1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
//===- VTEmitter.cpp - Generate properties from ValueTypes.td -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <map>
using namespace llvm;
namespace {
class VTEmitter {
private:
const RecordKeeper &Records;
public:
VTEmitter(const RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS);
};
} // End anonymous namespace.
static void vTtoGetLlvmTyString(raw_ostream &OS, const Record *VT) {
bool IsVector = VT->getValueAsBit("isVector");
bool IsRISCVVecTuple = VT->getValueAsBit("isRISCVVecTuple");
if (IsRISCVVecTuple) {
unsigned NElem = VT->getValueAsInt("nElem");
unsigned Sz = VT->getValueAsInt("Size");
OS << "TargetExtType::get(Context, \"riscv.vector.tuple\", "
"ScalableVectorType::get(Type::getInt8Ty(Context), "
<< (Sz / (NElem * 8)) << "), " << NElem << ")";
return;
}
if (IsVector)
OS << (VT->getValueAsBit("isScalable") ? "Scalable" : "Fixed")
<< "VectorType::get(";
auto OutputVT = IsVector ? VT->getValueAsDef("ElementType") : VT;
int64_t OutputVTSize = OutputVT->getValueAsInt("Size");
if (OutputVT->getValueAsBit("isFP")) {
StringRef FloatTy;
auto OutputVTName = OutputVT->getValueAsString("LLVMName");
switch (OutputVTSize) {
default:
llvm_unreachable("Unhandled case");
case 16:
FloatTy = (OutputVTName == "bf16") ? "BFloatTy" : "HalfTy";
break;
case 32:
FloatTy = "FloatTy";
break;
case 64:
FloatTy = "DoubleTy";
break;
case 80:
FloatTy = "X86_FP80Ty";
break;
case 128:
FloatTy = (OutputVTName == "ppcf128") ? "PPC_FP128Ty" : "FP128Ty";
break;
}
OS << "Type::get" << FloatTy << "(Context)";
} else if (OutputVT->getValueAsBit("isInteger")) {
// We only have Type::getInt1Ty, Int8, Int16, Int32, Int64, and Int128
if ((isPowerOf2_64(OutputVTSize) && OutputVTSize >= 8 &&
OutputVTSize <= 128) ||
OutputVTSize == 1)
OS << "Type::getInt" << OutputVTSize << "Ty(Context)";
else
OS << "Type::getIntNTy(Context, " << OutputVTSize << ")";
} else
llvm_unreachable("Unhandled case");
if (IsVector)
OS << ", " << VT->getValueAsInt("nElem") << ")";
}
void VTEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("ValueTypes Source Fragment", OS, Records);
std::vector<const Record *> VTsByNumber{512};
for (auto *VT : Records.getAllDerivedDefinitions("ValueType")) {
auto Number = VT->getValueAsInt("Value");
assert(0 <= Number && Number < (int)VTsByNumber.size() &&
"ValueType should be uint16_t");
assert(!VTsByNumber[Number] && "Duplicate ValueType");
VTsByNumber[Number] = VT;
}
struct VTRange {
StringRef First;
StringRef Last;
bool Closed;
};
std::map<StringRef, VTRange> VTRanges;
auto UpdateVTRange = [&VTRanges](const char *Key, StringRef Name,
bool Valid) {
if (Valid) {
auto [It, Inserted] = VTRanges.try_emplace(Key);
if (Inserted)
It->second.First = Name;
assert(!It->second.Closed && "Gap detected!");
It->second.Last = Name;
} else if (auto It = VTRanges.find(Key); It != VTRanges.end()) {
It->second.Closed = true;
}
};
OS << "#ifdef GET_VT_ATTR // (Ty, n, sz, Any, Int, FP, Vec, Sc, Tup, NF, "
"NElem, EltTy)\n";
for (const auto *VT : VTsByNumber) {
if (!VT)
continue;
auto Name = VT->getValueAsString("LLVMName");
