1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
from typing import Optional, List
# Base class for an instruction. To implement a basic instruction that doesn't
# impact the control-flow, create a new class inheriting from this.
class Instruction:
# Contains the name of the output register, if any.
_result: Optional[str]
# Contains the instruction opcode.
_opcode: str
# Contains all the instruction operands, except result and opcode.
_operands: List[str]
def __init__(self, line: str):
self.line = line
tokens = line.split()
if len(tokens) > 1 and tokens[1] == "=":
self._result = tokens[0]
self._opcode = tokens[2]
self._operands = tokens[3:] if len(tokens) > 2 else []
else:
self._result = None
self._opcode = tokens[0]
self._operands = tokens[1:] if len(tokens) > 1 else []
def __str__(self):
if self._result is None:
return f" {self._opcode} {self._operands}"
return f"{self._result:3} = {self._opcode} {self._operands}"
# Returns the instruction opcode.
def opcode(self) -> str:
return self._opcode
# Returns the instruction operands.
def operands(self) -> List[str]:
return self._operands
# Returns the instruction output register. Calling this function is
# only allowed if has_output_register() is true.
def output_register(self) -> str:
assert self._result is not None
return self._result
# Returns true if this function has an output register. False otherwise.
def has_output_register(self) -> bool:
return self._result is not None
# This function is used to initialize state related to this instruction
# before module execution begins. For example, global Input variables
# can use this to store the lane ID into the register.
def static_execution(self, lane):
pass
# This function is called everytime this instruction is executed by a
# tangle. This function should not be directly overriden, instead see
# _impl and _advance_ip.
def runtime_execution(self, module, lane):
self._impl(module, lane)
self._advance_ip(module, lane)
# This function needs to be overriden if your instruction can be executed.
# It implements the logic of the instruction.
# 'Static' instructions like OpConstant should not override this since
# they are not supposed to be executed at runtime.
def _impl(self, module, lane):
raise RuntimeError(f"Unimplemented instruction {self}")
# By default, IP is incremented to point to the next instruction.
# If the instruction modifies IP (like OpBranch), this must be overridden.
def _advance_ip(self, module, lane):
lane.set_ip(lane.ip() + 1)
# Those are parsed, but never executed.
class OpEntryPoint(Instruction):
pass
class OpFunction(Instruction):
pass
class OpFunctionEnd(Instruction):
pass
class OpLabel(Instruction):
pass
class OpVariable(Instruction):
pass
class OpName(Instruction):
def name(self) -> str:
return self._operands[1][1:-1]
def decoratedRegister(self) -> str:
return self._operands[0]
# The only decoration we use if the BuiltIn one to initialize the values.
class OpDecorate(Instruction):
def static_execution(self, lane):
if self._operands[1] == "LinkageAttributes":
return
assert (
self._operands[1] == "BuiltIn"
and self._operands[2] == "SubgroupLocalInvocationId"
)
lane.set_register(self._operands[0], lane.tid())
# Constants
class OpConstant(Instruction):
def static_execution(self, lane):
lane.set_register(self._result, int(self._operands[1]))
class OpConstantTrue(OpConstant):
def static_execution(self, lane):
lane.set_register(self._result, True)
class OpConstantFalse(OpConstant):
def static_execution(self, lane):
lane.set_register(self._result, False)
class OpConstantComposite(OpConstant):
def static_execution(self, lane):
result = []
for op in self._operands[1:]:
result.append(lane.get_register(op))
lane.set_register(self._result, result)
# Control flow instructions
class OpFunctionCall(Instruction):
def _impl(self, module, lane):
pass
def _advance_ip(self, module, lane):
entry = module.get_function_entry(self._operands[1])
lane.do_call(entry, self._result)
class OpReturn(Instruction):
def _impl(self, module, lane):
pass
def _advance_ip(self, module, lane):
lane.do_return(None)
class OpReturnValue(Instruction):
def _impl(self, module, lane):
pass
def _advance_ip(self, module, lane):
lane.do_return(lane.get_register(self._operands[0]))
class OpBranch(Instruction):
def _impl(self, module, lane):
pass
def _advance_ip(self, module, lane):
lane.set_ip(module.get_bb_entry(self._operands[0]))
pass
class OpBranchConditional(Instruction):
def _impl(self, module, lane):
pass
def _advance_ip(self, module, lane):
condition = lane.get_register(self._operands[0])
if condition:
lane.set_ip(module.get_bb_entry(self._operands[1]))
else:
lane.set_ip(module.get_bb_entry(self._operands[2]))
class OpSwitch(Instruction):
def _impl(self, module, lane):
pass
def _advance_ip(self, module, lane):
value = lane.get_register(self._operands[0])
default_label = self._operands[1]
i = 2
while i < len(self._operands):
imm = int(self._operands[i])
label = self._operands[i + 1]
if value == imm:
lane.set_ip(module.get_bb_entry(label))
return
i += 2
lane.set_ip(module.get_bb_entry(default_label))
class OpUnreachable(Instruction):
def _impl(self, module, lane):
raise RuntimeError("This instruction should never be executed.")
