1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
//===- LoongArch.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "OutputSections.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/LEB128.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class LoongArch final : public TargetInfo {
public:
LoongArch(Ctx &);
uint32_t calcEFlags() const override;
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
RelType getDynRel(RelType type) const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
bool usesOnlyLowPageBits(RelType type) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
bool relaxOnce(int pass) const override;
void finalizeRelax(int passes) const override;
};
} // end anonymous namespace
namespace {
enum Op {
SUB_W = 0x00110000,
SUB_D = 0x00118000,
BREAK = 0x002a0000,
SRLI_W = 0x00448000,
SRLI_D = 0x00450000,
ADDI_W = 0x02800000,
ADDI_D = 0x02c00000,
ANDI = 0x03400000,
PCADDU12I = 0x1c000000,
LD_W = 0x28800000,
LD_D = 0x28c00000,
JIRL = 0x4c000000,
};
enum Reg {
R_ZERO = 0,
R_RA = 1,
R_TP = 2,
R_T0 = 12,
R_T1 = 13,
R_T2 = 14,
R_T3 = 15,
};
} // namespace
// Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences
// like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i`
// produces a PC-relative intermediate value with the lowest 12 bits zeroed (the
// "page") for the next instruction to add in the "page offset". (`pcalau12i`
// stands for something like "PC ALigned Add Upper that starts from the 12th
// bit, Immediate".)
//
// Here a "page" is in fact just another way to refer to the 12-bit range
// allowed by the immediate field of the addi/ld/st instructions, and not
// related to the system or the kernel's actual page size. The semantics happen
// to match the AArch64 `adrp`, so the concept of "page" is borrowed here.
static uint64_t getLoongArchPage(uint64_t p) {
return p & ~static_cast<uint64_t>(0xfff);
}
static uint32_t lo12(uint32_t val) { return val & 0xfff; }
// Calculate the adjusted page delta between dest and PC.
uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) {
// Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d
// + lu52i.d`, they must be adjacent so that we can infer the PC of
// `pcalau12i` when calculating the page delta for the other two instructions
// (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit
// complicated. Just use psABI recommended algorithm.
uint64_t pcalau12i_pc;
switch (type) {
case R_LARCH_PCALA64_LO20:
case R_LARCH_GOT64_PC_LO20:
case R_LARCH_TLS_IE64_PC_LO20:
case R_LARCH_TLS_DESC64_PC_LO20:
pcalau12i_pc = pc - 8;
break;
case R_LARCH_PCALA64_HI12:
case R_LARCH_GOT64_PC_HI12:
case R_LARCH_TLS_IE64_PC_HI12:
case R_LARCH_TLS_DESC64_PC_HI12:
pcalau12i_pc = pc - 12;
break;
default:
pcalau12i_pc = pc;
break;
}
uint64_t result = getLoongArchPage(dest) - getLoongArchPage(pcalau12i_pc);
if (dest & 0x800)
result += 0x1000 - 0x1'0000'0000;
if (result & 0x8000'0000)
result += 0x1'0000'0000;
return result;
}
static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; }
static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) {
return op | d | (j << 5) | (k << 10);
}
// Extract bits v[begin:end], where range is inclusive.
