1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
|
=============================
User Guide for NVPTX Back-end
=============================
.. contents::
:local:
:depth: 3
Introduction
============
To support GPU programming, the NVPTX back-end supports a subset of LLVM IR
along with a defined set of conventions used to represent GPU programming
concepts. This document provides an overview of the general usage of the back-
end, including a description of the conventions used and the set of accepted
LLVM IR.
.. note::
This document assumes a basic familiarity with CUDA and the PTX
assembly language. Information about the CUDA Driver API and the PTX assembly
language can be found in the `CUDA documentation
<http://docs.nvidia.com/cuda/index.html>`_.
Conventions
===========
Marking Functions as Kernels
----------------------------
In PTX, there are two types of functions: *device functions*, which are only
callable by device code, and *kernel functions*, which are callable by host
code. By default, the back-end will emit device functions. Metadata is used to
declare a function as a kernel function. This metadata is attached to the
``nvvm.annotations`` named metadata object, and has the following format:
.. code-block:: text
!0 = !{<function-ref>, metadata !"kernel", i32 1}
The first parameter is a reference to the kernel function. The following
example shows a kernel function calling a device function in LLVM IR. The
function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.
.. code-block:: llvm
define float @my_fmad(float %x, float %y, float %z) {
%mul = fmul float %x, %y
%add = fadd float %mul, %z
ret float %add
}
define void @my_kernel(ptr %ptr) {
%val = load float, ptr %ptr
%ret = call float @my_fmad(float %val, float %val, float %val)
store float %ret, ptr %ptr
ret void
}
!nvvm.annotations = !{!1}
!1 = !{ptr @my_kernel, !"kernel", i32 1}
When compiled, the PTX kernel functions are callable by host-side code.
.. _address_spaces:
Address Spaces
--------------
The NVPTX back-end uses the following address space mapping:
============= ======================
Address Space Memory Space
============= ======================
0 Generic
1 Global
2 Internal Use
3 Shared
4 Constant
5 Local
============= ======================
Every global variable and pointer type is assigned to one of these address
spaces, with 0 being the default address space. Intrinsics are provided which
can be used to convert pointers between the generic and non-generic address
spaces.
As an example, the following IR will define an array ``@g`` that resides in
global device memory.
.. code-block:: llvm
@g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]
LLVM IR functions can read and write to this array, and host-side code can
copy data to it by name with the CUDA Driver API.
Note that since address space 0 is the generic space, it is illegal to have
global variables in address space 0. Address space 0 is the default address
space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
variables.
Triples
-------
The NVPTX target uses the module triple to select between 32/64-bit code
generation and the driver-compiler interface to use. The triple architecture
can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
operating system should be one of ``cuda`` or ``nvcl``, which determines the
interface used by the generated code to communicate with the driver. Most
users will want to use ``cuda`` as the operating system, which makes the
generated PTX compatible with the CUDA Driver API.
Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``
Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``
.. _nvptx_intrinsics:
NVPTX Intrinsics
================
Reading PTX Special Registers
-----------------------------
'``llvm.nvvm.read.ptx.sreg.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()
Overview:
"""""""""
The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX
special registers, in particular the kernel launch bounds. These registers
map in the following way to CUDA builtins:
============ =====================================
CUDA Builtin PTX Special Register Intrinsic
============ =====================================
``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*``
``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*``
``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*``
``gridDim`` ``@llvm.nvvm.read.ptx.sreg.nctaid.*``
============ =====================================
Barriers
--------
'``llvm.nvvm.barrier0``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.barrier0()
Overview:
"""""""""
The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0``
instruction, equivalent to the ``__syncthreads()`` call in CUDA.
Electing a thread
-----------------
'``llvm.nvvm.elect.sync``'
^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare {i32, i1} @llvm.nvvm.elect.sync(i32 %membermask)
Overview:
"""""""""
The '``@llvm.nvvm.elect.sync``' intrinsic generates the ``elect.sync``
PTX instruction, which elects one predicated active leader thread from
a set of threads specified by ``membermask``. The behavior is undefined
if the executing thread is not in ``membermask``. The laneid of the
elected thread is captured in the i32 return value. The i1 return
value is set to ``True`` for the leader thread and ``False`` for all
the other threads. Election of a leader thread happens deterministically,
i.e. the same leader thread is elected for the same ``membermask``
every time. For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-elect-sync>`_.
Membar/Fences
-------------
'``llvm.nvvm.fence.proxy.tensormap_generic.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.cta()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.cluster()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.gpu()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.sys()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.cta(ptr %addr, i32 %size)
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.cluster(ptr %addr, i32 %size)
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.gpu(ptr %addr, i32 %size)
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.sys(ptr %addr, i32 %size)
Overview:
"""""""""
The ``@llvm.nvvm.fence.proxy.tensormap_generic.*`` is a uni-directional fence used to establish ordering between a prior memory access performed via the generic `proxy<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#proxies>_` and a subsequent memory access performed via the tensormap proxy. ``nvvm.fence.proxy.tensormap_generic.release`` can form a release sequence that synchronizes with an acquire sequence that contains the ``nvvm.fence.proxy.tensormap_generic.acquire`` proxy fence. The following table describes the mapping between LLVM Intrinsic and the PTX instruction:
====================================================== =========================================================
NVVM Intrinsic PTX Instruction
====================================================== =========================================================
``@llvm.nvvm.fence.proxy.tensormap_generic.release.*`` ``fence.proxy.tensormap::generic.release.*``
``@llvm.nvvm.fence.proxy.tensormap_generic.acquire.*`` ``fence.proxy.tensormap::generic.acquire.* [addr], size``
====================================================== =========================================================
The address operand ``addr`` and the operand ``size`` together specify the memory range ``[addr, addr+size)`` on which the ordering guarantees on the memory accesses across the proxies is to be provided. The only supported value for the ``size`` operand is ``128`` and must be an immediate. Generic Addressing is used unconditionally, and the address specified by the operand addr must fall within the ``.global`` state space. Otherwise, the behavior is undefined. For more information, see `PTX ISA <https://docs.nvidia.com/cuda/parallel-thread-execution/#parallel-synchronization-and-communication-instructions-membar>`_.
