1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
//===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Casting.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
#include <cstdlib>
namespace llvm {
// Used to test illegal cast. If a cast doesn't match any of the "real" ones,
// it will match this one.
struct IllegalCast;
template <typename T> IllegalCast *cast(...) { return nullptr; }
// set up two example classes
// with conversion facility
//
struct bar {
bar() {}
struct foo *baz();
struct foo *caz();
struct foo *daz();
struct foo *naz();
private:
bar(const bar &);
};
struct foo {
foo(const bar &) {}
void ext() const;
};
struct base {
virtual ~base() {}
};
struct derived : public base {
static bool classof(const base *B) { return true; }
};
struct derived_nocast : public base {
static bool classof(const base *B) { return false; }
};
template <> struct isa_impl<foo, bar> {
static inline bool doit(const bar &Val) {
dbgs() << "Classof: " << &Val << "\n";
return true;
}
};
// Note for the future - please don't do this. isa_impl is an internal template
// for the implementation of `isa` and should not be exposed this way.
// Completely unrelated types *should* result in compiler errors if you try to
// cast between them.
template <typename T> struct isa_impl<foo, T> {
static inline bool doit(const T &Val) { return false; }
};
foo *bar::baz() { return cast<foo>(this); }
foo *bar::caz() { return cast_or_null<foo>(this); }
foo *bar::daz() { return dyn_cast<foo>(this); }
foo *bar::naz() { return dyn_cast_or_null<foo>(this); }
bar *fub();
template <> struct simplify_type<foo> {
typedef int SimpleType;
static SimpleType getSimplifiedValue(foo &Val) { return 0; }
};
struct T1 {};
struct T2 {
T2(const T1 &x) {}
static bool classof(const T1 *x) { return true; }
};
template <> struct CastInfo<T2, T1> : public OptionalValueCast<T2, T1> {};
struct T3 {
T3(const T1 *x) : hasValue(x != nullptr) {}
static bool classof(const T1 *x) { return true; }
bool hasValue = false;
};
// T3 is convertible from a pointer to T1.
template <> struct CastInfo<T3, T1 *> : public ValueFromPointerCast<T3, T1> {};
struct T4 {
T4() : hasValue(false) {}
T4(const T3 &x) : hasValue(true) {}
static bool classof(const T3 *x) { return true; }
bool hasValue = false;
};
template <> struct ValueIsPresent<T3> {
using UnwrappedType = T3;
static inline bool isPresent(const T3 &t) { return t.hasValue; }
static inline const T3 &unwrapValue(const T3 &t) { return t; }
};
template <> struct CastInfo<T4, T3> {
using CastResultType = T4;
static inline CastResultType doCast(const T3 &t) { return T4(t); }
static inline CastResultType castFailed() { return CastResultType(); }
static inline CastResultType doCastIfPossible(const T3 &f) {
return doCast(f);
}
};
} // namespace llvm
using namespace llvm;
// Test the peculiar behavior of Use in simplify_type.
static_assert(std::is_same_v<simplify_type<Use>::SimpleType, Value *>,
"Use doesn't simplify correctly!");
static_assert(std::is_same_v<simplify_type<Use *>::SimpleType, Value *>,
"Use doesn't simplify correctly!");
// Test that a regular class behaves as expected.
static_assert(std::is_same_v<simplify_type<foo>::SimpleType, int>,
"Unexpected simplify_type result!");
static_assert(std::is_same_v<simplify_type<foo *>::SimpleType, foo *>,
"Unexpected simplify_type result!");
namespace {
const foo *null_foo = nullptr;
bar B;
extern bar &B1;
bar &B1 = B;
extern const bar *B2;
// test various configurations of const
const bar &B3 = B1;
const bar *const B4 = B2;
TEST(CastingTest, isa) {
EXPECT_TRUE(isa<foo>(B1));
EXPECT_TRUE(isa<foo>(B2));
EXPECT_TRUE(isa<foo>(B3));
EXPECT_TRUE(isa<foo>(B4));
}
TEST(CastingTest, isa_and_nonnull) {
EXPECT_TRUE(isa_and_nonnull<foo>(B2));
EXPECT_TRUE(isa_and_nonnull<foo>(B4));
EXPECT_FALSE(isa_and_nonnull<foo>(fub()));
}
TEST(CastingTest, cast) {
foo &F1 = cast<foo>(B1);
EXPECT_NE(&F1, null_foo);
const foo *F3 = cast<foo>(B2);
EXPECT_NE(F3, null_foo);
const foo *F4 = cast<foo>(B2);
EXPECT_NE(F4, null_foo);
const foo &F5 = cast<foo>(B3);
EXPECT_NE(&F5, null_foo);
const foo *F6 = cast<foo>(B4);
EXPECT_NE(F6, null_foo);
// Can't pass null pointer to cast<>.