static uint32_t extractBits(uint64_t v, uint32_t begin, uint32_t end) {
return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end;
}
static uint32_t setD5k16(uint32_t insn, uint32_t imm) {
uint32_t immLo = extractBits(imm, 15, 0);
uint32_t immHi = extractBits(imm, 20, 16);
return (insn & 0xfc0003e0) | (immLo << 10) | immHi;
}
static uint32_t setD10k16(uint32_t insn, uint32_t imm) {
uint32_t immLo = extractBits(imm, 15, 0);
uint32_t immHi = extractBits(imm, 25, 16);
return (insn & 0xfc000000) | (immLo << 10) | immHi;
}
static uint32_t setJ20(uint32_t insn, uint32_t imm) {
return (insn & 0xfe00001f) | (extractBits(imm, 19, 0) << 5);
}
static uint32_t setK12(uint32_t insn, uint32_t imm) {
return (insn & 0xffc003ff) | (extractBits(imm, 11, 0) << 10);
}
static uint32_t setK16(uint32_t insn, uint32_t imm) {
return (insn & 0xfc0003ff) | (extractBits(imm, 15, 0) << 10);
}
static bool isJirl(uint32_t insn) {
return (insn & 0xfc000000) == JIRL;
}
static void handleUleb128(Ctx &ctx, uint8_t *loc, uint64_t val) {
const uint32_t maxcount = 1 + 64 / 7;
uint32_t count;
const char *error = nullptr;
uint64_t orig = decodeULEB128(loc, &count, nullptr, &error);
if (count > maxcount || (count == maxcount && error))
Err(ctx) << getErrorLoc(ctx, loc) << "extra space for uleb128";
uint64_t mask = count < maxcount ? (1ULL << 7 * count) - 1 : -1ULL;
encodeULEB128((orig + val) & mask, loc, count);
}
LoongArch::LoongArch(Ctx &ctx) : TargetInfo(ctx) {
// The LoongArch ISA itself does not have a limit on page sizes. According to
// the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is
// 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to
// "unlimited".
// However, practically the maximum usable page size is constrained by the
// kernel implementation, and 64KiB is the biggest non-huge page size
// supported by Linux as of v6.4. The most widespread page size in use,
// though, is 16KiB.
defaultCommonPageSize = 16384;
defaultMaxPageSize = 65536;
write32le(trapInstr.data(), BREAK); // break 0
copyRel = R_LARCH_COPY;
pltRel = R_LARCH_JUMP_SLOT;
relativeRel = R_LARCH_RELATIVE;
iRelativeRel = R_LARCH_IRELATIVE;
if (ctx.arg.is64) {
symbolicRel = R_LARCH_64;
tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64;
tlsOffsetRel = R_LARCH_TLS_DTPREL64;
tlsGotRel = R_LARCH_TLS_TPREL64;
tlsDescRel = R_LARCH_TLS_DESC64;
} else {
symbolicRel = R_LARCH_32;
tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32;
tlsOffsetRel = R_LARCH_TLS_DTPREL32;
tlsGotRel = R_LARCH_TLS_TPREL32;
tlsDescRel = R_LARCH_TLS_DESC32;
}
gotRel = symbolicRel;
// .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map
gotPltHeaderEntriesNum = 2;
pltHeaderSize = 32;
pltEntrySize = 16;
ipltEntrySize = 16;
}
static uint32_t getEFlags(Ctx &ctx, const InputFile *f) {
if (ctx.arg.is64)
return cast<ObjFile<ELF64LE>>(f)->getObj().getHeader().e_flags;
return cast<ObjFile<ELF32LE>>(f)->getObj().getHeader().e_flags;
}
static bool inputFileHasCode(const InputFile *f) {
for (const auto *sec : f->getSections())
if (sec && sec->flags & SHF_EXECINSTR)
return true;
return false;
}
uint32_t LoongArch::calcEFlags() const {
// If there are only binary input files (from -b binary), use a
// value of 0 for the ELF header flags.
if (ctx.objectFiles.empty())
return 0;
uint32_t target = 0;
const InputFile *targetFile;
for (const InputFile *f : ctx.objectFiles) {
// Do not enforce ABI compatibility if the input file does not contain code.
// This is useful for allowing linkage with data-only object files produced
// with tools like objcopy, that have zero e_flags.
if (!inputFileHasCode(f))
continue;
// Take the first non-zero e_flags as the reference.
uint32_t flags = getEFlags(ctx, f);
if (target == 0 && flags != 0) {
target = flags;
targetFile = f;
}
if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) !=
(target & EF_LOONGARCH_ABI_MODIFIER_MASK))
ErrAlways(ctx) << f
<< ": cannot link object files with different ABI from "
<< targetFile;
// We cannot process psABI v1.x / object ABI v0 files (containing stack
// relocations), unlike ld.bfd.
//
// Instead of blindly accepting every v0 object and only failing at
// relocation processing time, just disallow interlink altogether. We
// don't expect significant usage of object ABI v0 in the wild (the old
// world may continue using object ABI v0 for a while, but as it's not
// binary-compatible with the upstream i.e. new-world ecosystem, it's not
// being considered here).