Address Space Intrinsics
------------------------
'``llvm.nvvm.isspacep.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i1 @llvm.nvvm.isspacep.const(ptr %p)
declare i1 @llvm.nvvm.isspacep.global(ptr %p)
declare i1 @llvm.nvvm.isspacep.local(ptr %p)
declare i1 @llvm.nvvm.isspacep.shared(ptr %p)
declare i1 @llvm.nvvm.isspacep.shared.cluster(ptr %p)
Overview:
"""""""""
The '``llvm.nvvm.isspacep.*``' intrinsics determine whether the provided generic
pointer references memory which falls within a particular address space.
Semantics:
""""""""""
If the given pointer in the generic address space refers to memory which falls
within the state space of the intrinsic (and therefore could be safely address
space casted to this space), 1 is returned, otherwise 0 is returned.
Arithmetic Intrinsics
---------------------
'``llvm.nvvm.idp2a.[us].[us]``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i32 @llvm.nvvm.idp2a.s.s(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
declare i32 @llvm.nvvm.idp2a.s.u(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
declare i32 @llvm.nvvm.idp2a.u.s(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
declare i32 @llvm.nvvm.idp2a.u.u(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
Overview:
"""""""""
The '``llvm.nvvm.idp2a.[us].[us]``' intrinsics performs a 2-element vector dot
product followed by addition. They corresponds directly to the ``dp2a`` PTX
instruction.
Semantics:
""""""""""
The 32-bit value in ``%a`` is broken into 2 16-bit values which are extended to
32 bits. For the '``llvm.nvvm.idp2a.u.[us]``' variants zero-extension is used,
while for the '``llvm.nvvm.idp2a.s.[us]``' sign-extension is used. Two bytes are
selected from ``%b``, if ``%is.hi`` is true, the most significant bytes are
selected, otherwise the least significant bytes are selected. These bytes are
then extended to 32-bits. For the '``llvm.nvvm.idp2a.[us].u``' variants
zero-extension is used, while for the '``llvm.nvvm.idp2a.[us].s``'
sign-extension is used. The dot product of these 2-element vectors is added to
``%c`` to produce the return.
'``llvm.nvvm.idp4a.[us].[us]``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i32 @llvm.nvvm.idp4a.s.s(i32 %a, i32 %b, i32 %c)
declare i32 @llvm.nvvm.idp4a.s.u(i32 %a, i32 %b, i32 %c)
declare i32 @llvm.nvvm.idp4a.u.s(i32 %a, i32 %b, i32 %c)
declare i32 @llvm.nvvm.idp4a.u.u(i32 %a, i32 %b, i32 %c)
Overview:
"""""""""
The '``llvm.nvvm.idp4a.[us].[us]``' intrinsics perform a 4-element vector dot
product followed by addition. They corresponds directly to the ``dp4a`` PTX
instruction.
Semantics:
""""""""""
Each of the 4 bytes in both ``%a`` and ``%b`` are extended to 32-bit integers
forming 2 ``<4 x i32>``. For ``%a``, zero-extension is used in the
'``llvm.nvvm.idp4a.u.[us]``' variants, while sign-extension is used with
'``llvm.nvvm.idp4a.s.[us]``' variants. Similarly, for ``%b``, zero-extension is
used in the '``llvm.nvvm.idp4a.[us].u``' variants, while sign-extension is used
with '``llvm.nvvm.idp4a.[us].s``' variants. The dot product of these 4-element
vectors is added to ``%c`` to produce the return.
Bit Manipulation Intrinsics
---------------------------
'``llvm.nvvm.fshl.clamp.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i32 @llvm.nvvm.fshl.clamp.i32(i32 %hi, i32 %lo, i32 %n)
Overview:
"""""""""
The '``llvm.nvvm.fshl.clamp``' family of intrinsics performs a clamped funnel
shift left. These intrinsics are very similar to '``llvm.fshl``', except the
shift ammont is clamped at the integer width (instead of modulo it). Currently,
only ``i32`` is supported.
Semantics:
""""""""""
The '``llvm.nvvm.fshl.clamp``' family of intrinsic functions performs a clamped
funnel shift left: the first two values are concatenated as { %hi : %lo } (%hi
is the most significant bits of the wide value), the combined value is shifted
left, and the most significant bits are extracted to produce a result that is
the same size as the original arguments. The shift amount is the minimum of the
value of %n and the bit width of the integer type.
'``llvm.nvvm.fshr.clamp.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i32 @llvm.nvvm.fshr.clamp.i32(i32 %hi, i32 %lo, i32 %n)
Overview:
"""""""""
The '``llvm.nvvm.fshr.clamp``' family of intrinsics perform a clamped funnel
shift right. These intrinsics are very similar to '``llvm.fshr``', except the
shift ammont is clamped at the integer width (instead of modulo it). Currently,
only ``i32`` is supported.