// foo *F7 = cast<foo>(fub());
// EXPECT_EQ(F7, null_foo);
foo *F8 = B1.baz();
EXPECT_NE(F8, null_foo);
std::unique_ptr<const bar> BP(B2);
auto FP = cast<foo>(std::move(BP));
static_assert(std::is_same_v<std::unique_ptr<const foo>, decltype(FP)>,
"Incorrect deduced return type!");
EXPECT_NE(FP.get(), null_foo);
FP.release();
}
TEST(CastingTest, cast_or_null) {
const foo *F11 = cast_or_null<foo>(B2);
EXPECT_NE(F11, null_foo);
const foo *F12 = cast_or_null<foo>(B2);
EXPECT_NE(F12, null_foo);
const foo *F13 = cast_or_null<foo>(B4);
EXPECT_NE(F13, null_foo);
const foo *F14 = cast_or_null<foo>(fub()); // Shouldn't print.
EXPECT_EQ(F14, null_foo);
foo *F15 = B1.caz();
EXPECT_NE(F15, null_foo);
std::unique_ptr<const bar> BP(fub());
auto FP = cast_or_null<foo>(std::move(BP));
EXPECT_EQ(FP.get(), null_foo);
}
TEST(CastingTest, dyn_cast) {
const foo *F1 = dyn_cast<foo>(B2);
EXPECT_NE(F1, null_foo);
const foo *F2 = dyn_cast<foo>(B2);
EXPECT_NE(F2, null_foo);
const foo *F3 = dyn_cast<foo>(B4);
EXPECT_NE(F3, null_foo);
// Can't pass null pointer to dyn_cast<>.
// foo *F4 = dyn_cast<foo>(fub());
// EXPECT_EQ(F4, null_foo);
foo *F5 = B1.daz();
EXPECT_NE(F5, null_foo);
auto BP = std::make_unique<const bar>();
auto FP = dyn_cast<foo>(BP);
static_assert(std::is_same_v<std::unique_ptr<const foo>, decltype(FP)>,
"Incorrect deduced return type!");
EXPECT_NE(FP.get(), nullptr);
EXPECT_EQ(BP.get(), nullptr);
auto BP2 = std::make_unique<base>();
auto DP = dyn_cast<derived_nocast>(BP2);
EXPECT_EQ(DP.get(), nullptr);
EXPECT_NE(BP2.get(), nullptr);
}
// All these tests forward to dyn_cast_if_present, so they also provde an
// effective test for its use cases.
TEST(CastingTest, dyn_cast_or_null) {
const foo *F1 = dyn_cast_or_null<foo>(B2);
EXPECT_NE(F1, null_foo);
const foo *F2 = dyn_cast_or_null<foo>(B2);
EXPECT_NE(F2, null_foo);
const foo *F3 = dyn_cast_or_null<foo>(B4);
EXPECT_NE(F3, null_foo);
foo *F4 = dyn_cast_or_null<foo>(fub());
EXPECT_EQ(F4, null_foo);
foo *F5 = B1.naz();
EXPECT_NE(F5, null_foo);
// dyn_cast_if_present should have exactly the same behavior as
// dyn_cast_or_null.
const foo *F6 = dyn_cast_if_present<foo>(B2);
EXPECT_EQ(F6, F2);
}
TEST(CastingTest, dyn_cast_value_types) {
T1 t1;
std::optional<T2> t2 = dyn_cast<T2>(t1);
EXPECT_TRUE(t2);
T2 *t2ptr = dyn_cast<T2>(&t1);
EXPECT_TRUE(t2ptr != nullptr);
T3 t3 = dyn_cast<T3>(&t1);
EXPECT_TRUE(t3.hasValue);
}
TEST(CastingTest, dyn_cast_if_present) {
std::optional<T1> empty{};
std::optional<T2> F1 = dyn_cast_if_present<T2>(empty);
EXPECT_FALSE(F1.has_value());
T1 t1;
std::optional<T2> F2 = dyn_cast_if_present<T2>(t1);
EXPECT_TRUE(F2.has_value());
T1 *t1Null = nullptr;
// T3 should have hasValue == false because t1Null is nullptr.
T3 t3 = dyn_cast_if_present<T3>(t1Null);
EXPECT_FALSE(t3.hasValue);
// Now because of that, T4 should receive the castFailed implementation of its
// FallibleCastTraits, which default-constructs a T4, which has no value.
