1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
//===- SPIR.cpp -----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// Base ABI and target codegen info implementation common between SPIR and
// SPIR-V.
//===----------------------------------------------------------------------===//
namespace {
class CommonSPIRABIInfo : public DefaultABIInfo {
public:
CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
private:
void setCCs();
};
class SPIRVABIInfo : public CommonSPIRABIInfo {
public:
SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
void computeInfo(CGFunctionInfo &FI) const override;
private:
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
ABIArgInfo classifyArgumentType(QualType Ty) const;
};
} // end anonymous namespace
namespace {
class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
public:
CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
: TargetCodeGenInfo(std::move(ABIInfo)) {}
LangAS getASTAllocaAddressSpace() const override {
return getLangASFromTargetAS(
getABIInfo().getDataLayout().getAllocaAddrSpace());
}
unsigned getOpenCLKernelCallingConv() const override;
llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const override;
llvm::Type *getHLSLType(CodeGenModule &CGM, const Type *Ty) const override;
llvm::Type *getSPIRVImageTypeFromHLSLResource(
const HLSLAttributedResourceType::Attributes &attributes,
llvm::Type *ElementType, llvm::LLVMContext &Ctx) const;
};
class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
public:
SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
: CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const override;
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override;
llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
SyncScope Scope,
llvm::AtomicOrdering Ordering,
llvm::LLVMContext &Ctx) const override;
};
inline StringRef mapClangSyncScopeToLLVM(SyncScope Scope) {
switch (Scope) {
case SyncScope::HIPSingleThread:
case SyncScope::SingleScope:
return "singlethread";
case SyncScope::HIPWavefront:
case SyncScope::OpenCLSubGroup:
case SyncScope::WavefrontScope:
return "subgroup";
case SyncScope::HIPWorkgroup:
case SyncScope::OpenCLWorkGroup:
case SyncScope::WorkgroupScope:
return "workgroup";
case SyncScope::HIPAgent:
case SyncScope::OpenCLDevice:
case SyncScope::DeviceScope:
return "device";
case SyncScope::SystemScope:
case SyncScope::HIPSystem:
case SyncScope::OpenCLAllSVMDevices:
return "";
}
return "";
}
} // End anonymous namespace.
void CommonSPIRABIInfo::setCCs() {
assert(getRuntimeCC() == llvm::CallingConv::C);
RuntimeCC = llvm::CallingConv::SPIR_FUNC;
}
ABIArgInfo SPIRVABIInfo::classifyReturnType(QualType RetTy) const {
if (getTarget().getTriple().getVendor() != llvm::Triple::AMD)
return DefaultABIInfo::classifyReturnType(RetTy);
if (!isAggregateTypeForABI(RetTy) || getRecordArgABI(RetTy, getCXXABI()))
return DefaultABIInfo::classifyReturnType(RetTy);
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return DefaultABIInfo::classifyReturnType(RetTy);
}
// TODO: The AMDGPU ABI is non-trivial to represent in SPIR-V; in order to
// avoid encoding various architecture specific bits here we return everything
// as direct to retain type info for things like aggregates, for later perusal
// when translating back to LLVM/lowering in the BE. This is also why we
// disable flattening as the outcomes can mismatch between SPIR-V and AMDGPU.
// This will be revisited / optimised in the future.
return ABIArgInfo::getDirect(CGT.ConvertType(RetTy), 0u, nullptr, false);
}
ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
if (getContext().getLangOpts().CUDAIsDevice) {
// Coerce pointer arguments with default address space to CrossWorkGroup
// pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
// SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
llvm::Type *LTy = CGT.ConvertType(Ty);
auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
LTy = llvm::PointerType::get(PtrTy->getContext(), GlobalAS);
return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
}
if (isAggregateTypeForABI(Ty)) {
if (getTarget().getTriple().getVendor() == llvm::Triple::AMD)
// TODO: The AMDGPU kernel ABI passes aggregates byref, which is not
// currently expressible in SPIR-V; SPIR-V passes aggregates byval,
// which the AMDGPU kernel ABI does not allow. Passing aggregates as
// direct works around this impedance mismatch, as it retains type info
// and can be correctly handled, post reverse-translation, by the AMDGPU
// BE, which has to support this CC for legacy OpenCL purposes. It can
// be brittle and does lead to performance degradation in certain
// pathological cases. This will be revisited / optimised in the future,
// once a way to deal with the byref/byval impedance mismatch is
// identified.
return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
// Force copying aggregate type in kernel arguments by value when
// compiling CUDA targeting SPIR-V. This is required for the object
// copied to be valid on the device.