//
// There are briefly some new-world systems with object ABI v0 binaries too.
// It is because these systems were built before the new ABI was finalized.
// These are not supported either due to the extremely small number of them,
// and the few impacted users are advised to simply rebuild world or
// reinstall a recent system.
if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1)
ErrAlways(ctx) << f << ": unsupported object file ABI version";
}
return target;
}
int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const {
switch (type) {
default:
InternalErr(ctx, buf) << "cannot read addend for relocation " << type;
return 0;
case R_LARCH_32:
case R_LARCH_TLS_DTPMOD32:
case R_LARCH_TLS_DTPREL32:
case R_LARCH_TLS_TPREL32:
return SignExtend64<32>(read32le(buf));
case R_LARCH_64:
case R_LARCH_TLS_DTPMOD64:
case R_LARCH_TLS_DTPREL64:
case R_LARCH_TLS_TPREL64:
return read64le(buf);
case R_LARCH_RELATIVE:
case R_LARCH_IRELATIVE:
return ctx.arg.is64 ? read64le(buf) : read32le(buf);
case R_LARCH_NONE:
case R_LARCH_JUMP_SLOT:
// These relocations are defined as not having an implicit addend.
return 0;
case R_LARCH_TLS_DESC32:
return read32le(buf + 4);
case R_LARCH_TLS_DESC64:
return read64le(buf + 8);
}
}
void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const {
if (ctx.arg.is64)
write64le(buf, ctx.in.plt->getVA());
else
write32le(buf, ctx.in.plt->getVA());
}
void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
if (ctx.arg.writeAddends) {
if (ctx.arg.is64)
write64le(buf, s.getVA(ctx));
else
write32le(buf, s.getVA(ctx));
}
}
void LoongArch::writePltHeader(uint8_t *buf) const {
// The LoongArch PLT is currently structured just like that of RISCV.
// Annoyingly, this means the PLT is still using `pcaddu12i` to perform
// PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`),
// in contrast to the AArch64-like page-offset scheme with `pcalau12i` that
// is used everywhere else involving PC-relative operations in the LoongArch
// ELF psABI v2.00.
//
// The `pcrel_{hi20,lo12}` operators are illustrative only and not really
// supported by LoongArch assemblers.
//
// pcaddu12i $t2, %pcrel_hi20(.got.plt)
// sub.[wd] $t1, $t1, $t3
// ld.[wd] $t3, $t2, %pcrel_lo12(.got.plt) ; t3 = _dl_runtime_resolve
// addi.[wd] $t1, $t1, -pltHeaderSize-12 ; t1 = &.plt[i] - &.plt[0]
// addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt)
// srli.[wd] $t1, $t1, (is64?1:2) ; t1 = &.got.plt[i] - &.got.plt[0]
// ld.[wd] $t0, $t0, Wordsize ; t0 = link_map
// jr $t3
uint32_t offset = ctx.in.gotPlt->getVA() - ctx.in.plt->getVA();
uint32_t sub = ctx.arg.is64 ? SUB_D : SUB_W;
uint32_t ld = ctx.arg.is64 ? LD_D : LD_W;
uint32_t addi = ctx.arg.is64 ? ADDI_D : ADDI_W;
uint32_t srli = ctx.arg.is64 ? SRLI_D : SRLI_W;
write32le(buf + 0, insn(PCADDU12I, R_T2, hi20(offset), 0));
write32le(buf + 4, insn(sub, R_T1, R_T1, R_T3));
write32le(buf + 8, insn(ld, R_T3, R_T2, lo12(offset)));
write32le(buf + 12,
insn(addi, R_T1, R_T1, lo12(-ctx.target->pltHeaderSize - 12)));
write32le(buf + 16, insn(addi, R_T0, R_T2, lo12(offset)));
write32le(buf + 20, insn(srli, R_T1, R_T1, ctx.arg.is64 ? 1 : 2));
write32le(buf + 24, insn(ld, R_T0, R_T0, ctx.arg.wordsize));
write32le(buf + 28, insn(JIRL, R_ZERO, R_T3, 0));
}
void LoongArch::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
// See the comment in writePltHeader for reason why pcaddu12i is used instead
// of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days.