Semantics:
""""""""""
The '``llvm.nvvm.fshr.clamp``' family of intrinsic functions performs a clamped
funnel shift right: the first two values are concatenated as { %hi : %lo } (%hi
is the most significant bits of the wide value), the combined value is shifted
right, and the least significant bits are extracted to produce a result that is
the same size as the original arguments. The shift amount is the minimum of the
value of %n and the bit width of the integer type.
'``llvm.nvvm.flo.u.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i32 @llvm.nvvm.flo.u.i32(i32 %a, i1 %shiftamt)
declare i32 @llvm.nvvm.flo.u.i64(i64 %a, i1 %shiftamt)
Overview:
"""""""""
The '``llvm.nvvm.flo.u``' family of intrinsics identifies the bit position of the
leading one, returning either it's offset from the most or least significant bit.
Semantics:
""""""""""
The '``llvm.nvvm.flo.u``' family of intrinsics returns the bit position of the
most significant 1. If %shiftamt is true, The result is the shift amount needed
to left-shift the found bit into the most-significant bit position, otherwise
the result is the shift amount needed to right-shift the found bit into the
least-significant bit position. 0xffffffff is returned if no 1 bit is found.
'``llvm.nvvm.flo.s.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare i32 @llvm.nvvm.flo.s.i32(i32 %a, i1 %shiftamt)
declare i32 @llvm.nvvm.flo.s.i64(i64 %a, i1 %shiftamt)
Overview:
"""""""""
The '``llvm.nvvm.flo.s``' family of intrinsics identifies the bit position of the
leading non-sign bit, returning either it's offset from the most or least
significant bit.
Semantics:
""""""""""
The '``llvm.nvvm.flo.s``' family of intrinsics returns the bit position of the
most significant 0 for negative inputs and the most significant 1 for
non-negative inputs. If %shiftamt is true, The result is the shift amount needed
to left-shift the found bit into the most-significant bit position, otherwise
the result is the shift amount needed to right-shift the found bit into the
least-significant bit position. 0xffffffff is returned if no 1 bit is found.
TMA family of Intrinsics
------------------------
'``llvm.nvvm.cp.async.bulk.global.to.shared.cluster``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.global.to.shared.cluster(ptr addrspace(3) %dst, ptr addrspace(3) %mbar, ptr addrspace(1) %src, i32 %size, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.global.to.shared.cluster``' intrinsic
corresponds to the ``cp.async.bulk.shared::cluster.global.*`` family
of PTX instructions. These instructions initiate an asynchronous
copy of bulk data from global memory to shared::cluster memory.
The 32-bit operand ``%size`` specifies the amount of memory to be
copied and it must be a multiple of 16.
* The last two arguments to these intrinsics are boolean flags
indicating support for cache_hint and/or multicast modifiers.
These flag arguments must be compile-time constants. The backend
looks through these flags and lowers the intrinsics appropriately.
* The Nth argument (denoted by ``i1 %flag_ch``) when set, indicates
a valid cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
variant of the PTX instruction.
* The [N-1]th argument (denoted by ``i1 %flag_mc``) when set, indicates
the presence of a multicast mask (``i16 %mc``) and generates the PTX
instruction with the ``.multicast::cluster`` modifier.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk>`_.
'``llvm.nvvm.cp.async.bulk.shared.cta.to.global``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.shared.cta.to.global(ptr addrspace(1) %dst, ptr addrspace(3) %src, i32 %size, i64 %ch, i1 %flag_ch)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.shared.cta.to.global``' intrinsic
corresponds to the ``cp.async.bulk.global.shared::cta.*`` set of PTX
instructions. These instructions initiate an asynchronous copy from
shared::cta to global memory. The 32-bit operand ``%size`` specifies
the amount of memory to be copied and it must be a multiple of 16.
* The last argument to these intrinsics is a boolean flag
indicating support for cache_hint. This flag argument must
be a compile-time constant. When set, it indicates a valid
cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
variant of the PTX instruction.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk>`_.
'``llvm.nvvm.cp.async.bulk.shared.cta.to.cluster``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.shared.cta.to.cluster(ptr addrspace(3) %dst, ptr addrspace(3) %mbar, ptr addrspace(3) %src, i32 %size)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.shared.cta.to.cluster``' intrinsic
corresponds to the ``cp.async.bulk.shared::cluster.shared::cta.*``
PTX instruction. This instruction initiates an asynchronous copy from
shared::cta to shared::cluster memory. The destination has to be in
the shared memory of a different CTA within the cluster. The 32-bit
operand ``%size`` specifies the amount of memory to be copied and
it must be a multiple of 16.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk>`_.
'``llvm.nvvm.cp.async.bulk.prefetch.L2``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.prefetch.L2(ptr addrspace(1) %src, i32 %size, i64 %ch, i1 %flag_ch)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.prefetch.L2``' intrinsic
corresponds to the ``cp.async.bulk.prefetch.L2.*`` family
of PTX instructions. These instructions initiate an asynchronous
prefetch of bulk data from global memory to the L2 cache.
The 32-bit operand ``%size`` specifies the amount of memory to be
prefetched in terms of bytes and it must be a multiple of 16.