// This behavior follows the CUDA spec
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
// and matches the NVPTX implementation.
return getNaturalAlignIndirect(Ty, /* byval */ true);
}
}
return classifyArgumentType(Ty);
}
ABIArgInfo SPIRVABIInfo::classifyArgumentType(QualType Ty) const {
if (getTarget().getTriple().getVendor() != llvm::Triple::AMD)
return DefaultABIInfo::classifyArgumentType(Ty);
if (!isAggregateTypeForABI(Ty))
return DefaultABIInfo::classifyArgumentType(Ty);
// Records with non-trivial destructors/copy-constructors should not be
// passed by value.
if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return DefaultABIInfo::classifyArgumentType(Ty);
}
return ABIArgInfo::getDirect(CGT.ConvertType(Ty), 0u, nullptr, false);
}
void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
// The logic is same as in DefaultABIInfo with an exception on the kernel
// arguments handling.
llvm::CallingConv::ID CC = FI.getCallingConvention();
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
for (auto &I : FI.arguments()) {
if (CC == llvm::CallingConv::SPIR_KERNEL) {
I.info = classifyKernelArgumentType(I.type);
} else {
I.info = classifyArgumentType(I.type);
}
}
}
namespace clang {
namespace CodeGen {
void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
if (CGM.getTarget().getTriple().isSPIRV())
SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
else
CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
}
}
}
unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
return llvm::CallingConv::SPIR_KERNEL;
}
void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
const FunctionType *&FT) const {
// Convert HIP kernels to SPIR-V kernels.
if (getABIInfo().getContext().getLangOpts().HIP) {
FT = getABIInfo().getContext().adjustFunctionType(
FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
return;
}
}
LangAS
SPIRVTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const {
assert(!CGM.getLangOpts().OpenCL &&
!(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
"Address space agnostic languages only");
// If we're here it means that we're using the SPIRDefIsGen ASMap, hence for
// the global AS we can rely on either cuda_device or sycl_global to be
// correct; however, since this is not a CUDA Device context, we use
// sycl_global to prevent confusion with the assertion.
LangAS DefaultGlobalAS = getLangASFromTargetAS(
CGM.getContext().getTargetAddressSpace(LangAS::sycl_global));
if (!D)
return DefaultGlobalAS;
LangAS AddrSpace = D->getType().getAddressSpace();
if (AddrSpace != LangAS::Default)
return AddrSpace;
return DefaultGlobalAS;
}
void SPIRVTargetCodeGenInfo::setTargetAttributes(
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
if (!M.getLangOpts().HIP ||
M.getTarget().getTriple().getVendor() != llvm::Triple::AMD)
return;
if (GV->isDeclaration())
return;
auto F = dyn_cast<llvm::Function>(GV);
if (!F)
return;
auto FD = dyn_cast_or_null<FunctionDecl>(D);
if (!FD)
return;
if (!FD->hasAttr<CUDAGlobalAttr>())
return;
unsigned N = M.getLangOpts().GPUMaxThreadsPerBlock;
if (auto FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>())
N = FlatWGS->getMax()->EvaluateKnownConstInt(M.getContext()).getExtValue();
// We encode the maximum flat WG size in the first component of the 3D
// max_work_group_size attribute, which will get reverse translated into the
// original AMDGPU attribute when targeting AMDGPU.
auto Int32Ty = llvm::IntegerType::getInt32Ty(M.getLLVMContext());
llvm::Metadata *AttrMDArgs[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, N)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 1)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 1))};
F->setMetadata("max_work_group_size",
llvm::MDNode::get(M.getLLVMContext(), AttrMDArgs));
}
llvm::SyncScope::ID
SPIRVTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &, SyncScope Scope,
llvm::AtomicOrdering,
llvm::LLVMContext &Ctx) const {
return Ctx.getOrInsertSyncScopeID(mapClangSyncScopeToLLVM(Scope));
}
/// Construct a SPIR-V target extension type for the given OpenCL image type.
static llvm::Type *getSPIRVImageType(llvm::LLVMContext &Ctx, StringRef BaseType,
StringRef OpenCLName,
unsigned AccessQualifier) {
// These parameters compare to the operands of OpTypeImage (see
// https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage
// for more details). The first 6 integer parameters all default to 0, and
// will be changed to 1 only for the image type(s) that set the parameter to
// one. The 7th integer parameter is the access qualifier, which is tacked on
// at the end.