//
// pcaddu12i $t3, %pcrel_hi20(f@.got.plt)
// ld.[wd] $t3, $t3, %pcrel_lo12(f@.got.plt)
// jirl $t1, $t3, 0
// nop
uint32_t offset = sym.getGotPltVA(ctx) - pltEntryAddr;
write32le(buf + 0, insn(PCADDU12I, R_T3, hi20(offset), 0));
write32le(buf + 4,
insn(ctx.arg.is64 ? LD_D : LD_W, R_T3, R_T3, lo12(offset)));
write32le(buf + 8, insn(JIRL, R_T1, R_T3, 0));
write32le(buf + 12, insn(ANDI, R_ZERO, R_ZERO, 0));
}
RelType LoongArch::getDynRel(RelType type) const {
return type == ctx.target->symbolicRel ? type
: static_cast<RelType>(R_LARCH_NONE);
}
RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_LARCH_NONE:
case R_LARCH_MARK_LA:
case R_LARCH_MARK_PCREL:
return R_NONE;
case R_LARCH_32:
case R_LARCH_64:
case R_LARCH_ABS_HI20:
case R_LARCH_ABS_LO12:
case R_LARCH_ABS64_LO20:
case R_LARCH_ABS64_HI12:
return R_ABS;
case R_LARCH_PCALA_LO12:
// We could just R_ABS, but the JIRL instruction reuses the relocation type
// for a different purpose. The questionable usage is part of glibc 2.37
// libc_nonshared.a [1], which is linked into user programs, so we have to
// work around it for a while, even if a new relocation type may be
// introduced in the future [2].
//
// [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a
// [2]: https://github.com/loongson/la-abi-specs/pull/3
return isJirl(read32le(loc)) ? R_PLT : R_ABS;
case R_LARCH_TLS_DTPREL32:
case R_LARCH_TLS_DTPREL64:
return R_DTPREL;
case R_LARCH_TLS_TPREL32:
case R_LARCH_TLS_TPREL64:
case R_LARCH_TLS_LE_HI20:
case R_LARCH_TLS_LE_HI20_R:
case R_LARCH_TLS_LE_LO12:
case R_LARCH_TLS_LE_LO12_R:
case R_LARCH_TLS_LE64_LO20:
case R_LARCH_TLS_LE64_HI12:
return R_TPREL;
case R_LARCH_ADD6:
case R_LARCH_ADD8:
case R_LARCH_ADD16:
case R_LARCH_ADD32:
case R_LARCH_ADD64:
case R_LARCH_ADD_ULEB128:
case R_LARCH_SUB6:
case R_LARCH_SUB8:
case R_LARCH_SUB16:
case R_LARCH_SUB32:
case R_LARCH_SUB64:
case R_LARCH_SUB_ULEB128:
// The LoongArch add/sub relocs behave like the RISCV counterparts; reuse
// the RelExpr to avoid code duplication.
return RE_RISCV_ADD;
case R_LARCH_32_PCREL:
case R_LARCH_64_PCREL:
case R_LARCH_PCREL20_S2:
return R_PC;
case R_LARCH_B16:
case R_LARCH_B21:
case R_LARCH_B26:
case R_LARCH_CALL36:
return R_PLT_PC;
case R_LARCH_GOT_PC_HI20:
case R_LARCH_GOT64_PC_LO20:
case R_LARCH_GOT64_PC_HI12:
case R_LARCH_TLS_IE_PC_HI20:
case R_LARCH_TLS_IE64_PC_LO20:
case R_LARCH_TLS_IE64_PC_HI12:
return RE_LOONGARCH_GOT_PAGE_PC;
case R_LARCH_GOT_PC_LO12:
case R_LARCH_TLS_IE_PC_LO12:
return RE_LOONGARCH_GOT;
case R_LARCH_TLS_LD_PC_HI20:
case R_LARCH_TLS_GD_PC_HI20:
return RE_LOONGARCH_TLSGD_PAGE_PC;
case R_LARCH_PCALA_HI20:
// Why not RE_LOONGARCH_PAGE_PC, majority of references don't go through
// PLT anyway so why waste time checking only to get everything relaxed back
// to it?