* The last argument to these intrinsics is boolean flag indicating
support for cache_hint. These flag argument must be compile-time
constant. When set, it indicates a valid cache_hint (``i64 %ch``)
and generates the ``.L2::cache_hint`` variant of the PTX instruction.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch>`_.
'``llvm.nvvm.cp.async.bulk.tensor.g2s.tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.1d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.g2s.tile.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
global memory to shared::cluster memory (indicated by the ``g2s`` prefix)
in ``tile`` mode. In tile mode, the multi-dimensional layout of the
source tensor is preserved at the destination. The dimension of the
tensor data ranges from 1d to 5d with the coordinates specified
by the ``i32 %d0 ... i32 %d4`` arguments.
* The last two arguments to these intrinsics are boolean flags
indicating support for cache_hint and/or multicast modifiers.
These flag arguments must be compile-time constants. The backend
looks through these flags and lowers the intrinsics appropriately.
* The Nth argument (denoted by ``i1 flag_ch``) when set, indicates
a valid cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
variant of the PTX instruction.
* The [N-1]th argument (denoted by ``i1 flag_mc``) when set, indicates
the presence of a multicast mask (``i16 %mc``) and generates the PTX
instruction with the ``.multicast::cluster`` modifier.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.
'``llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.3d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.[3-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
global memory to shared::cluster memory (indicated by the ``g2s`` prefix)
in ``im2col`` mode. In im2col mode, some dimensions of the source tensor
are unrolled into a single dimensional column at the destination. In this
mode, the tensor has to be at least three-dimensional. Along with the tensor
coordinates, im2col offsets are also specified (denoted by
``i16 im2col0...i16 %im2col2``). The number of im2col offsets is two less
than the number of dimensions of the tensor operation. The last two arguments
to these intrinsics are boolean flags, with the same functionality as described
in the ``tile`` mode intrinsics above.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.
'``llvm.nvvm.cp.async.bulk.tensor.s2g.tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.s2g.tile.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
shared::cta to global memory (indicated by the ``s2g`` prefix)
in ``tile`` mode. The dimension of the tensor data ranges from 1d to 5d
with the coordinates specified by the ``i32 %d0 ... i32 %d4`` arguments.
* The last argument to these intrinsics is a boolean flag
indicating support for cache_hint. This flag argument must
be a compile-time constant. When set, it indicates a valid
cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
variant of the PTX instruction.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.
'``llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.3d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
shared::cta to global memory (indicated by the ``s2g`` prefix)
in ``im2col`` mode. In this mode, the tensor has to be at least
three-dimensional. Unlike the ``g2s`` variants, there are no
im2col_offsets for these intrinsics. The last argument to these
intrinsics is a boolean flag, with the same functionality as
described in the ``s2g.tile`` mode intrinsics above.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.
'``llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.1d(ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.prefetch.tensor.[1-5]d.L2.global*`` set
of PTX instructions. These instructions initiate an asynchronous prefetch
of tensor data from global memory to the L2 cache. In tile mode, the
multi-dimensional layout of the source tensor is preserved at the destination.
The dimension of the tensor data ranges from 1d to 5d with the coordinates
specified by the ``i32 %d0 ... i32 %d4`` arguments.
* The last argument to these intrinsics is a boolean flag
indicating support for cache_hint. This flag argument must
be a compile-time constant. When set, it indicates a valid
cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
variant of the PTX instruction.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch-tensor>`_.
'``llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.3d(ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.[3-5]d``' intrinsics
correspond to the ``cp.async.bulk.prefetch.tensor.[1-5]d.L2.global*`` set
of PTX instructions. These instructions initiate an asynchronous prefetch
of tensor data from global memory to the L2 cache. In im2col mode, some
dimensions of the source tensor are unrolled into a single dimensional
column at the destination. In this mode, the tensor has to be at least
three-dimensional. Along with the tensor coordinates, im2col offsets are
also specified (denoted by ``i16 im2col0...i16 %im2col2``). The number
of im2col offsets is two less than the number of dimensions of the tensor
operation. The last argument to these intrinsics is a boolean flag, with
the same functionality as described in the ``tile`` mode intrinsics above.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch-tensor>`_.
'``llvm.nvvm.cp.async.bulk.tensor.reduce.[red_op].tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.add.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.min.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.max.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.inc.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.dec.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.and.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.or.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.xor.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.[1-5]d``' intrinsics
correspond to the ``cp.reduce.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous reduction operation of tensor data
in global memory with the tensor data in shared{::cta} memory, using ``tile`` mode.
The dimension of the tensor data ranges from 1d to 5d with the coordinates
specified by the ``i32 %d0 ... i32 %d4`` arguments. The supported reduction
operations are {add, min, max, inc, dec, and, or, xor} as described in the
``tile.1d`` intrinsics.
* The last argument to these intrinsics is a boolean flag
indicating support for cache_hint. This flag argument must
be a compile-time constant. When set, it indicates a valid
cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
variant of the PTX instruction.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-reduce-async-bulk-tensor>`_.
'``llvm.nvvm.cp.async.bulk.tensor.reduce.[red_op].im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.3d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:
"""""""""
The '``@llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.[3-5]d``' intrinsics
correspond to the ``cp.reduce.async.bulk.tensor.[3-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous reduction operation of tensor data
in global memory with the tensor data in shared{::cta} memory, using ``im2col`` mode.
