1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
//===-- lib/Evaluate/fold-reduction.h -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_FOLD_REDUCTION_H_
#define FORTRAN_EVALUATE_FOLD_REDUCTION_H_
#include "fold-implementation.h"
namespace Fortran::evaluate {
// DOT_PRODUCT
template <typename T>
static Expr<T> FoldDotProduct(
FoldingContext &context, FunctionRef<T> &&funcRef) {
using Element = typename Constant<T>::Element;
auto args{funcRef.arguments()};
CHECK(args.size() == 2);
Folder<T> folder{context};
Constant<T> *va{folder.Folding(args[0])};
Constant<T> *vb{folder.Folding(args[1])};
if (va && vb) {
CHECK(va->Rank() == 1 && vb->Rank() == 1);
if (va->size() != vb->size()) {
context.messages().Say(
"Vector arguments to DOT_PRODUCT have distinct extents %zd and %zd"_err_en_US,
va->size(), vb->size());
return MakeInvalidIntrinsic(std::move(funcRef));
}
Element sum{};
bool overflow{false};
if constexpr (T::category == TypeCategory::Complex) {
std::vector<Element> conjugates;
for (const Element &x : va->values()) {
conjugates.emplace_back(x.CONJG());
}
Constant<T> conjgA{
std::move(conjugates), ConstantSubscripts{va->shape()}};
Expr<T> products{Fold(
context, Expr<T>{std::move(conjgA)} * Expr<T>{Constant<T>{*vb}})};
Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
[[maybe_unused]] Element correction{};
const auto &rounding{context.targetCharacteristics().roundingMode()};
for (const Element &x : cProducts.values()) {
if constexpr (useKahanSummation) {
auto next{x.Subtract(correction, rounding)};
overflow |= next.flags.test(RealFlag::Overflow);
auto added{sum.Add(next.value, rounding)};
overflow |= added.flags.test(RealFlag::Overflow);
correction = added.value.Subtract(sum, rounding)
.value.Subtract(next.value, rounding)
.value;
sum = std::move(added.value);
} else {
auto added{sum.Add(x, rounding)};
overflow |= added.flags.test(RealFlag::Overflow);
sum = std::move(added.value);
}
}
} else if constexpr (T::category == TypeCategory::Logical) {
Expr<T> conjunctions{Fold(context,
Expr<T>{LogicalOperation<T::kind>{LogicalOperator::And,
Expr<T>{Constant<T>{*va}}, Expr<T>{Constant<T>{*vb}}}})};
Constant<T> &cConjunctions{DEREF(UnwrapConstantValue<T>(conjunctions))};
for (const Element &x : cConjunctions.values()) {
if (x.IsTrue()) {
sum = Element{true};
break;
}
}
} else if constexpr (T::category == TypeCategory::Integer) {
Expr<T> products{
Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
for (const Element &x : cProducts.values()) {
auto next{sum.AddSigned(x)};
overflow |= next.overflow;
sum = std::move(next.value);
}
} else if constexpr (T::category == TypeCategory::Unsigned) {
Expr<T> products{
Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
for (const Element &x : cProducts.values()) {
sum = sum.AddUnsigned(x).value;
}
} else {
static_assert(T::category == TypeCategory::Real);
Expr<T> products{
Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
[[maybe_unused]] Element correction{};
const auto &rounding{context.targetCharacteristics().roundingMode()};
for (const Element &x : cProducts.values()) {
if constexpr (useKahanSummation) {
auto next{x.Subtract(correction, rounding)};
overflow |= next.flags.test(RealFlag::Overflow);
auto added{sum.Add(next.value, rounding)};
overflow |= added.flags.test(RealFlag::Overflow);
correction = added.value.Subtract(sum, rounding)
.value.Subtract(next.value, rounding)
.value;
sum = std::move(added.value);
} else {
auto added{sum.Add(x, rounding)};
overflow |= added.flags.test(RealFlag::Overflow);
sum = std::move(added.value);
}
}
}
if (overflow &&
context.languageFeatures().ShouldWarn(
common::UsageWarning::FoldingException)) {
context.messages().Say(common::UsageWarning::FoldingException,
"DOT_PRODUCT of %s data overflowed during computation"_warn_en_US,
T::AsFortran());
}
return Expr<T>{Constant<T>{std::move(sum)}};
}
return Expr<T>{std::move(funcRef)};
}
// Fold and validate a DIM= argument. Returns false on error.
bool CheckReductionDIM(std::optional<int> &dim, FoldingContext &,
ActualArguments &, std::optional<int> dimIndex, int rank);
// Fold and validate a MASK= argument. Return null on error, absent MASK=, or
// non-constant MASK=.