//
// This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want
// both the HI20 and LO12 to potentially refer to the PLT. But in reality
// the HI20 reloc appears earlier, and the relocs don't contain enough
// information to let us properly resolve semantics per symbol.
// Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20
// relocs, hence it is nearly impossible to 100% accurately determine each
// HI20's "flavor" without taking big performance hits, in the presence of
// edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far
// apart that relationship is not certain anymore), and programmer mistakes
// (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3).
//
// Ideally we would scan in an extra pass for all LO12s on JIRL, then mark
// every HI20 reloc referring to the same symbol differently; this is not
// feasible with the current function signature of getRelExpr that doesn't
// allow for such inter-pass state.
//
// So, unfortunately we have to again workaround this quirk the same way as
// BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only
// relaxing back to RE_LOONGARCH_PAGE_PC if it's known not so at a later
// stage.
return RE_LOONGARCH_PLT_PAGE_PC;
case R_LARCH_PCALA64_LO20:
case R_LARCH_PCALA64_HI12:
return RE_LOONGARCH_PAGE_PC;
case R_LARCH_GOT_HI20:
case R_LARCH_GOT_LO12:
case R_LARCH_GOT64_LO20:
case R_LARCH_GOT64_HI12:
case R_LARCH_TLS_IE_HI20:
case R_LARCH_TLS_IE_LO12:
case R_LARCH_TLS_IE64_LO20:
case R_LARCH_TLS_IE64_HI12:
return R_GOT;
case R_LARCH_TLS_LD_HI20:
return R_TLSLD_GOT;
case R_LARCH_TLS_GD_HI20:
return R_TLSGD_GOT;
case R_LARCH_TLS_LE_ADD_R:
case R_LARCH_RELAX:
return ctx.arg.relax ? R_RELAX_HINT : R_NONE;
case R_LARCH_ALIGN:
return R_RELAX_HINT;
case R_LARCH_TLS_DESC_PC_HI20:
case R_LARCH_TLS_DESC64_PC_LO20:
case R_LARCH_TLS_DESC64_PC_HI12:
return RE_LOONGARCH_TLSDESC_PAGE_PC;
case R_LARCH_TLS_DESC_PC_LO12:
case R_LARCH_TLS_DESC_LD:
case R_LARCH_TLS_DESC_HI20:
case R_LARCH_TLS_DESC_LO12:
case R_LARCH_TLS_DESC64_LO20:
case R_LARCH_TLS_DESC64_HI12:
return R_TLSDESC;
case R_LARCH_TLS_DESC_CALL:
return R_TLSDESC_CALL;
case R_LARCH_TLS_LD_PCREL20_S2:
return R_TLSLD_PC;
case R_LARCH_TLS_GD_PCREL20_S2:
return R_TLSGD_PC;
case R_LARCH_TLS_DESC_PCREL20_S2:
return R_TLSDESC_PC;
// Other known relocs that are explicitly unimplemented:
//
// - psABI v1 relocs that need a stateful stack machine to work, and not
// required when implementing psABI v2;
// - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the
// two GNU vtable-related relocs).
//
// [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51
default:
Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v
<< ") against symbol " << &s;
return R_NONE;
}
}
bool LoongArch::usesOnlyLowPageBits(RelType type) const {
switch (type) {
default:
return false;
case R_LARCH_PCALA_LO12:
case R_LARCH_GOT_LO12:
case R_LARCH_GOT_PC_LO12:
case R_LARCH_TLS_IE_PC_LO12:
case R_LARCH_TLS_DESC_LO12:
case R_LARCH_TLS_DESC_PC_LO12:
return true;
}
}
void LoongArch::relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
switch (rel.type) {
case R_LARCH_32_PCREL:
checkInt(ctx, loc, val, 32, rel);
[[fallthrough]];
case R_LARCH_32:
case R_LARCH_TLS_DTPREL32:
write32le(loc, val);
return;
case R_LARCH_64:
case R_LARCH_TLS_DTPREL64:
case R_LARCH_64_PCREL:
write64le(loc, val);
return;
// Relocs intended for `pcaddi`.
