1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
|
//===- DataLayout.cpp - Data size & alignment routines ---------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines layout properties related to datatype size/offset/alignment
// information.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&. None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/DataLayout.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemAlloc.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <new>
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Support for StructLayout
//===----------------------------------------------------------------------===//
StructLayout::StructLayout(StructType *ST, const DataLayout &DL)
: StructSize(TypeSize::getFixed(0)) {
assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
IsPadded = false;
NumElements = ST->getNumElements();
// Loop over each of the elements, placing them in memory.
for (unsigned i = 0, e = NumElements; i != e; ++i) {
Type *Ty = ST->getElementType(i);
if (i == 0 && Ty->isScalableTy())
StructSize = TypeSize::getScalable(0);
const Align TyAlign = ST->isPacked() ? Align(1) : DL.getABITypeAlign(Ty);
// Add padding if necessary to align the data element properly.
// Currently the only structure with scalable size will be the homogeneous
// scalable vector types. Homogeneous scalable vector types have members of
// the same data type so no alignment issue will happen. The condition here
// assumes so and needs to be adjusted if this assumption changes (e.g. we
// support structures with arbitrary scalable data type, or structure that
// contains both fixed size and scalable size data type members).
if (!StructSize.isScalable() && !isAligned(TyAlign, StructSize)) {
IsPadded = true;
StructSize = TypeSize::getFixed(alignTo(StructSize, TyAlign));
}
// Keep track of maximum alignment constraint.
StructAlignment = std::max(TyAlign, StructAlignment);
getMemberOffsets()[i] = StructSize;
// Consume space for this data item
StructSize += DL.getTypeAllocSize(Ty);
}
// Add padding to the end of the struct so that it could be put in an array
// and all array elements would be aligned correctly.
if (!StructSize.isScalable() && !isAligned(StructAlignment, StructSize)) {
IsPadded = true;
StructSize = TypeSize::getFixed(alignTo(StructSize, StructAlignment));
}
}
/// getElementContainingOffset - Given a valid offset into the structure,
/// return the structure index that contains it.
unsigned StructLayout::getElementContainingOffset(uint64_t FixedOffset) const {
assert(!StructSize.isScalable() &&
"Cannot get element at offset for structure containing scalable "
"vector types");
TypeSize Offset = TypeSize::getFixed(FixedOffset);
ArrayRef<TypeSize> MemberOffsets = getMemberOffsets();
const auto *SI =
std::upper_bound(MemberOffsets.begin(), MemberOffsets.end(), Offset,
[](TypeSize LHS, TypeSize RHS) -> bool {
return TypeSize::isKnownLT(LHS, RHS);
});
assert(SI != MemberOffsets.begin() && "Offset not in structure type!");
--SI;
assert(TypeSize::isKnownLE(*SI, Offset) && "upper_bound didn't work");
assert(
(SI == MemberOffsets.begin() || TypeSize::isKnownLE(*(SI - 1), Offset)) &&
(SI + 1 == MemberOffsets.end() ||
TypeSize::isKnownGT(*(SI + 1), Offset)) &&
"Upper bound didn't work!");
// Multiple fields can have the same offset if any of them are zero sized.
// For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
// at the i32 element, because it is the last element at that offset. This is
// the right one to return, because anything after it will have a higher
// offset, implying that this element is non-empty.
return SI - MemberOffsets.begin();
}
namespace {
class StructLayoutMap {
using LayoutInfoTy = DenseMap<StructType *, StructLayout *>;
LayoutInfoTy LayoutInfo;
public:
~StructLayoutMap() {
// Remove any layouts.
for (const auto &I : LayoutInfo) {
StructLayout *Value = I.second;
Value->~StructLayout();
free(Value);
}
}
StructLayout *&operator[](StructType *STy) { return LayoutInfo[STy]; }
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// DataLayout Class Implementation
//===----------------------------------------------------------------------===//
bool DataLayout::PrimitiveSpec::operator==(const PrimitiveSpec &Other) const {
return BitWidth == Other.BitWidth && ABIAlign == Other.ABIAlign &&
PrefAlign == Other.PrefAlign;
}
bool DataLayout::PointerSpec::operator==(const PointerSpec &Other) const {
return AddrSpace == Other.AddrSpace && BitWidth == Other.BitWidth &&
ABIAlign == Other.ABIAlign && PrefAlign == Other.PrefAlign &&
IndexBitWidth == Other.IndexBitWidth &&
IsNonIntegral == Other.IsNonIntegral;
}
namespace {
/// Predicate to sort primitive specs by bit width.
