1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
/*===----- amxcomplextransposeintrin.h - AMX-COMPLEX and AMX-TRANSPOSE ------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===------------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <amxcomplextransposeintrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __AMX_COMPLEXTRANSPOSEINTRIN_H
#define __AMX_COMPLEXTRANSPOSEINTRIN_H
#ifdef __x86_64__
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, \
__target__("amx-complex,amx-transpose")))
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles \a a and \a b is interpreted as a complex number
/// with FP16 real part and FP16 imaginary part.
/// Calculates the imaginary part of the result. For each possible combination
/// of (transposed column of \a a, column of \a b), it performs a set of
/// multiplication and accumulations on all corresponding complex numbers
/// (one from \a a and one from \a b). The imaginary part of the \a a element
/// is multiplied with the real part of the corresponding \a b element, and
/// the real part of the \a a element is multiplied with the imaginary part
/// of the corresponding \a b elements. The two accumulated results are
/// added, and then accumulated into the corresponding row and column of
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _tile_tcmmimfp16ps(__tile dst, __tile a, __tile b);
/// \endcode
///
/// \code{.operation}
/// FOR m := 0 TO dst.rows - 1
/// tmp := dst.row[m]
/// FOR k := 0 TO a.rows - 1
/// FOR n := 0 TO (dst.colsb / 4) - 1
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+1])
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+0])
/// ENDFOR
/// ENDFOR
/// write_row_and_zero(dst, m, tmp, dst.colsb)
/// ENDFOR
/// zero_upper_rows(dst, dst.rows)
/// zero_tileconfig_start()
/// \endcode
///
/// This intrinsic corresponds to the \c TTCMMIMFP16PS instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param a
/// The 1st source tile. Max size is 1024 Bytes.
/// \param b
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_tcmmimfp16ps(dst, a, b) \
__builtin_ia32_ttcmmimfp16ps((dst), (a), (b))
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles \a a and \a b is interpreted as a complex number
/// with FP16 real part and FP16 imaginary part.
/// Calculates the real part of the result. For each possible combination
/// of (rtransposed colum of \a a, column of \a b), it performs a set of
/// multiplication and accumulations on all corresponding complex numbers
/// (one from \a a and one from \a b). The real part of the \a a element is
/// multiplied with the real part of the corresponding \a b element, and the
/// negated imaginary part of the \a a element is multiplied with the
/// imaginary part of the corresponding \a b elements. The two accumulated
/// results are added, and then accumulated into the corresponding row and
/// column of \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _tile_tcmmrlfp16ps(__tile dst, __tile a, __tile b);
/// \endcode
///
/// \code{.operation}
/// FOR m := 0 TO dst.rows - 1
/// tmp := dst.row[m]
/// FOR k := 0 TO a.rows - 1
/// FOR n := 0 TO (dst.colsb / 4) - 1
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+0])
/// tmp.fp32[n] += FP32(-a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+1])
/// ENDFOR
/// ENDFOR
/// write_row_and_zero(dst, m, tmp, dst.colsb)
/// ENDFOR
/// zero_upper_rows(dst, dst.rows)
/// zero_tileconfig_start()
/// \endcode
///
/// This intrinsic corresponds to the \c TTCMMIMFP16PS instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param a
/// The 1st source tile. Max size is 1024 Bytes.
/// \param b
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_tcmmrlfp16ps(dst, a, b) \
__builtin_ia32_ttcmmrlfp16ps((dst), (a), (b))
/// Perform matrix conjugate transpose and multiplication of two tiles
/// containing complex elements and accumulate the results into a packed
/// single precision tile. Each dword element in input tiles \a a and \a b
/// is interpreted as a complex number with FP16 real part and FP16 imaginary
/// part.
/// Calculates the imaginary part of the result. For each possible combination
/// of (transposed column of \a a, column of \a b), it performs a set of
/// multiplication and accumulations on all corresponding complex numbers
/// (one from \a a and one from \a b). The negated imaginary part of the \a a
/// element is multiplied with the real part of the corresponding \a b
/// element, and the real part of the \a a element is multiplied with the
/// imaginary part of the corresponding \a b elements. The two accumulated
/// results are added, and then accumulated into the corresponding row and
/// column of \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _tile_conjtcmmimfp16ps(__tile dst, __tile a, __tile b);
/// \endcode
///
/// \code{.operation}
/// FOR m := 0 TO dst.rows - 1
/// tmp := dst.row[m]
/// FOR k := 0 TO a.rows - 1
/// FOR n := 0 TO (dst.colsb / 4) - 1
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+1])
/// tmp.fp32[n] += FP32(-a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+0])
/// ENDFOR
/// ENDFOR
/// write_row_and_zero(dst, m, tmp, dst.colsb)
/// ENDFOR
/// zero_upper_rows(dst, dst.rows)
/// zero_tileconfig_start()
/// \endcode
///
/// This intrinsic corresponds to the \c TCONJTCMMIMFP16PS instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param a
/// The 1st source tile. Max size is 1024 Bytes.
