File: CUFGPUToLLVMConversion.cpp

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,696 kB
  • sloc: cpp: 7,438,781; ansic: 1,393,871; asm: 1,012,926; python: 241,771; f90: 86,635; objc: 75,411; lisp: 42,144; pascal: 17,286; sh: 8,596; ml: 5,082; perl: 4,730; makefile: 3,591; awk: 3,523; javascript: 2,251; xml: 892; fortran: 672
file content (212 lines) | stat: -rw-r--r-- 9,306 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//===-- CUFGPUToLLVMConversion.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/Transforms/CUFGPUToLLVMConversion.h"
#include "flang/Common/Fortran.h"
#include "flang/Optimizer/CodeGen/TypeConverter.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Runtime/CUDA/common.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/FormatVariadic.h"

namespace fir {
#define GEN_PASS_DEF_CUFGPUTOLLVMCONVERSION
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir

using namespace fir;
using namespace mlir;
using namespace Fortran::runtime;

namespace {

static mlir::Value createKernelArgArray(mlir::Location loc,
                                        mlir::ValueRange operands,
                                        mlir::PatternRewriter &rewriter) {

  auto *ctx = rewriter.getContext();
  llvm::SmallVector<mlir::Type> structTypes(operands.size(), nullptr);

  for (auto [i, arg] : llvm::enumerate(operands))
    structTypes[i] = arg.getType();

  auto structTy = mlir::LLVM::LLVMStructType::getLiteral(ctx, structTypes);
  auto ptrTy = mlir::LLVM::LLVMPointerType::get(rewriter.getContext());
  mlir::Type i32Ty = rewriter.getI32Type();
  auto zero = rewriter.create<mlir::LLVM::ConstantOp>(
      loc, i32Ty, rewriter.getIntegerAttr(i32Ty, 0));
  auto one = rewriter.create<mlir::LLVM::ConstantOp>(
      loc, i32Ty, rewriter.getIntegerAttr(i32Ty, 1));
  mlir::Value argStruct =
      rewriter.create<mlir::LLVM::AllocaOp>(loc, ptrTy, structTy, one);
  auto size = rewriter.create<mlir::LLVM::ConstantOp>(
      loc, i32Ty, rewriter.getIntegerAttr(i32Ty, structTypes.size()));
  mlir::Value argArray =
      rewriter.create<mlir::LLVM::AllocaOp>(loc, ptrTy, ptrTy, size);

  for (auto [i, arg] : llvm::enumerate(operands)) {
    auto indice = rewriter.create<mlir::LLVM::ConstantOp>(
        loc, i32Ty, rewriter.getIntegerAttr(i32Ty, i));
    mlir::Value structMember = rewriter.create<LLVM::GEPOp>(
        loc, ptrTy, structTy, argStruct,
        mlir::ArrayRef<mlir::Value>({zero, indice}));
    rewriter.create<LLVM::StoreOp>(loc, arg, structMember);
    mlir::Value arrayMember = rewriter.create<LLVM::GEPOp>(
        loc, ptrTy, ptrTy, argArray, mlir::ArrayRef<mlir::Value>({indice}));
    rewriter.create<LLVM::StoreOp>(loc, structMember, arrayMember);
  }
  return argArray;
}

struct GPULaunchKernelConversion
    : public mlir::ConvertOpToLLVMPattern<mlir::gpu::LaunchFuncOp> {
  explicit GPULaunchKernelConversion(
      const fir::LLVMTypeConverter &typeConverter, mlir::PatternBenefit benefit)
      : mlir::ConvertOpToLLVMPattern<mlir::gpu::LaunchFuncOp>(typeConverter,
                                                              benefit) {}

  using OpAdaptor = typename mlir::gpu::LaunchFuncOp::Adaptor;

  mlir::LogicalResult
  matchAndRewrite(mlir::gpu::LaunchFuncOp op, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = op.getLoc();
    auto *ctx = rewriter.getContext();
    mlir::ModuleOp mod = op->getParentOfType<mlir::ModuleOp>();
    mlir::Value dynamicMemorySize = op.getDynamicSharedMemorySize();
    mlir::Type i32Ty = rewriter.getI32Type();
    if (!dynamicMemorySize)
      dynamicMemorySize = rewriter.create<mlir::LLVM::ConstantOp>(
          loc, i32Ty, rewriter.getIntegerAttr(i32Ty, 0));

    mlir::Value kernelArgs =
        createKernelArgArray(loc, adaptor.getKernelOperands(), rewriter);

    auto ptrTy = mlir::LLVM::LLVMPointerType::get(rewriter.getContext());
    auto kernel = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(op.getKernelName());
    mlir::Value kernelPtr;
    if (!kernel) {
      auto funcOp = mod.lookupSymbol<mlir::func::FuncOp>(op.getKernelName());
      if (!funcOp)
        return mlir::failure();
      kernelPtr =
          rewriter.create<LLVM::AddressOfOp>(loc, ptrTy, funcOp.getName());
    } else {
      kernelPtr =
          rewriter.create<LLVM::AddressOfOp>(loc, ptrTy, kernel.getName());
    }