In this mode, the tensor has to be at least three-dimensional. The supported reduction
operations supported are the same as the ones in the tile mode. The last argument to
these intrinsics is a boolean flag, with the same functionality as described in the
``tile`` mode intrinsics above.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-reduce-async-bulk-tensor>`_.
Warp Group Intrinsics
---------------------
'``llvm.nvvm.wgmma.fence.sync.aligned``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.wgmma.fence.sync.aligned()
Overview:
"""""""""
The '``@llvm.nvvm.wgmma.fence.sync.aligned``' intrinsic generates the
``wgmma.fence.sync.aligned`` PTX instruction, which establishes an ordering
between prior accesses to any warpgroup registers and subsequent accesses to
the same registers by a ``wgmma.mma_async`` instruction.
The ``wgmma.fence`` instruction must be issued by all warps of the warpgroup in
the following locations:
* Before the first ``wgmma.mma_async`` operation in a warpgroup.
* Between a register access by a thread in the warpgroup and any
``wgmma.mma_async`` instruction that accesses the same registers, except when
these are accumulator register accesses across multiple ``wgmma.mma_async``
instructions of the same shape in which case an ordering guarantee is
provided by default.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-fence>`_.
'``llvm.nvvm.wgmma.commit_group.sync.aligned``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.wgmma.commit_group.sync.aligned()
Overview:
"""""""""
The '``@llvm.nvvm.wgmma.commit_group.sync.aligned``' intrinsic generates the
``wgmma.commit_group.sync.aligned`` PTX instruction, which creates a new
wgmma-group per warpgroup and batches all prior ``wgmma.mma_async``
instructions initiated by the executing warp but not committed to any
wgmma-group into the new wgmma-group. If there are no uncommitted ``wgmma
mma_async`` instructions then, ``wgmma.commit_group`` results in an empty
wgmma-group.
An executing thread can wait for the completion of all ``wgmma.mma_async``
operations in a wgmma-group by using ``wgmma.wait_group``.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-commit-group>`_.
'``llvm.nvvm.wgmma.wait_group.sync.aligned``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.wgmma.wait_group.sync.aligned(i64 immarg N)
Overview:
"""""""""
The '``@llvm.nvvm.wgmma.wait_group.sync.aligned``' intrinsic generates the
``wgmma.commit_group.sync.aligned N`` PTX instruction, which will cause the
executing thread to wait until only ``N`` or fewer of the most recent
wgmma-groups are pending and all the prior wgmma-groups committed by the
executing threads are complete. For example, when ``N`` is 0, the executing
thread waits on all the prior wgmma-groups to complete. Operand ``N`` is an
integer constant.
Accessing the accumulator register or the input register containing the
fragments of matrix A of a ``wgmma.mma_async`` instruction without first
performing a ``wgmma.wait_group`` instruction that waits on a wgmma-group
including that ``wgmma.mma_async`` instruction is undefined behavior.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-wait-group>`_.
'``llvm.nvvm.griddepcontrol.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
declare void @llvm.nvvm.griddepcontrol.launch_dependents()
declare void @llvm.nvvm.griddepcontrol.wait()
Overview:
"""""""""
The ``griddepcontrol`` intrinsics allows the dependent grids and prerequisite grids as defined by the runtime, to control execution in the following way:
``griddepcontrol.launch_dependents`` intrinsic signals that the dependents can be scheduled, before the current grid completes. The intrinsic can be invoked by multiple threads in the current CTA and repeated invocations of the intrinsic will have no additional side effects past that of the first invocation.
``griddepcontrol.wait`` intrinsic causes the executing thread to wait until all prerequisite grids in flight have completed and all the memory operations from the prerequisite grids are performed and made visible to the current grid.
For more information, refer
`PTX ISA <https://docs.nvidia.com/cuda/parallel-thread-execution/#parallel-synchronization-and-communication-instructions-griddepcontrol>`__.
Other Intrinsics
----------------
For the full set of NVPTX intrinsics, please see the
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.
.. _libdevice:
Linking with Libdevice
======================
The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
implements many common mathematical functions. This library can be used as a
high-performance math library for any compilers using the LLVM NVPTX target.
The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
there is a separate version for each compute architecture.
For a list of all math functions implemented in libdevice, see
`libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.
To accommodate various math-related compiler flags that can affect code
generation of libdevice code, the library code depends on a special LLVM IR
pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
with constants based on the defined reflection parameters. Such conditional
code often follows a pattern:
.. code-block:: c++
float my_function(float a) {
if (__nvvm_reflect("FASTMATH"))
return my_function_fast(a);
else
return my_function_precise(a);
}
The default value for all unspecified reflection parameters is zero.
The ``NVVMReflect`` pass should be executed early in the optimization
pipeline, immediately after the link stage. The ``internalize`` pass is also
recommended to remove unused math functions from the resulting PTX. For an
input IR module ``module.bc``, the following compilation flow is recommended:
The ``NVVMReflect`` pass will attempt to remove dead code even without
optimizations. This allows potentially incompatible instructions to be avoided
at all optimizations levels by using the ``__CUDA_ARCH`` argument.
1. Save list of external functions in ``module.bc``
2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
3. Internalize all functions not in list from (1)
4. Eliminate all unused internal functions
5. Run ``NVVMReflect`` pass
6. Run standard optimization pipeline
.. note::
``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
libdevice functions. It is possible to link two IR modules that have been
linked against libdevice using different reflection variables.
Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
often leave behind dead code of the form:
.. code-block:: llvm
entry:
..
br i1 true, label %foo, label %bar
foo:
..
bar:
; Dead code
..