/// \param b
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_conjtcmmimfp16ps(dst, a, b) \
__builtin_ia32_tconjtcmmimfp16ps((dst), (a), (b))
/// Perform conjugate transpose of an FP16-pair of complex elements from \a a
/// and writes the result to \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _tile_conjtfp16(__tile dst, __tile a);
/// \endcode
///
/// \code{.operation}
/// FOR i := 0 TO dst.rows - 1
/// FOR j := 0 TO (dst.colsb / 4) - 1
/// tmp.fp16[2*j+0] := a.row[j].fp16[2*i+0]
/// tmp.fp16[2*j+1] := -a.row[j].fp16[2*i+1]
/// ENDFOR
/// write_row_and_zero(dst, i, tmp, dst.colsb)
/// ENDFOR
/// zero_upper_rows(dst, dst.rows)
/// zero_tileconfig_start()
/// \endcode
///
/// This intrinsic corresponds to the \c TCONJTFP16 instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param a
/// The source tile. Max size is 1024 Bytes.
#define _tile_conjtfp16(dst, a) __builtin_ia32_tconjtfp16((dst), (a))
static __inline__ _tile1024i __DEFAULT_FN_ATTRS _tile_tcmmimfp16ps_internal(
unsigned short m, unsigned short n, unsigned short k, _tile1024i dst,
_tile1024i src1, _tile1024i src2) {
return __builtin_ia32_ttcmmimfp16ps_internal(m, n, k, dst, src1, src2);
}
static __inline__ _tile1024i __DEFAULT_FN_ATTRS _tile_tcmmrlfp16ps_internal(
unsigned short m, unsigned short n, unsigned short k, _tile1024i dst,
_tile1024i src1, _tile1024i src2) {
return __builtin_ia32_ttcmmrlfp16ps_internal(m, n, k, dst, src1, src2);
}
static __inline__ _tile1024i __DEFAULT_FN_ATTRS _tile_conjtcmmimfp16ps_internal(
unsigned short m, unsigned short n, unsigned short k, _tile1024i dst,
_tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tconjtcmmimfp16ps_internal(m, n, k, dst, src1, src2);
}
static __inline__ _tile1024i __DEFAULT_FN_ATTRS
_tile_conjtfp16_internal(unsigned short m, unsigned short n, _tile1024i src) {
return __builtin_ia32_tconjtfp16_internal(m, n, src);
}
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles src0 and src1 is interpreted as a complex number
/// with FP16 real part and FP16 imaginary part.
/// This function calculates the imaginary part of the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TTCMMIMFP16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS
static void __tile_tcmmimfp16ps(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_tcmmimfp16ps_internal(src0.row, src1.col, src0.col,
dst->tile, src0.tile, src1.tile);
}
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles src0 and src1 is interpreted as a complex number
/// with FP16 real part and FP16 imaginary part.
/// This function calculates the real part of the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TTCMMRLFP16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS
static void __tile_tcmmrlfp16ps(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_tcmmrlfp16ps_internal(src0.row, src1.col, src0.col,
dst->tile, src0.tile, src1.tile);
}
/// Perform matrix conjugate transpose and multiplication of two tiles
/// containing complex elements and accumulate the results into a packed
/// single precision tile. Each dword element in input tiles src0 and src1
/// is interpreted as a complex number with FP16 real part and FP16 imaginary
/// part.
/// This function calculates the imaginary part of the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TCONJTCMMIMFP16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS
static void __tile_conjtcmmimfp16ps(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_conjtcmmimfp16ps_internal(src0.row, src1.col, src0.col,
dst->tile, src0.tile, src1.tile);
}
/// Perform conjugate transpose of an FP16-pair of complex elements from src and
/// writes the result to dst.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TCONJTFP16 </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src
/// The source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS
static void __tile_conjtfp16(__tile1024i *dst, __tile1024i src) {
dst->tile = _tile_conjtfp16_internal(src.row, src.col, src.tile);
}
#undef __DEFAULT_FN_ATTRS
#endif // __x86_64__
#endif // __AMX_COMPLEXTRANSPOSEINTRIN_H
|