case R_LARCH_PCREL20_S2:
case R_LARCH_TLS_LD_PCREL20_S2:
case R_LARCH_TLS_GD_PCREL20_S2:
case R_LARCH_TLS_DESC_PCREL20_S2:
checkInt(ctx, loc, val, 22, rel);
checkAlignment(ctx, loc, val, 4, rel);
write32le(loc, setJ20(read32le(loc), val >> 2));
return;
case R_LARCH_B16:
checkInt(ctx, loc, val, 18, rel);
checkAlignment(ctx, loc, val, 4, rel);
write32le(loc, setK16(read32le(loc), val >> 2));
return;
case R_LARCH_B21:
checkInt(ctx, loc, val, 23, rel);
checkAlignment(ctx, loc, val, 4, rel);
write32le(loc, setD5k16(read32le(loc), val >> 2));
return;
case R_LARCH_B26:
checkInt(ctx, loc, val, 28, rel);
checkAlignment(ctx, loc, val, 4, rel);
write32le(loc, setD10k16(read32le(loc), val >> 2));
return;
case R_LARCH_CALL36: {
// This relocation is designed for adjacent pcaddu18i+jirl pairs that
// are patched in one time. Because of sign extension of these insns'
// immediate fields, the relocation range is [-128G - 0x20000, +128G -
// 0x20000) (of course must be 4-byte aligned).
if (((int64_t)val + 0x20000) != llvm::SignExtend64(val + 0x20000, 38))
reportRangeError(ctx, loc, rel, Twine(val), llvm::minIntN(38) - 0x20000,
llvm::maxIntN(38) - 0x20000);
checkAlignment(ctx, loc, val, 4, rel);
// Since jirl performs sign extension on the offset immediate, adds (1<<17)
// to original val to get the correct hi20.
uint32_t hi20 = extractBits(val + (1 << 17), 37, 18);
// Despite the name, the lower part is actually 18 bits with 4-byte aligned.
uint32_t lo16 = extractBits(val, 17, 2);
write32le(loc, setJ20(read32le(loc), hi20));
write32le(loc + 4, setK16(read32le(loc + 4), lo16));
return;
}
// Relocs intended for `addi`, `ld` or `st`.
case R_LARCH_PCALA_LO12:
// We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12
// on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes
// removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly
// its immediate slot width is different too (16, not 12).
// In this case, process like an R_LARCH_B16, but without overflow checking
// and only taking the value's lowest 12 bits.
if (isJirl(read32le(loc))) {
checkAlignment(ctx, loc, val, 4, rel);
val = SignExtend64<12>(val);
write32le(loc, setK16(read32le(loc), val >> 2));
return;
}
[[fallthrough]];
case R_LARCH_ABS_LO12:
case R_LARCH_GOT_PC_LO12:
case R_LARCH_GOT_LO12:
case R_LARCH_TLS_LE_LO12:
case R_LARCH_TLS_IE_PC_LO12:
case R_LARCH_TLS_IE_LO12:
case R_LARCH_TLS_LE_LO12_R:
case R_LARCH_TLS_DESC_PC_LO12:
case R_LARCH_TLS_DESC_LO12:
write32le(loc, setK12(read32le(loc), extractBits(val, 11, 0)));
return;
// Relocs intended for `lu12i.w` or `pcalau12i`.
case R_LARCH_ABS_HI20:
case R_LARCH_PCALA_HI20:
case R_LARCH_GOT_PC_HI20:
case R_LARCH_GOT_HI20:
case R_LARCH_TLS_LE_HI20:
case R_LARCH_TLS_IE_PC_HI20:
case R_LARCH_TLS_IE_HI20:
case R_LARCH_TLS_LD_PC_HI20:
case R_LARCH_TLS_LD_HI20:
case R_LARCH_TLS_GD_PC_HI20:
case R_LARCH_TLS_GD_HI20:
case R_LARCH_TLS_DESC_PC_HI20:
case R_LARCH_TLS_DESC_HI20:
write32le(loc, setJ20(read32le(loc), extractBits(val, 31, 12)));
return;
case R_LARCH_TLS_LE_HI20_R:
write32le(loc, setJ20(read32le(loc), extractBits(val + 0x800, 31, 12)));
return;
// Relocs intended for `lu32i.d`.