struct LessPrimitiveBitWidth {
bool operator()(const DataLayout::PrimitiveSpec &LHS,
unsigned RHSBitWidth) const {
return LHS.BitWidth < RHSBitWidth;
}
};
/// Predicate to sort pointer specs by address space number.
struct LessPointerAddrSpace {
bool operator()(const DataLayout::PointerSpec &LHS,
unsigned RHSAddrSpace) const {
return LHS.AddrSpace < RHSAddrSpace;
}
};
} // namespace
const char *DataLayout::getManglingComponent(const Triple &T) {
if (T.isOSBinFormatGOFF())
return "-m:l";
if (T.isOSBinFormatMachO())
return "-m:o";
if (T.isOSWindowsOrUEFI() && T.isOSBinFormatCOFF())
return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
if (T.isOSBinFormatXCOFF())
return "-m:a";
return "-m:e";
}
// Default primitive type specifications.
// NOTE: These arrays must be sorted by type bit width.
constexpr DataLayout::PrimitiveSpec DefaultIntSpecs[] = {
{1, Align::Constant<1>(), Align::Constant<1>()}, // i1:8:8
{8, Align::Constant<1>(), Align::Constant<1>()}, // i8:8:8
{16, Align::Constant<2>(), Align::Constant<2>()}, // i16:16:16
{32, Align::Constant<4>(), Align::Constant<4>()}, // i32:32:32
{64, Align::Constant<4>(), Align::Constant<8>()}, // i64:32:64
};
constexpr DataLayout::PrimitiveSpec DefaultFloatSpecs[] = {
{16, Align::Constant<2>(), Align::Constant<2>()}, // f16:16:16
{32, Align::Constant<4>(), Align::Constant<4>()}, // f32:32:32
{64, Align::Constant<8>(), Align::Constant<8>()}, // f64:64:64
{128, Align::Constant<16>(), Align::Constant<16>()}, // f128:128:128
};
constexpr DataLayout::PrimitiveSpec DefaultVectorSpecs[] = {
{64, Align::Constant<8>(), Align::Constant<8>()}, // v64:64:64
{128, Align::Constant<16>(), Align::Constant<16>()}, // v128:128:128
};
// Default pointer type specifications.
constexpr DataLayout::PointerSpec DefaultPointerSpecs[] = {
// p0:64:64:64:64
{0, 64, Align::Constant<8>(), Align::Constant<8>(), 64, false},
};
DataLayout::DataLayout()
: IntSpecs(ArrayRef(DefaultIntSpecs)),
FloatSpecs(ArrayRef(DefaultFloatSpecs)),
VectorSpecs(ArrayRef(DefaultVectorSpecs)),
PointerSpecs(ArrayRef(DefaultPointerSpecs)) {}
DataLayout::DataLayout(StringRef LayoutString) : DataLayout() {
if (Error Err = parseLayoutString(LayoutString))
report_fatal_error(std::move(Err));
}
DataLayout &DataLayout::operator=(const DataLayout &Other) {
delete static_cast<StructLayoutMap *>(LayoutMap);
LayoutMap = nullptr;
StringRepresentation = Other.StringRepresentation;
BigEndian = Other.BigEndian;
AllocaAddrSpace = Other.AllocaAddrSpace;
ProgramAddrSpace = Other.ProgramAddrSpace;
DefaultGlobalsAddrSpace = Other.DefaultGlobalsAddrSpace;
StackNaturalAlign = Other.StackNaturalAlign;
FunctionPtrAlign = Other.FunctionPtrAlign;
TheFunctionPtrAlignType = Other.TheFunctionPtrAlignType;
ManglingMode = Other.ManglingMode;
LegalIntWidths = Other.LegalIntWidths;
IntSpecs = Other.IntSpecs;
FloatSpecs = Other.FloatSpecs;
VectorSpecs = Other.VectorSpecs;
PointerSpecs = Other.PointerSpecs;
StructABIAlignment = Other.StructABIAlignment;
StructPrefAlignment = Other.StructPrefAlignment;
return *this;
}
bool DataLayout::operator==(const DataLayout &Other) const {
// NOTE: StringRepresentation might differ, it is not canonicalized.