# Convergence instructions
class MergeInstruction(Instruction):
def merge_location(self):
return self._operands[0]
def continue_location(self):
return None if len(self._operands) < 3 else self._operands[1]
def _impl(self, module, lane):
lane.handle_convergence_header(self)
class OpLoopMerge(MergeInstruction):
pass
class OpSelectionMerge(MergeInstruction):
pass
# Other instructions
class OpBitcast(Instruction):
def _impl(self, module, lane):
# TODO: find out the type from the defining instruction.
# This can only work for DXC.
if self._operands[0] == "%int":
lane.set_register(self._result, int(lane.get_register(self._operands[1])))
else:
raise RuntimeError("Unsupported OpBitcast operand")
class OpAccessChain(Instruction):
def _impl(self, module, lane):
# Python dynamic types allows me to simplify. As long as the SPIR-V
# is legal, this should be fine.
# Note: SPIR-V structs are stored as tuples
value = lane.get_register(self._operands[1])
for operand in self._operands[2:]:
value = value[lane.get_register(operand)]
lane.set_register(self._result, value)
class OpCompositeConstruct(Instruction):
def _impl(self, module, lane):
output = []
for op in self._operands[1:]:
output.append(lane.get_register(op))
lane.set_register(self._result, output)
class OpCompositeExtract(Instruction):
def _impl(self, module, lane):
value = lane.get_register(self._operands[1])
output = value
for op in self._operands[2:]:
output = output[int(op)]
lane.set_register(self._result, output)
class OpStore(Instruction):
def _impl(self, module, lane):
lane.set_register(self._operands[0], lane.get_register(self._operands[1]))
class OpLoad(Instruction):
def _impl(self, module, lane):
lane.set_register(self._result, lane.get_register(self._operands[1]))
class OpIAdd(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
RHS = lane.get_register(self._operands[2])
lane.set_register(self._result, LHS + RHS)
class OpISub(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
RHS = lane.get_register(self._operands[2])
lane.set_register(self._result, LHS - RHS)
class OpIMul(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
RHS = lane.get_register(self._operands[2])
lane.set_register(self._result, LHS * RHS)
class OpLogicalNot(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
lane.set_register(self._result, not LHS)
class _LessThan(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
RHS = lane.get_register(self._operands[2])
lane.set_register(self._result, LHS < RHS)
class _GreaterThan(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
RHS = lane.get_register(self._operands[2])
lane.set_register(self._result, LHS > RHS)
class OpSLessThan(_LessThan):
pass
class OpULessThan(_LessThan):
pass
class OpSGreaterThan(_GreaterThan):
pass
class OpUGreaterThan(_GreaterThan):
pass
class OpIEqual(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
RHS = lane.get_register(self._operands[2])
lane.set_register(self._result, LHS == RHS)
class OpINotEqual(Instruction):
def _impl(self, module, lane):
LHS = lane.get_register(self._operands[1])
RHS = lane.get_register(self._operands[2])
lane.set_register(self._result, LHS != RHS)
class OpPhi(Instruction):
def _impl(self, module, lane):
previousBBName = lane.get_previous_bb_name()
i = 1
while i < len(self._operands):
label = self._operands[i + 1]
if label == previousBBName:
lane.set_register(self._result, lane.get_register(self._operands[i]))
return
i += 2
raise RuntimeError("previousBB not in the OpPhi _operands")
class OpSelect(Instruction):
def _impl(self, module, lane):
condition = lane.get_register(self._operands[1])
value = lane.get_register(self._operands[2 if condition else 3])
lane.set_register(self._result, value)
# Wave intrinsics
class OpGroupNonUniformBroadcastFirst(Instruction):
def _impl(self, module, lane):
assert lane.get_register(self._operands[1]) == 3
if lane.is_first_active_lane():
lane.broadcast_register(self._result, lane.get_register(self._operands[2]))
class OpGroupNonUniformElect(Instruction):
def _impl(self, module, lane):
lane.set_register(self._result, lane.is_first_active_lane())
|