T4 t4 = dyn_cast_if_present<T4>(t3);
EXPECT_FALSE(t4.hasValue);
}
TEST(CastingTest, isa_check_predicates) {
auto IsaFoo = IsaPred<foo>;
EXPECT_TRUE(IsaFoo(B1));
EXPECT_TRUE(IsaFoo(B2));
EXPECT_TRUE(IsaFoo(B3));
EXPECT_TRUE(IsaPred<foo>(B4));
EXPECT_TRUE((IsaPred<foo, bar>(B4)));
auto IsaAndPresentFoo = IsaAndPresentPred<foo>;
EXPECT_TRUE(IsaAndPresentFoo(B2));
EXPECT_TRUE(IsaAndPresentFoo(B4));
EXPECT_FALSE(IsaAndPresentPred<foo>(fub()));
EXPECT_FALSE((IsaAndPresentPred<foo, bar>(fub())));
}
std::unique_ptr<derived> newd() { return std::make_unique<derived>(); }
std::unique_ptr<base> newb() { return std::make_unique<derived>(); }
TEST(CastingTest, unique_dyn_cast) {
derived *OrigD = nullptr;
auto D = std::make_unique<derived>();
OrigD = D.get();
// Converting from D to itself is valid, it should return a new unique_ptr
// and the old one should become nullptr.
auto NewD = unique_dyn_cast<derived>(D);
ASSERT_EQ(OrigD, NewD.get());
ASSERT_EQ(nullptr, D);
// Converting from D to B is valid, B should have a value and D should be
// nullptr.
auto B = unique_dyn_cast<base>(NewD);
ASSERT_EQ(OrigD, B.get());
ASSERT_EQ(nullptr, NewD);
// Converting from B to itself is valid, it should return a new unique_ptr
// and the old one should become nullptr.
auto NewB = unique_dyn_cast<base>(B);
ASSERT_EQ(OrigD, NewB.get());
ASSERT_EQ(nullptr, B);
// Converting from B to D is valid, D should have a value and B should be
// nullptr;
D = unique_dyn_cast<derived>(NewB);
ASSERT_EQ(OrigD, D.get());
ASSERT_EQ(nullptr, NewB);
// This is a very contrived test, casting between completely unrelated types
// should generally fail to compile. See the classof shenanigans we have in
// the definition of `foo` above.
auto F = unique_dyn_cast<foo>(D);
ASSERT_EQ(nullptr, F);
ASSERT_EQ(OrigD, D.get());
// All of the above should also hold for temporaries.
auto D2 = unique_dyn_cast<derived>(newd());
EXPECT_NE(nullptr, D2);
auto B2 = unique_dyn_cast<derived>(newb());
EXPECT_NE(nullptr, B2);
auto B3 = unique_dyn_cast<base>(newb());
EXPECT_NE(nullptr, B3);
// This is a very contrived test, casting between completely unrelated types
// should generally fail to compile. See the classof shenanigans we have in
// the definition of `foo` above.
auto F2 = unique_dyn_cast<foo>(newb());
EXPECT_EQ(nullptr, F2);
}
// These lines are errors...
// foo *F20 = cast<foo>(B2); // Yields const foo*
// foo &F21 = cast<foo>(B3); // Yields const foo&
// foo *F22 = cast<foo>(B4); // Yields const foo*
// foo &F23 = cast_or_null<foo>(B1);
// const foo &F24 = cast_or_null<foo>(B3);
const bar *B2 = &B;
} // anonymous namespace
bar *llvm::fub() { return nullptr; }
namespace {
namespace inferred_upcasting {
// This test case verifies correct behavior of inferred upcasts when the
// types are statically known to be OK to upcast. This is the case when,
// for example, Derived inherits from Base, and we do `isa<Base>(Derived)`.
// Note: This test will actually fail to compile without inferred
// upcasting.
class Base {
public:
// No classof. We are testing that the upcast is inferred.
Base() {}
};
class Derived : public Base {
public:
Derived() {}
};
// Even with no explicit classof() in Base, we should still be able to cast
// Derived to its base class.
TEST(CastingTest, UpcastIsInferred) {
Derived D;
EXPECT_TRUE(isa<Base>(D));
Base *BP = dyn_cast<Base>(&D);
EXPECT_NE(BP, nullptr);
}
// This test verifies that the inferred upcast takes precedence over an
// explicitly written one. This is important because it verifies that the
// dynamic check gets optimized away.
class UseInferredUpcast {
public:
int Dummy;
static bool classof(const UseInferredUpcast *) { return false; }
};
TEST(CastingTest, InferredUpcastTakesPrecedence) {
UseInferredUpcast UIU;
// Since the explicit classof() returns false, this will fail if the
// explicit one is used.