Therefore, it is recommended that ``NVVMReflect`` is executed early in the
optimization pipeline before dead-code elimination.
The NVPTX TargetMachine knows how to schedule ``NVVMReflect`` at the beginning
of your pass manager; just use the following code when setting up your pass
manager and the PassBuilder will use ``registerPassBuilderCallbacks`` to let
NVPTXTargetMachine::registerPassBuilderCallbacks add the pass to the
pass manager:
.. code-block:: c++
std::unique_ptr<TargetMachine> TM = ...;
PassBuilder PB(TM);
ModulePassManager MPM;
PB.parsePassPipeline(MPM, ...);
Reflection Parameters
---------------------
The libdevice library currently uses the following reflection parameters to
control code generation:
==================== ======================================================
Flag Description
==================== ======================================================
``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
==================== ======================================================
The value of this flag is determined by the "nvvm-reflect-ftz" module flag.
The following sets the ftz flag to 1.
.. code-block:: llvm
!llvm.module.flags = !{!0}
!0 = !{i32 4, !"nvvm-reflect-ftz", i32 1}
(``i32 4`` indicates that the value set here overrides the value in another
module we link with. See the `LangRef <LangRef.html#module-flags-metadata>`
for details.)
Executing PTX
=============
The most common way to execute PTX assembly on a GPU device is to use the CUDA
Driver API. This API is a low-level interface to the GPU driver and allows for
JIT compilation of PTX code to native GPU machine code.
Initializing the Driver API:
.. code-block:: c++
CUdevice device;
CUcontext context;
// Initialize the driver API
cuInit(0);
// Get a handle to the first compute device
cuDeviceGet(&device, 0);
// Create a compute device context
cuCtxCreate(&context, 0, device);
JIT compiling a PTX string to a device binary:
.. code-block:: c++
CUmodule module;
CUfunction function;
// JIT compile a null-terminated PTX string
cuModuleLoadData(&module, (void*)PTXString);
// Get a handle to the "myfunction" kernel function
cuModuleGetFunction(&function, module, "myfunction");
For full examples of executing PTX assembly, please see the `CUDA Samples
<https://developer.nvidia.com/cuda-downloads>`_ distribution.
Common Issues
=============
ptxas complains of undefined function: __nvvm_reflect
-----------------------------------------------------
When linking with libdevice, the ``NVVMReflect`` pass must be used. See
:ref:`libdevice` for more information.
Tutorial: A Simple Compute Kernel
=================================
To start, let us take a look at a simple compute kernel written directly in
LLVM IR. The kernel implements vector addition, where each thread computes one
element of the output vector C from the input vectors A and B. To make this
easier, we also assume that only a single CTA (thread block) will be launched,
and that it will be one dimensional.
The Kernel
----------
.. code-block:: llvm
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
define void @kernel(ptr addrspace(1) %A,
ptr addrspace(1) %B,
ptr addrspace(1) %C) {
entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; Compute pointers into A, B, and C
%ptrA = getelementptr float, ptr addrspace(1) %A, i32 %id
%ptrB = getelementptr float, ptr addrspace(1) %B, i32 %id
%ptrC = getelementptr float, ptr addrspace(1) %C, i32 %id
; Read A, B
%valA = load float, ptr addrspace(1) %ptrA, align 4
%valB = load float, ptr addrspace(1) %ptrB, align 4
; Compute C = A + B
%valC = fadd float %valA, %valB
; Store back to C
store float %valC, ptr addrspace(1) %ptrC, align 4
ret void
}
!nvvm.annotations = !{!0}
!0 = !{ptr @kernel, !"kernel", i32 1}
We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:
.. code-block:: text
# llc -mcpu=sm_20 kernel.ll -o kernel.ptx
.. note::
If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
in the module data layout string and use ``nvptx-nvidia-cuda`` as the
target triple.
The output we get from ``llc`` (as of LLVM 3.4):
.. code-block:: text
//
// Generated by LLVM NVPTX Back-End
//
.version 3.1
.target sm_20
.address_size 64
// .globl kernel
// @kernel
.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2
)
{
.reg .f32 %f<4>;
.reg .s32 %r<2>;
.reg .s64 %rl<8>;
// %bb.0: // %entry
ld.param.u64 %rl1, [kernel_param_0];
mov.u32 %r1, %tid.x;
mul.wide.s32 %rl2, %r1, 4;
add.s64 %rl3, %rl1, %rl2;
ld.param.u64 %rl4, [kernel_param_1];
add.s64 %rl5, %rl4, %rl2;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl6, %rl2;
ld.global.f32 %f1, [%rl3];
ld.global.f32 %f2, [%rl5];
add.f32 %f3, %f1, %f2;
st.global.f32 [%rl7], %f3;
ret;
}
Dissecting the Kernel
---------------------
Now let us dissect the LLVM IR that makes up this kernel.
Data Layout
^^^^^^^^^^^
The data layout string determines the size in bits of common data types, their
ABI alignment, and their storage size. For NVPTX, you should use one of the
following:
32-bit PTX:
.. code-block:: llvm
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
64-bit PTX:
.. code-block:: llvm
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
Target Intrinsics
^^^^^^^^^^^^^^^^^
In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
read the X component of the current thread's ID, which corresponds to a read
of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
intrinsics. A short list is shown below; please see
``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.