SmallVector<unsigned, 7> IntParams = {0, 0, 0, 0, 0, 0};
// Choose the dimension of the image--this corresponds to the Dim enum in
// SPIR-V (first integer parameter of OpTypeImage).
if (OpenCLName.starts_with("image2d"))
IntParams[0] = 1; // 1D
else if (OpenCLName.starts_with("image3d"))
IntParams[0] = 2; // 2D
else if (OpenCLName == "image1d_buffer")
IntParams[0] = 5; // Buffer
else
assert(OpenCLName.starts_with("image1d") && "Unknown image type");
// Set the other integer parameters of OpTypeImage if necessary. Note that the
// OpenCL image types don't provide any information for the Sampled or
// Image Format parameters.
if (OpenCLName.contains("_depth"))
IntParams[1] = 1;
if (OpenCLName.contains("_array"))
IntParams[2] = 1;
if (OpenCLName.contains("_msaa"))
IntParams[3] = 1;
// Access qualifier
IntParams.push_back(AccessQualifier);
return llvm::TargetExtType::get(Ctx, BaseType, {llvm::Type::getVoidTy(Ctx)},
IntParams);
}
llvm::Type *CommonSPIRTargetCodeGenInfo::getOpenCLType(CodeGenModule &CGM,
const Type *Ty) const {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
if (auto *PipeTy = dyn_cast<PipeType>(Ty))
return llvm::TargetExtType::get(Ctx, "spirv.Pipe", {},
{!PipeTy->isReadOnly()});
if (auto *BuiltinTy = dyn_cast<BuiltinType>(Ty)) {
enum AccessQualifier : unsigned { AQ_ro = 0, AQ_wo = 1, AQ_rw = 2 };
switch (BuiltinTy->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
return getSPIRVImageType(Ctx, "spirv.Image", #ImgType, AQ_##Suffix);
#include "clang/Basic/OpenCLImageTypes.def"
case BuiltinType::OCLSampler:
return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
case BuiltinType::OCLEvent:
return llvm::TargetExtType::get(Ctx, "spirv.Event");
case BuiltinType::OCLClkEvent:
return llvm::TargetExtType::get(Ctx, "spirv.DeviceEvent");
case BuiltinType::OCLQueue:
return llvm::TargetExtType::get(Ctx, "spirv.Queue");
case BuiltinType::OCLReserveID:
return llvm::TargetExtType::get(Ctx, "spirv.ReserveId");
#define INTEL_SUBGROUP_AVC_TYPE(Name, Id) \
case BuiltinType::OCLIntelSubgroupAVC##Id: \
return llvm::TargetExtType::get(Ctx, "spirv.Avc" #Id "INTEL");
#include "clang/Basic/OpenCLExtensionTypes.def"
default:
return nullptr;
}
}
return nullptr;
}
llvm::Type *CommonSPIRTargetCodeGenInfo::getHLSLType(CodeGenModule &CGM,
const Type *Ty) const {
auto *ResType = dyn_cast<HLSLAttributedResourceType>(Ty);
if (!ResType)
return nullptr;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
const HLSLAttributedResourceType::Attributes &ResAttrs = ResType->getAttrs();
switch (ResAttrs.ResourceClass) {
case llvm::dxil::ResourceClass::UAV:
case llvm::dxil::ResourceClass::SRV: {
// TypedBuffer and RawBuffer both need element type
QualType ContainedTy = ResType->getContainedType();
if (ContainedTy.isNull())
return nullptr;
assert(!ResAttrs.RawBuffer &&
"Raw buffers handles are not implemented for SPIR-V yet");
assert(!ResAttrs.IsROV &&
"Rasterizer order views not implemented for SPIR-V yet");
// convert element type
llvm::Type *ElemType = CGM.getTypes().ConvertType(ContainedTy);
return getSPIRVImageTypeFromHLSLResource(ResAttrs, ElemType, Ctx);
}
case llvm::dxil::ResourceClass::CBuffer:
llvm_unreachable("CBuffer handles are not implemented for SPIR-V yet");
break;
case llvm::dxil::ResourceClass::Sampler:
return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
}
return nullptr;
}
llvm::Type *CommonSPIRTargetCodeGenInfo::getSPIRVImageTypeFromHLSLResource(
const HLSLAttributedResourceType::Attributes &attributes,
llvm::Type *ElementType, llvm::LLVMContext &Ctx) const {
if (ElementType->isVectorTy())
ElementType = ElementType->getScalarType();
assert((ElementType->isIntegerTy() || ElementType->isFloatingPointTy()) &&
"The element type for a SPIR-V resource must be a scalar integer or "
"floating point type.");
// These parameters correspond to the operands to the OpTypeImage SPIR-V
// instruction. See
// https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage.
SmallVector<unsigned, 6> IntParams(6, 0);
// Dim
// For now we assume everything is a buffer.
IntParams[0] = 5;
// Depth
// HLSL does not indicate if it is a depth texture or not, so we use unknown.
IntParams[1] = 2;
// Arrayed
IntParams[2] = 0;
// MS
IntParams[3] = 0;
// Sampled
IntParams[4] =
attributes.ResourceClass == llvm::dxil::ResourceClass::UAV ? 2 : 1;
// Image format.
// Setting to unknown for now.
IntParams[5] = 0;
return llvm::TargetExtType::get(Ctx, "spirv.Image", {ElementType}, IntParams);
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<CommonSPIRTargetCodeGenInfo>(CGM.getTypes());
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createSPIRVTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<SPIRVTargetCodeGenInfo>(CGM.getTypes());
}
|