(const std::string Name = "InlineAdvisorPlugin") {
const auto &Argvs = testing::internal::GetArgvs();
const char *Argv0 =
Argvs.size() > 0 ? Argvs[0].c_str() : "PluginInlineAdvisorAnalysisTest";
void *Ptr = (void *)(intptr_t)anchor;
std::string Path = sys::fs::getMainExecutable(Argv0, Ptr);
llvm::SmallString<256> Buf{sys::path::parent_path(Path)};
sys::path::append(Buf, (Name + LLVM_PLUGIN_EXT).c_str());
return std::string(Buf.str());
}
// Example of a custom InlineAdvisor that only inlines calls to functions called
// "foo".
class FooOnlyInlineAdvisor : public InlineAdvisor {
public:
FooOnlyInlineAdvisor(Module &M, FunctionAnalysisManager &FAM,
InlineParams Params, InlineContext IC)
: InlineAdvisor(M, FAM, IC) {}
std::unique_ptr<InlineAdvice> getAdviceImpl(CallBase &CB) override {
if (CB.getCalledFunction()->getName() == "foo")
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), true);
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false);
}
};
static InlineAdvisor *fooOnlyFactory(Module &M, FunctionAnalysisManager &FAM,
InlineParams Params, InlineContext IC) {
return new FooOnlyInlineAdvisor(M, FAM, Params, IC);
}
struct CompilerInstance {
LLVMContext Ctx;
ModulePassManager MPM;
InlineParams IP;
PassBuilder PB;
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
SMDiagnostic Error;
// connect the plugin to our compiler instance
void setupPlugin() {
auto PluginPath = libPath();
ASSERT_NE("", PluginPath);
Expected<PassPlugin> Plugin = PassPlugin::Load(PluginPath);
ASSERT_TRUE(!!Plugin) << "Plugin path: " << PluginPath;
Plugin->registerPassBuilderCallbacks(PB);
}
// connect the FooOnlyInlineAdvisor to our compiler instance
void setupFooOnly() {
MAM.registerPass(
[&] { return PluginInlineAdvisorAnalysis(fooOnlyFactory); });
}
CompilerInstance() {
IP = getInlineParams(3, 0);
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
MPM.addPass(ModuleInlinerPass(IP, InliningAdvisorMode::Default,
ThinOrFullLTOPhase::None));
}
std::string output;
std::unique_ptr<Module> outputM;
auto run(StringRef IR) {
outputM = parseAssemblyString(IR, Error, Ctx);
MPM.run(*outputM, MAM);
ASSERT_TRUE(outputM);
output.clear();
raw_string_ostream o_stream{output};
outputM->print(o_stream, nullptr);
ASSERT_TRUE(true);
}
};
StringRef TestIRS[] = {
// Simple 3 function inline case
R"(
define void @f1() {
call void @foo()
ret void
}
define void @foo() {
call void @f3()
ret void
}
define void @f3() {
ret void
}
)",
// Test that has 5 functions of which 2 are recursive
R"(
define void @f1() {
call void @foo()
ret void
}
define void @f2() {
call void @foo()
ret void
}
define void @foo() {
call void @f4()
call void @f5()
ret void
}
define void @f4() {
ret void
}
define void @f5() {
call void @foo()
ret void
}
)",
// test with 2 mutually recursive functions and 1 function with a loop
R"(
define void @f1() {
call void @f2()
ret void
}
define void @f2() {
call void @f3()
ret void
}
define void @f3() {
call void @f1()
ret void
}
define void @f4() {
br label %loop
loop:
call void @f5()
br label %loop
}
define void @f5() {
ret void
}
)",
// test that has a function that computes fibonacci in a loop, one in a
// recurisve manner, and one that calls both and compares them
R"(
define i32 @fib_loop(i32 %n){
%curr = alloca i32
%last = alloca i32
%i = alloca i32
store i32 1, i32* %curr
store i32 1, i32* %last
store i32 2, i32* %i
br label %loop_cond
loop_cond:
%i_val = load i32, i32* %i
%cmp = icmp slt i32 %i_val, %n
br i1 %cmp, label %loop_body, label %loop_end
loop_body:
%curr_val = load i32, i32* %curr
%last_val = load i32, i32* %last
%add = add i32 %curr_val, %last_val
store i32 %add, i32* %last
store i32 %curr_val, i32* %curr
%i_val2 = load i32, i32* %i
%add2 = add i32 %i_val2, 1
store i32 %add2, i32* %i
br label %loop_cond
loop_end:
%curr_val3 = load i32, i32* %curr
ret i32 %curr_val3
}
define i32 @fib_rec(i32 %n){
%cmp = icmp eq i32 %n, 0
%cmp2 = icmp eq i32 %n, 1
%or = or i1 %cmp, %cmp2
br i1 %or, label %if_true, label %if_false
if_true:
ret i32 1
if_false:
%sub = sub i32 %n, 1
%call = call i32 @fib_rec(i32 %sub)
%sub2 = sub i32 %n, 2
%call2 = call i32 @fib_rec(i32 %sub2)
%add = add i32 %call, %call2
ret i32 %add
}
define i32 @fib_check(){
%correct = alloca i32
%i = alloca i32
store i32 1, i32* %correct
store i32 0, i32* %i
br label %loop_cond
loop_cond:
%i_val = load i32, i32* %i
%cmp = icmp slt i32 %i_val, 10
br i1 %cmp, label %loop_body, label %loop_end
loop_body:
%i_val2 = load i32, i32* %i
%call = call i32 @fib_loop(i32 %i_val2)
%i_val3 = load i32, i32* %i
%call2 = call i32 @fib_rec(i32 %i_val3)
%cmp2 = icmp ne i32 %call, %call2
br i1 %cmp2, label %if_true, label %if_false
if_true:
store i32 0, i32* %correct
br label %if_end
if_false:
br label %if_end
if_end:
%i_val4 = load i32, i32* %i
%add = add i32 %i_val4, 1
store i32 %add, i32* %i
br label %loop_cond
loop_end:
%correct_val = load i32, i32* %correct
ret i32 %correct_val
}
)"};
} // namespace
// check that loading a plugin works
// the plugin being loaded acts identically to the default inliner
TEST(PluginInlineAdvisorTest, PluginLoad) {
#if !defined(LLVM_ENABLE_PLUGINS)
// Skip the test if plugins are disabled.
GTEST_SKIP();
#endif
CompilerInstance DefaultCI{};
CompilerInstance PluginCI{};
PluginCI.setupPlugin();
for (StringRef IR : TestIRS) {
DefaultCI.run(IR);
std::string default_output = DefaultCI.output;
PluginCI.run(IR);
std::string dynamic_output = PluginCI.output;
ASSERT_EQ(default_output, dynamic_output);
}
}
// check that the behaviour of a custom inliner is correct
// the custom inliner inlines all functions that are not named "foo"
// this testdoes not require plugins to be enabled
TEST(PluginInlineAdvisorTest, CustomAdvisor) {
CompilerInstance CI{};
CI.setupFooOnly();
for (StringRef IR : TestIRS) {
CI.run(IR);
CallGraph CGraph = CallGraph(*CI.outputM);
for (auto &node : CGraph) {
for (auto &edge : *node.second) {
if (!edge.first)
continue;
ASSERT_NE(edge.second->getFunction()->getName(), "foo");
}
}
}
}
} // namespace llvm
|