EXPECT_TRUE(isa<UseInferredUpcast>(&UIU));
}
} // end namespace inferred_upcasting
} // end anonymous namespace
namespace {
namespace pointer_wrappers {
struct Base {
bool IsDerived;
Base(bool IsDerived = false) : IsDerived(IsDerived) {}
};
struct Derived : Base {
Derived() : Base(true) {}
static bool classof(const Base *B) { return B->IsDerived; }
};
class PTy {
Base *B;
public:
PTy(Base *B) : B(B) {}
explicit operator bool() const { return get(); }
Base *get() const { return B; }
};
} // end namespace pointer_wrappers
} // end namespace
namespace llvm {
template <> struct ValueIsPresent<pointer_wrappers::PTy> {
using UnwrappedType = pointer_wrappers::PTy;
static inline bool isPresent(const pointer_wrappers::PTy &P) {
return P.get() != nullptr;
}
static UnwrappedType &unwrapValue(pointer_wrappers::PTy &P) { return P; }
};
template <> struct ValueIsPresent<const pointer_wrappers::PTy> {
using UnwrappedType = pointer_wrappers::PTy;
static inline bool isPresent(const pointer_wrappers::PTy &P) {
return P.get() != nullptr;
}
static UnwrappedType &unwrapValue(const pointer_wrappers::PTy &P) {
return const_cast<UnwrappedType &>(P);
}
};
template <> struct simplify_type<pointer_wrappers::PTy> {
typedef pointer_wrappers::Base *SimpleType;
static SimpleType getSimplifiedValue(pointer_wrappers::PTy &P) {
return P.get();
}
};
template <> struct simplify_type<const pointer_wrappers::PTy> {
typedef pointer_wrappers::Base *SimpleType;
static SimpleType getSimplifiedValue(const pointer_wrappers::PTy &P) {
return P.get();
}
};
} // end namespace llvm
namespace {
namespace pointer_wrappers {
// Some objects.
pointer_wrappers::Base B;
pointer_wrappers::Derived D;
// Mutable "smart" pointers.
pointer_wrappers::PTy MN(nullptr);
pointer_wrappers::PTy MB(&B);
pointer_wrappers::PTy MD(&D);
// Const "smart" pointers.
const pointer_wrappers::PTy CN(nullptr);
const pointer_wrappers::PTy CB(&B);
const pointer_wrappers::PTy CD(&D);
TEST(CastingTest, smart_isa) {
EXPECT_TRUE(!isa<pointer_wrappers::Derived>(MB));
EXPECT_TRUE(!isa<pointer_wrappers::Derived>(CB));
EXPECT_TRUE(isa<pointer_wrappers::Derived>(MD));
EXPECT_TRUE(isa<pointer_wrappers::Derived>(CD));
}
TEST(CastingTest, smart_cast) {
EXPECT_EQ(cast<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(cast<pointer_wrappers::Derived>(CD), &D);
}
TEST(CastingTest, smart_cast_or_null) {
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MN), nullptr);
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CN), nullptr);
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CD), &D);
}
TEST(CastingTest, smart_dyn_cast) {
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MB), nullptr);
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CB), nullptr);
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CD), &D);
}
TEST(CastingTest, smart_dyn_cast_or_null) {
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MN), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CN), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MB), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CB), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CD), &D);
}
} // end namespace pointer_wrappers
#ifndef NDEBUG
namespace assertion_checks {
struct Base {
virtual ~Base() {}
};
struct Derived : public Base {
static bool classof(const Base *B) { return false; }
};
TEST(CastingTest, assertion_check_const_ref) {
const Base B;
EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type")
<< "Invalid cast of const ref did not cause an abort()";
}
TEST(CastingTest, assertion_check_ref) {
Base B;
EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type")
<< "Invalid cast of const ref did not cause an abort()";
}
TEST(CastingTest, assertion_check_ptr) {
Base B;
EXPECT_DEATH((void)cast<Derived>(&B), "argument of incompatible type")
<< "Invalid cast of const ref did not cause an abort()";
}
TEST(CastingTest, assertion_check_unique_ptr) {
auto B = std::make_unique<Base>();
EXPECT_DEATH((void)cast<Derived>(std::move(B)),
"argument of incompatible type")
<< "Invalid cast of const ref did not cause an abort()";
}
} // end namespace assertion_checks
#endif
} // end namespace
|