    auto llvmIntPtrType = mlir::IntegerType::get(
        ctx, this->getTypeConverter()->getPointerBitwidth(0));
    auto voidTy = mlir::LLVM::LLVMVoidType::get(ctx);

    mlir::Value nullPtr = rewriter.create<LLVM::ZeroOp>(loc, ptrTy);

    if (op.hasClusterSize()) {
      auto funcOp = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(
          RTNAME_STRING(CUFLaunchClusterKernel));
      auto funcTy = mlir::LLVM::LLVMFunctionType::get(
          voidTy,
          {ptrTy, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
           llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
           llvmIntPtrType, llvmIntPtrType, i32Ty, ptrTy, ptrTy},
          /*isVarArg=*/false);
      auto cufLaunchClusterKernel = mlir::SymbolRefAttr::get(
          mod.getContext(), RTNAME_STRING(CUFLaunchClusterKernel));
      if (!funcOp) {
        mlir::OpBuilder::InsertionGuard insertGuard(rewriter);
        rewriter.setInsertionPointToStart(mod.getBody());
        auto launchKernelFuncOp = rewriter.create<mlir::LLVM::LLVMFuncOp>(
            loc, RTNAME_STRING(CUFLaunchClusterKernel), funcTy);
        launchKernelFuncOp.setVisibility(
            mlir::SymbolTable::Visibility::Private);
      }
      rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
          op, funcTy, cufLaunchClusterKernel,
          mlir::ValueRange{kernelPtr, adaptor.getClusterSizeX(),
                           adaptor.getClusterSizeY(), adaptor.getClusterSizeZ(),
                           adaptor.getGridSizeX(), adaptor.getGridSizeY(),
                           adaptor.getGridSizeZ(), adaptor.getBlockSizeX(),
                           adaptor.getBlockSizeY(), adaptor.getBlockSizeZ(),
                           dynamicMemorySize, kernelArgs, nullPtr});
    } else {
      auto procAttr =
          op->getAttrOfType<cuf::ProcAttributeAttr>(cuf::getProcAttrName());
      bool isGridGlobal =
          procAttr && procAttr.getValue() == cuf::ProcAttribute::GridGlobal;
      llvm::StringRef fctName = isGridGlobal
                                    ? RTNAME_STRING(CUFLaunchCooperativeKernel)
                                    : RTNAME_STRING(CUFLaunchKernel);
      auto funcOp = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(fctName);
      auto funcTy = mlir::LLVM::LLVMFunctionType::get(
          voidTy,
          {ptrTy, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
           llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, i32Ty, ptrTy, ptrTy},
          /*isVarArg=*/false);
      auto cufLaunchKernel =
          mlir::SymbolRefAttr::get(mod.getContext(), fctName);
      if (!funcOp) {
        mlir::OpBuilder::InsertionGuard insertGuard(rewriter);
        rewriter.setInsertionPointToStart(mod.getBody());
        auto launchKernelFuncOp =
            rewriter.create<mlir::LLVM::LLVMFuncOp>(loc, fctName, funcTy);
        launchKernelFuncOp.setVisibility(
            mlir::SymbolTable::Visibility::Private);
      }
      rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
          op, funcTy, cufLaunchKernel,
          mlir::ValueRange{kernelPtr, adaptor.getGridSizeX(),
                           adaptor.getGridSizeY(), adaptor.getGridSizeZ(),
                           adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
                           adaptor.getBlockSizeZ(), dynamicMemorySize,
                           kernelArgs, nullPtr});
    }

    return mlir::success();
  }
};

class CUFGPUToLLVMConversion
    : public fir::impl::CUFGPUToLLVMConversionBase<CUFGPUToLLVMConversion> {
public:
  void runOnOperation() override {
    auto *ctx = &getContext();
    mlir::RewritePatternSet patterns(ctx);
    mlir::ConversionTarget target(*ctx);

    mlir::Operation *op = getOperation();
    mlir::ModuleOp module = mlir::dyn_cast<mlir::ModuleOp>(op);
    if (!module)
      return signalPassFailure();

    std::optional<mlir::DataLayout> dl =
        fir::support::getOrSetDataLayout(module, /*allowDefaultLayout=*/false);
    fir::LLVMTypeConverter typeConverter(module, /*applyTBAA=*/false,
                                         /*forceUnifiedTBAATree=*/false, *dl);
    cuf::populateCUFGPUToLLVMConversionPatterns(typeConverter, patterns);
    target.addIllegalOp<mlir::gpu::LaunchFuncOp>();
    target.addLegalDialect<mlir::LLVM::LLVMDialect>();
    if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
                                                  std::move(patterns)))) {
      mlir::emitError(mlir::UnknownLoc::get(ctx),
                      "error in CUF GPU op conversion\n");
      signalPassFailure();
    }
  }
};
} // namespace

void cuf::populateCUFGPUToLLVMConversionPatterns(
    const fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
    mlir::PatternBenefit benefit) {
  patterns.add<GPULaunchKernelConversion>(converter, benefit);
}