auto Value = VT->getValueAsInt("Value");
bool IsInteger = VT->getValueAsBit("isInteger");
bool IsFP = VT->getValueAsBit("isFP");
bool IsVector = VT->getValueAsBit("isVector");
bool IsScalable = VT->getValueAsBit("isScalable");
bool IsRISCVVecTuple = VT->getValueAsBit("isRISCVVecTuple");
int64_t NF = VT->getValueAsInt("NF");
bool IsNormalValueType = VT->getValueAsBit("isNormalValueType");
int64_t NElem = IsVector ? VT->getValueAsInt("nElem") : 0;
StringRef EltName = IsVector ? VT->getValueAsDef("ElementType")->getName()
: "INVALID_SIMPLE_VALUE_TYPE";
UpdateVTRange("INTEGER_FIXEDLEN_VECTOR_VALUETYPE", Name,
IsInteger && IsVector && !IsScalable);
UpdateVTRange("INTEGER_SCALABLE_VECTOR_VALUETYPE", Name,
IsInteger && IsScalable);
UpdateVTRange("FP_FIXEDLEN_VECTOR_VALUETYPE", Name,
IsFP && IsVector && !IsScalable);
UpdateVTRange("FP_SCALABLE_VECTOR_VALUETYPE", Name, IsFP && IsScalable);
UpdateVTRange("FIXEDLEN_VECTOR_VALUETYPE", Name, IsVector && !IsScalable);
UpdateVTRange("SCALABLE_VECTOR_VALUETYPE", Name, IsScalable);
UpdateVTRange("RISCV_VECTOR_TUPLE_VALUETYPE", Name, IsRISCVVecTuple);
UpdateVTRange("VECTOR_VALUETYPE", Name, IsVector);
UpdateVTRange("INTEGER_VALUETYPE", Name, IsInteger && !IsVector);
UpdateVTRange("FP_VALUETYPE", Name, IsFP && !IsVector);
UpdateVTRange("VALUETYPE", Name, IsNormalValueType);
// clang-format off
OS << " GET_VT_ATTR("
<< Name << ", "
<< Value << ", "
<< VT->getValueAsInt("Size") << ", "
<< VT->getValueAsBit("isOverloaded") << ", "
<< (IsInteger ? Name[0] == 'i' ? 3 : 1 : 0) << ", "
<< (IsFP ? Name[0] == 'f' ? 3 : 1 : 0) << ", "
<< IsVector << ", "
<< IsScalable << ", "
<< IsRISCVVecTuple << ", "
<< NF << ", "
<< NElem << ", "
<< EltName << ")\n";
// clang-format on
}
OS << "#endif\n\n";
OS << "#ifdef GET_VT_RANGES\n";
for (const auto &KV : VTRanges) {
assert(KV.second.Closed);
OS << " FIRST_" << KV.first << " = " << KV.second.First << ",\n"
<< " LAST_" << KV.first << " = " << KV.second.Last << ",\n";
}
OS << "#endif\n\n";
OS << "#ifdef GET_VT_VECATTR // (Ty, Sc, Tup, nElem, ElTy)\n";
for (const auto *VT : VTsByNumber) {
if (!VT || !VT->getValueAsBit("isVector"))
continue;
const auto *ElTy = VT->getValueAsDef("ElementType");
assert(ElTy);
// clang-format off
OS << " GET_VT_VECATTR("
<< VT->getValueAsString("LLVMName") << ", "
<< VT->getValueAsBit("isScalable") << ", "
<< VT->getValueAsBit("isRISCVVecTuple") << ", "
<< VT->getValueAsInt("nElem") << ", "
<< ElTy->getName() << ")\n";
// clang-format on
}
OS << "#endif\n\n";
OS << "#ifdef GET_VT_EVT\n";
for (const auto *VT : VTsByNumber) {
if (!VT)
continue;
bool IsInteger = VT->getValueAsBit("isInteger");
bool IsVector = VT->getValueAsBit("isVector");
bool IsFP = VT->getValueAsBit("isFP");
bool IsRISCVVecTuple = VT->getValueAsBit("isRISCVVecTuple");
if (!IsInteger && !IsVector && !IsFP && !IsRISCVVecTuple)
continue;
OS << " GET_VT_EVT(" << VT->getValueAsString("LLVMName") << ", ";
vTtoGetLlvmTyString(OS, VT);
OS << ")\n";
}
OS << "#endif\n\n";
}
static TableGen::Emitter::OptClass<VTEmitter> X("gen-vt", "Generate ValueType");
|