================================================ ====================
Intrinsic CUDA Equivalent
================================================ ====================
``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}`` threadIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}`` blockIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}`` blockDim.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}`` gridDim.{x,y,z}
``void @llvm.nvvm.barrier0()`` __syncthreads()
================================================ ====================
Address Spaces
^^^^^^^^^^^^^^
You may have noticed that all of the pointer types in the LLVM IR example had
an explicit address space specifier. What is address space 1? NVIDIA GPU
devices (generally) have four types of memory:
- Global: Large, off-chip memory
- Shared: Small, on-chip memory shared among all threads in a CTA
- Local: Per-thread, private memory
- Constant: Read-only memory shared across all threads
These different types of memory are represented in LLVM IR as address spaces.
There is also a fifth address space used by the NVPTX code generator that
corresponds to the "generic" address space. This address space can represent
addresses in any other address space (with a few exceptions). This allows
users to write IR functions that can load/store memory using the same
instructions. Intrinsics are provided to convert pointers between the generic
and non-generic address spaces.
See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.
Kernel Metadata
^^^^^^^^^^^^^^^
In PTX, a function can be either a `kernel` function (callable from the host
program), or a `device` function (callable only from GPU code). You can think
of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
function as a `kernel` function, we make use of special LLVM metadata. The
NVPTX back-end will look for a named metadata node called
``nvvm.annotations``. This named metadata must contain a list of metadata that
describe the IR. For our purposes, we need to declare a metadata node that
assigns the "kernel" attribute to the LLVM IR function that should be emitted
as a PTX `kernel` function. These metadata nodes take the form:
.. code-block:: text
!{<function ref>, metadata !"kernel", i32 1}
For the previous example, we have:
.. code-block:: llvm
!nvvm.annotations = !{!0}
!0 = !{ptr @kernel, !"kernel", i32 1}
Here, we have a single metadata declaration in ``nvvm.annotations``. This
metadata annotates our ``@kernel`` function with the ``kernel`` attribute.
Running the Kernel
------------------
Generating PTX from LLVM IR is all well and good, but how do we execute it on
a real GPU device? The CUDA Driver API provides a convenient mechanism for
loading and JIT compiling PTX to a native GPU device, and launching a kernel.
The API is similar to OpenCL. A simple example showing how to load and
execute our vector addition code is shown below. Note that for brevity this
code does not perform much error checking!
.. note::
You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
compile PTX to machine code (SASS) for a specific GPU architecture. Such
binaries can be loaded by the CUDA Driver API in the same way as PTX. This
can be useful for reducing startup time by precompiling the PTX kernels.
.. code-block:: c++
#include <iostream>
#include <fstream>
#include <cassert>
#include "cuda.h"
void checkCudaErrors(CUresult err) {
assert(err == CUDA_SUCCESS);
}
/// main - Program entry point
int main(int argc, char **argv) {
CUdevice device;
CUmodule cudaModule;
CUcontext context;
CUfunction function;
CUlinkState linker;
int devCount;
// CUDA initialization
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
checkCudaErrors(cuDeviceGet(&device, 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
return 1;
}
std::ifstream t("kernel.ptx");
if (!t.is_open()) {
std::cerr << "kernel.ptx not found\n";
return 1;
}
std::string str((std::istreambuf_iterator<char>(t)),
std::istreambuf_iterator<char>());
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
// Create module for object
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));
// Get kernel function
checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));
// Device data
CUdeviceptr devBufferA;
CUdeviceptr devBufferB;
CUdeviceptr devBufferC;
checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));
float* hostA = new float[16];
float* hostB = new float[16];
float* hostC = new float[16];
// Populate input
for (unsigned i = 0; i != 16; ++i) {
hostA[i] = (float)i;
hostB[i] = (float)(2*i);
hostC[i] = 0.0f;
}
checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));
unsigned blockSizeX = 16;
unsigned blockSizeY = 1;
unsigned blockSizeZ = 1;
unsigned gridSizeX = 1;
unsigned gridSizeY = 1;
unsigned gridSizeZ = 1;
// Kernel parameters
void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };
std::cout << "Launching kernel\n";
// Kernel launch
checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
blockSizeX, blockSizeY, blockSizeZ,
0, NULL, KernelParams, NULL));
// Retrieve device data
checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));
std::cout << "Results:\n";
for (unsigned i = 0; i != 16; ++i) {
std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
}
// Clean up after ourselves
delete [] hostA;
delete [] hostB;
delete [] hostC;
// Clean-up
checkCudaErrors(cuMemFree(devBufferA));
checkCudaErrors(cuMemFree(devBufferB));
checkCudaErrors(cuMemFree(devBufferC));
checkCudaErrors(cuModuleUnload(cudaModule));
checkCudaErrors(cuCtxDestroy(context));
return 0;
}
You will need to link with the CUDA driver and specify the path to cuda.h.
.. code-block:: text
# clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda
We don't need to specify a path to ``libcuda.so`` since this is installed in a
system location by the driver, not the CUDA toolkit.
If everything goes as planned, you should see the following output when
running the compiled program:
.. code-block:: text
Using CUDA Device [0]: GeForce GTX 680
Device Compute Capability: 3.0
Launching kernel
Results:
0 + 0 = 0
1 + 2 = 3
2 + 4 = 6
3 + 6 = 9
4 + 8 = 12
5 + 10 = 15
6 + 12 = 18
7 + 14 = 21
8 + 16 = 24
9 + 18 = 27
10 + 20 = 30
11 + 22 = 33
12 + 24 = 36
13 + 26 = 39
14 + 28 = 42
15 + 30 = 45
.. note::
You will likely see a different device identifier based on your hardware
Tutorial: Linking with Libdevice
================================
In this tutorial, we show a simple example of linking LLVM IR with the
libdevice library. We will use the same kernel as the previous tutorial,
except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
Libdevice provides an ``__nv_powf`` function that we will use.