case R_LARCH_ABS64_LO20:
case R_LARCH_PCALA64_LO20:
case R_LARCH_GOT64_PC_LO20:
case R_LARCH_GOT64_LO20:
case R_LARCH_TLS_LE64_LO20:
case R_LARCH_TLS_IE64_PC_LO20:
case R_LARCH_TLS_IE64_LO20:
case R_LARCH_TLS_DESC64_PC_LO20:
case R_LARCH_TLS_DESC64_LO20:
write32le(loc, setJ20(read32le(loc), extractBits(val, 51, 32)));
return;
// Relocs intended for `lu52i.d`.
case R_LARCH_ABS64_HI12:
case R_LARCH_PCALA64_HI12:
case R_LARCH_GOT64_PC_HI12:
case R_LARCH_GOT64_HI12:
case R_LARCH_TLS_LE64_HI12:
case R_LARCH_TLS_IE64_PC_HI12:
case R_LARCH_TLS_IE64_HI12:
case R_LARCH_TLS_DESC64_PC_HI12:
case R_LARCH_TLS_DESC64_HI12:
write32le(loc, setK12(read32le(loc), extractBits(val, 63, 52)));
return;
case R_LARCH_ADD6:
*loc = (*loc & 0xc0) | ((*loc + val) & 0x3f);
return;
case R_LARCH_ADD8:
*loc += val;
return;
case R_LARCH_ADD16:
write16le(loc, read16le(loc) + val);
return;
case R_LARCH_ADD32:
write32le(loc, read32le(loc) + val);
return;
case R_LARCH_ADD64:
write64le(loc, read64le(loc) + val);
return;
case R_LARCH_ADD_ULEB128:
handleUleb128(ctx, loc, val);
return;
case R_LARCH_SUB6:
*loc = (*loc & 0xc0) | ((*loc - val) & 0x3f);
return;
case R_LARCH_SUB8:
*loc -= val;
return;
case R_LARCH_SUB16:
write16le(loc, read16le(loc) - val);
return;
case R_LARCH_SUB32:
write32le(loc, read32le(loc) - val);
return;
case R_LARCH_SUB64:
write64le(loc, read64le(loc) - val);
return;
case R_LARCH_SUB_ULEB128:
handleUleb128(ctx, loc, -val);
return;
case R_LARCH_MARK_LA:
case R_LARCH_MARK_PCREL:
// no-op
return;
case R_LARCH_TLS_LE_ADD_R:
case R_LARCH_RELAX:
return; // Ignored (for now)
case R_LARCH_TLS_DESC_LD:
return; // nothing to do.
case R_LARCH_TLS_DESC32:
write32le(loc + 4, val);
return;
case R_LARCH_TLS_DESC64:
write64le(loc + 8, val);
return;
default:
llvm_unreachable("unknown relocation");
}
}
static bool relax(Ctx &ctx, InputSection &sec) {
const uint64_t secAddr = sec.getVA();
const MutableArrayRef<Relocation> relocs = sec.relocs();
auto &aux = *sec.relaxAux;
bool changed = false;
ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors);
uint64_t delta = 0;
std::fill_n(aux.relocTypes.get(), relocs.size(), R_LARCH_NONE);
aux.writes.clear();
for (auto [i, r] : llvm::enumerate(relocs)) {
const uint64_t loc = secAddr + r.offset - delta;
uint32_t &cur = aux.relocDeltas[i], remove = 0;
switch (r.type) {
case R_LARCH_ALIGN: {
const uint64_t addend =
r.sym->isUndefined() ? Log2_64(r.addend) + 1 : r.addend;
const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4;
const uint64_t align = 1ULL << (addend & 0xff);
const uint64_t maxBytes = addend >> 8;
const uint64_t off = loc & (align - 1);
const uint64_t curBytes = off == 0 ? 0 : align - off;
// All bytes beyond the alignment boundary should be removed.