Constant<LogicalResult> *GetReductionMASK(
std::optional<ActualArgument> &maskArg, const ConstantSubscripts &shape,
FoldingContext &);
// Common preprocessing for reduction transformational intrinsic function
// folding. If the intrinsic can have DIM= &/or MASK= arguments, extract
// and check them. If a MASK= is present, apply it to the array data and
// substitute replacement values for elements corresponding to .FALSE. in
// the mask. If the result is present, the intrinsic call can be folded.
template <typename T> struct ArrayAndMask {
Constant<T> array;
Constant<LogicalResult> mask;
};
template <typename T>
static std::optional<ArrayAndMask<T>> ProcessReductionArgs(
FoldingContext &context, ActualArguments &arg, std::optional<int> &dim,
int arrayIndex, std::optional<int> dimIndex = std::nullopt,
std::optional<int> maskIndex = std::nullopt) {
if (arg.empty()) {
return std::nullopt;
}
Constant<T> *folded{Folder<T>{context}.Folding(arg[arrayIndex])};
if (!folded || folded->Rank() < 1) {
return std::nullopt;
}
if (!CheckReductionDIM(dim, context, arg, dimIndex, folded->Rank())) {
return std::nullopt;
}
std::size_t n{folded->size()};
std::vector<Scalar<LogicalResult>> maskElement;
if (maskIndex && static_cast<std::size_t>(*maskIndex) < arg.size() &&
arg[*maskIndex]) {
if (const Constant<LogicalResult> *origMask{
GetReductionMASK(arg[*maskIndex], folded->shape(), context)}) {
if (auto scalarMask{origMask->GetScalarValue()}) {
maskElement =
std::vector<Scalar<LogicalResult>>(n, scalarMask->IsTrue());
} else {
maskElement = origMask->values();
}
} else {
return std::nullopt;
}
} else {
maskElement = std::vector<Scalar<LogicalResult>>(n, true);
}
return ArrayAndMask<T>{Constant<T>(*folded),
Constant<LogicalResult>{
std::move(maskElement), ConstantSubscripts{folded->shape()}}};
}
// Generalized reduction to an array of one dimension fewer (w/ DIM=)
// or to a scalar (w/o DIM=). The ACCUMULATOR type must define
// operator()(Scalar<T> &, const ConstantSubscripts &, bool first)
// and Done(Scalar<T> &).