.. code-block:: llvm
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; libdevice function
declare float @__nv_powf(float, float)
define void @kernel(ptr addrspace(1) %A,
ptr addrspace(1) %B,
ptr addrspace(1) %C) {
entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; Compute pointers into A, B, and C
%ptrA = getelementptr float, ptr addrspace(1) %A, i32 %id
%ptrB = getelementptr float, ptr addrspace(1) %B, i32 %id
%ptrC = getelementptr float, ptr addrspace(1) %C, i32 %id
; Read A, B
%valA = load float, ptr addrspace(1) %ptrA, align 4
%valB = load float, ptr addrspace(1) %ptrB, align 4
; Compute C = pow(A, B)
%valC = call float @__nv_powf(float %valA, float %valB)
; Store back to C
store float %valC, ptr addrspace(1) %ptrC, align 4
ret void
}
!nvvm.annotations = !{!0}
!0 = !{ptr @kernel, !"kernel", i32 1}
To compile this kernel, we perform the following steps:
1. Link with libdevice
2. Internalize all but the public kernel function
3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
4. Optimize the linked module
5. Codegen the module
These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
tools. In a complete compiler, these steps can also be performed entirely
programmatically by setting up an appropriate pass configuration (see
:ref:`libdevice`).
.. code-block:: text
# llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
# opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
# llc -mcpu=sm_20 t2.opt.bc -o t2.ptx
.. note::
The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
undefined variables will default to zero. It is shown here for evaluation
purposes.
This gives us the following PTX (excerpt):
.. code-block:: text
//
// Generated by LLVM NVPTX Back-End
//
.version 3.1
.target sm_20
.address_size 64
// .globl kernel
// @kernel
.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2
)
{
.reg .pred %p<30>;
.reg .f32 %f<111>;
.reg .s32 %r<21>;
.reg .s64 %rl<8>;
// %bb.0: // %entry
ld.param.u64 %rl2, [kernel_param_0];
mov.u32 %r3, %tid.x;
ld.param.u64 %rl3, [kernel_param_1];
mul.wide.s32 %rl4, %r3, 4;
add.s64 %rl5, %rl2, %rl4;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl3, %rl4;
add.s64 %rl1, %rl6, %rl4;
ld.global.f32 %f1, [%rl5];
ld.global.f32 %f2, [%rl7];
setp.eq.f32 %p1, %f1, 0f3F800000;
setp.eq.f32 %p2, %f2, 0f00000000;
or.pred %p3, %p1, %p2;
@%p3 bra BB0_1;
bra.uni BB0_2;
BB0_1:
mov.f32 %f110, 0f3F800000;
st.global.f32 [%rl1], %f110;
ret;
BB0_2: // %__nv_isnanf.exit.i
abs.f32 %f4, %f1;
setp.gtu.f32 %p4, %f4, 0f7F800000;
@%p4 bra BB0_4;
// %bb.3: // %__nv_isnanf.exit5.i
abs.f32 %f5, %f2;
setp.le.f32 %p5, %f5, 0f7F800000;
@%p5 bra BB0_5;
BB0_4: // %.critedge1.i
add.f32 %f110, %f1, %f2;
st.global.f32 [%rl1], %f110;
ret;
BB0_5: // %__nv_isinff.exit.i
...
BB0_26: // %__nv_truncf.exit.i.i.i.i.i
mul.f32 %f90, %f107, 0f3FB8AA3B;
cvt.rzi.f32.f32 %f91, %f90;
mov.f32 %f92, 0fBF317200;
fma.rn.f32 %f93, %f91, %f92, %f107;
mov.f32 %f94, 0fB5BFBE8E;
fma.rn.f32 %f95, %f91, %f94, %f93;
mul.f32 %f89, %f95, 0f3FB8AA3B;
// inline asm
ex2.approx.ftz.f32 %f88,%f89;
// inline asm
add.f32 %f96, %f91, 0f00000000;
ex2.approx.f32 %f97, %f96;
mul.f32 %f98, %f88, %f97;
setp.lt.f32 %p15, %f107, 0fC2D20000;
selp.f32 %f99, 0f00000000, %f98, %p15;
setp.gt.f32 %p16, %f107, 0f42D20000;
selp.f32 %f110, 0f7F800000, %f99, %p16;
setp.eq.f32 %p17, %f110, 0f7F800000;
@%p17 bra BB0_28;
// %bb.27:
fma.rn.f32 %f110, %f110, %f108, %f110;
BB0_28: // %__internal_accurate_powf.exit.i
setp.lt.f32 %p18, %f1, 0f00000000;
setp.eq.f32 %p19, %f3, 0f3F800000;
and.pred %p20, %p18, %p19;
@!%p20 bra BB0_30;
bra.uni BB0_29;
BB0_29:
mov.b32 %r9, %f110;
xor.b32 %r10, %r9, -2147483648;
mov.b32 %f110, %r10;
BB0_30: // %__nv_powf.exit
st.global.f32 [%rl1], %f110;
ret;
}
|