return BigEndian == Other.BigEndian &&
AllocaAddrSpace == Other.AllocaAddrSpace &&
ProgramAddrSpace == Other.ProgramAddrSpace &&
DefaultGlobalsAddrSpace == Other.DefaultGlobalsAddrSpace &&
StackNaturalAlign == Other.StackNaturalAlign &&
FunctionPtrAlign == Other.FunctionPtrAlign &&
TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
ManglingMode == Other.ManglingMode &&
LegalIntWidths == Other.LegalIntWidths && IntSpecs == Other.IntSpecs &&
FloatSpecs == Other.FloatSpecs && VectorSpecs == Other.VectorSpecs &&
PointerSpecs == Other.PointerSpecs &&
StructABIAlignment == Other.StructABIAlignment &&
StructPrefAlignment == Other.StructPrefAlignment;
}
Expected<DataLayout> DataLayout::parse(StringRef LayoutString) {
DataLayout Layout;
if (Error Err = Layout.parseLayoutString(LayoutString))
return std::move(Err);
return Layout;
}
static Error createSpecFormatError(Twine Format) {
return createStringError("malformed specification, must be of the form \"" +
Format + "\"");
}
/// Attempts to parse an address space component of a specification.
static Error parseAddrSpace(StringRef Str, unsigned &AddrSpace) {
if (Str.empty())
return createStringError("address space component cannot be empty");
if (!to_integer(Str, AddrSpace, 10) || !isUInt<24>(AddrSpace))
return createStringError("address space must be a 24-bit integer");
return Error::success();
}
/// Attempts to parse a size component of a specification.
static Error parseSize(StringRef Str, unsigned &BitWidth,
StringRef Name = "size") {
if (Str.empty())
return createStringError(Name + " component cannot be empty");
if (!to_integer(Str, BitWidth, 10) || BitWidth == 0 || !isUInt<24>(BitWidth))
return createStringError(Name + " must be a non-zero 24-bit integer");
return Error::success();
}
/// Attempts to parse an alignment component of a specification.
///
/// On success, returns the value converted to byte amount in \p Alignment.
/// If the value is zero and \p AllowZero is true, \p Alignment is set to one.
///
/// Return an error in a number of cases:
/// - \p Str is empty or contains characters other than decimal digits;
/// - the value is zero and \p AllowZero is false;
/// - the value is too large;
/// - the value is not a multiple of the byte width;
/// - the value converted to byte amount is not not a power of two.
static Error parseAlignment(StringRef Str, Align &Alignment, StringRef Name,
bool AllowZero = false) {
if (Str.empty())
return createStringError(Name + " alignment component cannot be empty");
unsigned Value;
if (!to_integer(Str, Value, 10) || !isUInt<16>(Value))
return createStringError(Name + " alignment must be a 16-bit integer");
if (Value == 0) {
if (!AllowZero)
return createStringError(Name + " alignment must be non-zero");
Alignment = Align(1);
return Error::success();
}
constexpr unsigned ByteWidth = 8;
if (Value % ByteWidth || !isPowerOf2_32(Value / ByteWidth))
return createStringError(
Name + " alignment must be a power of two times the byte width");
Alignment = Align(Value / ByteWidth);
return Error::success();
}
Error DataLayout::parsePrimitiveSpec(StringRef Spec) {
// [ifv]<size>:<abi>[:<pref>]
SmallVector<StringRef, 3> Components;
char Specifier = Spec.front();
assert(Specifier == 'i' || Specifier == 'f' || Specifier == 'v');
Spec.drop_front().split(Components, ':');
if (Components.size() < 2 || Components.size() > 3)
return createSpecFormatError(Twine(Specifier) + "<size>:<abi>[:<pref>]");
// Size. Required, cannot be zero.
unsigned BitWidth;
if (Error Err = parseSize(Components[0], BitWidth))
return Err;
// ABI alignment.
Align ABIAlign;
if (Error Err = parseAlignment(Components[1], ABIAlign, "ABI"))
return Err;
if (Specifier == 'i' && BitWidth == 8 && ABIAlign != 1)
return createStringError("i8 must be 8-bit aligned");
// Preferred alignment. Optional, defaults to the ABI alignment.
Align PrefAlign = ABIAlign;
if (Components.size() > 2)
if (Error Err = parseAlignment(Components[2], PrefAlign, "preferred"))
return Err;
if (PrefAlign < ABIAlign)
return createStringError(
"preferred alignment cannot be less than the ABI alignment");
setPrimitiveSpec(Specifier, BitWidth, ABIAlign, PrefAlign);
return Error::success();
}
Error DataLayout::parseAggregateSpec(StringRef Spec) {
// a<size>:<abi>[:<pref>]
SmallVector<StringRef, 3> Components;
assert(Spec.front() == 'a');
Spec.drop_front().split(Components, ':');
if (Components.size() < 2 || Components.size() > 3)
return createSpecFormatError("a:<abi>[:<pref>]");
// According to LangRef, <size> component must be absent altogether.