template <typename T, typename ACCUMULATOR, typename ARRAY>
static Constant<T> DoReduction(const Constant<ARRAY> &array,
const Constant<LogicalResult> &mask, std::optional<int> &dim,
const Scalar<T> &identity, ACCUMULATOR &accumulator) {
ConstantSubscripts at{array.lbounds()};
ConstantSubscripts maskAt{mask.lbounds()};
std::vector<typename Constant<T>::Element> elements;
ConstantSubscripts resultShape; // empty -> scalar
if (dim) { // DIM= is present, so result is an array
resultShape = array.shape();
resultShape.erase(resultShape.begin() + (*dim - 1));
ConstantSubscript dimExtent{array.shape().at(*dim - 1)};
CHECK(dimExtent == mask.shape().at(*dim - 1));
ConstantSubscript &dimAt{at[*dim - 1]};
ConstantSubscript dimLbound{dimAt};
ConstantSubscript &maskDimAt{maskAt[*dim - 1]};
ConstantSubscript maskDimLbound{maskDimAt};
for (auto n{GetSize(resultShape)}; n-- > 0;
array.IncrementSubscripts(at), mask.IncrementSubscripts(maskAt)) {
elements.push_back(identity);
if (dimExtent > 0) {
dimAt = dimLbound;
maskDimAt = maskDimLbound;
bool firstUnmasked{true};
for (ConstantSubscript j{0}; j < dimExtent; ++j, ++dimAt, ++maskDimAt) {
if (mask.At(maskAt).IsTrue()) {
accumulator(elements.back(), at, firstUnmasked);
firstUnmasked = false;
}
}
--dimAt, --maskDimAt;
}
accumulator.Done(elements.back());
}
} else { // no DIM=, result is scalar
elements.push_back(identity);
bool firstUnmasked{true};
for (auto n{array.size()}; n-- > 0;
array.IncrementSubscripts(at), mask.IncrementSubscripts(maskAt)) {
if (mask.At(maskAt).IsTrue()) {
accumulator(elements.back(), at, firstUnmasked);
firstUnmasked = false;
}
}
accumulator.Done(elements.back());
}
if constexpr (T::category == TypeCategory::Character) {
return {static_cast<ConstantSubscript>(identity.size()),
std::move(elements), std::move(resultShape)};
} else {
return {std::move(elements), std::move(resultShape)};
}
}
// MAXVAL & MINVAL
template <typename T, bool ABS = false> class MaxvalMinvalAccumulator {
public:
MaxvalMinvalAccumulator(
RelationalOperator opr, FoldingContext &context, const Constant<T> &array)
: opr_{opr}, context_{context}, array_{array} {};
void operator()(Scalar<T> &element, const ConstantSubscripts &at,
[[maybe_unused]] bool firstUnmasked) const {
auto aAt{array_.At(at)};
if constexpr (ABS) {
aAt = aAt.ABS();
}
if constexpr (T::category == TypeCategory::Real) {
if (firstUnmasked || element.IsNotANumber()) {
// Return NaN if and only if all unmasked elements are NaNs and
// at least one unmasked element is visible.
element = aAt;
return;
}
}
Expr<LogicalResult> test{PackageRelation(
opr_, Expr<T>{Constant<T>{aAt}}, Expr<T>{Constant<T>{element}})};
auto folded{GetScalarConstantValue<LogicalResult>(
test.Rewrite(context_, std::move(test)))};
CHECK(folded.has_value());
if (folded->IsTrue()) {
element = aAt;
}
}
void Done(Scalar<T> &) const {}
private:
RelationalOperator opr_;
FoldingContext &context_;
const Constant<T> &array_;
};
template <typename T>
static Expr<T> FoldMaxvalMinval(FoldingContext &context, FunctionRef<T> &&ref,
RelationalOperator opr, const Scalar<T> &identity) {
static_assert(T::category == TypeCategory::Integer ||
T::category == TypeCategory::Unsigned ||
T::category == TypeCategory::Real ||
T::category == TypeCategory::Character);
std::optional<int> dim;
if (std::optional<ArrayAndMask<T>> arrayAndMask{
ProcessReductionArgs<T>(context, ref.arguments(), dim,
/*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
MaxvalMinvalAccumulator<T> accumulator{opr, context, arrayAndMask->array};
return Expr<T>{DoReduction<T>(
arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)};
}
return Expr<T>{std::move(ref)};
}
// PRODUCT
template <typename T> class ProductAccumulator {
public:
ProductAccumulator(const Constant<T> &array) : array_{array} {}
void operator()(
Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) {
if constexpr (T::category == TypeCategory::Integer) {
auto prod{element.MultiplySigned(array_.At(at))};
overflow_ |= prod.SignedMultiplicationOverflowed();
element = prod.lower;
} else if constexpr (T::category == TypeCategory::Unsigned) {
element = element.MultiplyUnsigned(array_.At(at)).lower;
} else { // Real & Complex