// If emit bytes more than max bytes to emit, remove all.
if (maxBytes != 0 && curBytes > maxBytes)
remove = allBytes;
else
remove = allBytes - curBytes;
// If we can't satisfy this alignment, we've found a bad input.
if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) {
Err(ctx) << getErrorLoc(ctx, (const uint8_t *)loc)
<< "insufficient padding bytes for " << r.type << ": "
<< allBytes << " bytes available for "
<< "requested alignment of " << align << " bytes";
remove = 0;
}
break;
}
}
// For all anchors whose offsets are <= r.offset, they are preceded by
// the previous relocation whose `relocDeltas` value equals `delta`.
// Decrease their st_value and update their st_size.
for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(1)) {
if (sa[0].end)
sa[0].d->size = sa[0].offset - delta - sa[0].d->value;
else
sa[0].d->value = sa[0].offset - delta;
}
delta += remove;
if (delta != cur) {
cur = delta;
changed = true;
}
}
for (const SymbolAnchor &a : sa) {
if (a.end)
a.d->size = a.offset - delta - a.d->value;
else
a.d->value = a.offset - delta;
}
// Inform assignAddresses that the size has changed.
if (!isUInt<32>(delta))
Fatal(ctx) << "section size decrease is too large: " << delta;
sec.bytesDropped = delta;
return changed;
}
// When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in
// the absence of a linker script. For call and load/store R_LARCH_RELAX, code
// shrinkage may reduce displacement and make more relocations eligible for
// relaxation. Code shrinkage may increase displacement to a call/load/store
// target at a higher fixed address, invalidating an earlier relaxation. Any
// change in section sizes can have cascading effect and require another
// relaxation pass.
bool LoongArch::relaxOnce(int pass) const {
if (ctx.arg.relocatable)
return false;
if (pass == 0)
initSymbolAnchors(ctx);
SmallVector<InputSection *, 0> storage;
bool changed = false;
for (OutputSection *osec : ctx.outputSections) {
if (!(osec->flags & SHF_EXECINSTR))
continue;
for (InputSection *sec : getInputSections(*osec, storage))
changed |= relax(ctx, *sec);
}
return changed;
}
void LoongArch::finalizeRelax(int passes) const {
Log(ctx) << "relaxation passes: " << passes;
SmallVector<InputSection *, 0> storage;
for (OutputSection *osec : ctx.outputSections) {
if (!(osec->flags & SHF_EXECINSTR))
continue;
for (InputSection *sec : getInputSections(*osec, storage)) {
RelaxAux &aux = *sec->relaxAux;
if (!aux.relocDeltas)
continue;
MutableArrayRef<Relocation> rels = sec->relocs();
ArrayRef<uint8_t> old = sec->content();
size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1];
uint8_t *p = ctx.bAlloc.Allocate<uint8_t>(newSize);
uint64_t offset = 0;
int64_t delta = 0;
sec->content_ = p;
sec->size = newSize;
sec->bytesDropped = 0;
// Update section content: remove NOPs for R_LARCH_ALIGN and rewrite
// instructions for relaxed relocations.
for (size_t i = 0, e = rels.size(); i != e; ++i) {
uint32_t remove = aux.relocDeltas[i] - delta;
delta = aux.relocDeltas[i];
if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE)
continue;
// Copy from last location to the current relocated location.
const Relocation &r = rels[i];
uint64_t size = r.offset - offset;
memcpy(p, old.data() + offset, size);
p += size;
offset = r.offset + remove;
}
memcpy(p, old.data() + offset, old.size() - offset);
// Subtract the previous relocDeltas value from the relocation offset.
// For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease
// their r_offset by the same delta.
delta = 0;
for (size_t i = 0, e = rels.size(); i != e;) {
uint64_t cur = rels[i].offset;
do {
rels[i].offset -= delta;
if (aux.relocTypes[i] != R_LARCH_NONE)
rels[i].type = aux.relocTypes[i];
} while (++i != e && rels[i].offset == cur);
delta = aux.relocDeltas[i - 1];
}
}
}
}
void elf::setLoongArchTargetInfo(Ctx &ctx) {
ctx.target.reset(new LoongArch(ctx));
}
|