auto prod{element.Multiply(array_.At(at))};
overflow_ |= prod.flags.test(RealFlag::Overflow);
element = prod.value;
}
}
bool overflow() const { return overflow_; }
void Done(Scalar<T> &) const {}
private:
const Constant<T> &array_;
bool overflow_{false};
};
template <typename T>
static Expr<T> FoldProduct(
FoldingContext &context, FunctionRef<T> &&ref, Scalar<T> identity) {
static_assert(T::category == TypeCategory::Integer ||
T::category == TypeCategory::Unsigned ||
T::category == TypeCategory::Real ||
T::category == TypeCategory::Complex);
std::optional<int> dim;
if (std::optional<ArrayAndMask<T>> arrayAndMask{
ProcessReductionArgs<T>(context, ref.arguments(), dim,
/*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
ProductAccumulator accumulator{arrayAndMask->array};
auto result{Expr<T>{DoReduction<T>(
arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)}};
if (accumulator.overflow() &&
context.languageFeatures().ShouldWarn(
common::UsageWarning::FoldingException)) {
context.messages().Say(common::UsageWarning::FoldingException,
"PRODUCT() of %s data overflowed"_warn_en_US, T::AsFortran());
}
return result;
}
return Expr<T>{std::move(ref)};
}
// SUM
template <typename T> class SumAccumulator {
using Element = typename Constant<T>::Element;
public:
SumAccumulator(const Constant<T> &array, Rounding rounding)
: array_{array}, rounding_{rounding} {}
void operator()(
Element &element, const ConstantSubscripts &at, bool /*first*/) {
if constexpr (T::category == TypeCategory::Integer) {
auto sum{element.AddSigned(array_.At(at))};
overflow_ |= sum.overflow;
element = sum.value;
} else if constexpr (T::category == TypeCategory::Unsigned) {
element = element.AddUnsigned(array_.At(at)).value;
} else { // Real & Complex: use Kahan summation
auto next{array_.At(at).Subtract(correction_, rounding_)};
overflow_ |= next.flags.test(RealFlag::Overflow);
auto sum{element.Add(next.value, rounding_)};
overflow_ |= sum.flags.test(RealFlag::Overflow);
// correction = (sum - element) - next; algebraically zero
correction_ = sum.value.Subtract(element, rounding_)
.value.Subtract(next.value, rounding_)
.value;
element = sum.value;
}
}
bool overflow() const { return overflow_; }
void Done([[maybe_unused]] Element &element) {
if constexpr (T::category != TypeCategory::Integer &&
T::category != TypeCategory::Unsigned) {
auto corrected{element.Add(correction_, rounding_)};
overflow_ |= corrected.flags.test(RealFlag::Overflow);
correction_ = Scalar<T>{};
element = corrected.value;
}
}
private:
const Constant<T> &array_;
Rounding rounding_;
bool overflow_{false};
Element correction_{};
};
template <typename T>
static Expr<T> FoldSum(FoldingContext &context, FunctionRef<T> &&ref) {
static_assert(T::category == TypeCategory::Integer ||
T::category == TypeCategory::Unsigned ||
T::category == TypeCategory::Real ||
T::category == TypeCategory::Complex);
using Element = typename Constant<T>::Element;
std::optional<int> dim;
Element identity{};
if (std::optional<ArrayAndMask<T>> arrayAndMask{
ProcessReductionArgs<T>(context, ref.arguments(), dim,
/*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
SumAccumulator accumulator{
arrayAndMask->array, context.targetCharacteristics().roundingMode()};
auto result{Expr<T>{DoReduction<T>(
arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)}};
if (accumulator.overflow() &&
context.languageFeatures().ShouldWarn(
common::UsageWarning::FoldingException)) {
context.messages().Say(common::UsageWarning::FoldingException,
"SUM() of %s data overflowed"_warn_en_US, T::AsFortran());
}
return result;
}
return Expr<T>{std::move(ref)};
}
// Utility for IALL, IANY, IPARITY, ALL, ANY, & PARITY
template <typename T> class OperationAccumulator {
public:
OperationAccumulator(const Constant<T> &array,
Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const)
: array_{array}, operation_{operation} {}
void operator()(
Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) {
element = (element.*operation_)(array_.At(at));
}
void Done(Scalar<T> &) const {}
private:
const Constant<T> &array_;
Scalar<T> (Scalar<T>::*operation_)(const Scalar<T> &) const;
};
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_FOLD_REDUCTION_H_
|