// For backward compatibility, allow it to be specified, but require
// it to be zero.
if (!Components[0].empty()) {
unsigned BitWidth;
if (!to_integer(Components[0], BitWidth, 10) || BitWidth != 0)
return createStringError("size must be zero");
}
// ABI alignment. Required. Can be zero, meaning use one byte alignment.
Align ABIAlign;
if (Error Err =
parseAlignment(Components[1], ABIAlign, "ABI", /*AllowZero=*/true))
return Err;
// Preferred alignment. Optional, defaults to the ABI alignment.
Align PrefAlign = ABIAlign;
if (Components.size() > 2)
if (Error Err = parseAlignment(Components[2], PrefAlign, "preferred"))
return Err;
if (PrefAlign < ABIAlign)
return createStringError(
"preferred alignment cannot be less than the ABI alignment");
StructABIAlignment = ABIAlign;
StructPrefAlignment = PrefAlign;
return Error::success();
}
Error DataLayout::parsePointerSpec(StringRef Spec) {
// p[<n>]:<size>:<abi>[:<pref>[:<idx>]]
SmallVector<StringRef, 5> Components;
assert(Spec.front() == 'p');
Spec.drop_front().split(Components, ':');
if (Components.size() < 3 || Components.size() > 5)
return createSpecFormatError("p[<n>]:<size>:<abi>[:<pref>[:<idx>]]");
// Address space. Optional, defaults to 0.
unsigned AddrSpace = 0;
if (!Components[0].empty())
if (Error Err = parseAddrSpace(Components[0], AddrSpace))
return Err;
// Size. Required, cannot be zero.
unsigned BitWidth;
if (Error Err = parseSize(Components[1], BitWidth, "pointer size"))
return Err;
// ABI alignment. Required, cannot be zero.
Align ABIAlign;
if (Error Err = parseAlignment(Components[2], ABIAlign, "ABI"))
return Err;
// Preferred alignment. Optional, defaults to the ABI alignment.
// Cannot be zero.
Align PrefAlign = ABIAlign;
if (Components.size() > 3)
if (Error Err = parseAlignment(Components[3], PrefAlign, "preferred"))
return Err;
if (PrefAlign < ABIAlign)
return createStringError(
"preferred alignment cannot be less than the ABI alignment");
// Index size. Optional, defaults to pointer size. Cannot be zero.
unsigned IndexBitWidth = BitWidth;
if (Components.size() > 4)
if (Error Err = parseSize(Components[4], IndexBitWidth, "index size"))
return Err;
if (IndexBitWidth > BitWidth)
return createStringError(
"index size cannot be larger than the pointer size");
setPointerSpec(AddrSpace, BitWidth, ABIAlign, PrefAlign, IndexBitWidth,
false);
return Error::success();
}
Error DataLayout::parseSpecification(
StringRef Spec, SmallVectorImpl<unsigned> &NonIntegralAddressSpaces) {
// The "ni" specifier is the only two-character specifier. Handle it first.
if (Spec.starts_with("ni")) {
// ni:<address space>[:<address space>]...
StringRef Rest = Spec.drop_front(2);
// Drop the first ':', then split the rest of the string the usual way.
if (!Rest.consume_front(":"))
return createSpecFormatError("ni:<address space>[:<address space>]...");
for (StringRef Str : split(Rest, ':')) {
unsigned AddrSpace;
if (Error Err = parseAddrSpace(Str, AddrSpace))
return Err;
if (AddrSpace == 0)
return createStringError("address space 0 cannot be non-integral");
NonIntegralAddressSpaces.push_back(AddrSpace);
}
return Error::success();
}
// The rest of the specifiers are single-character.
assert(!Spec.empty() && "Empty specification is handled by the caller");
char Specifier = Spec.front();
if (Specifier == 'i' || Specifier == 'f' || Specifier == 'v')
return parsePrimitiveSpec(Spec);
if (Specifier == 'a')
return parseAggregateSpec(Spec);
if (Specifier == 'p')
return parsePointerSpec(Spec);
StringRef Rest = Spec.drop_front();
switch (Specifier) {
case 's':
// Deprecated, but ignoring here to preserve loading older textual llvm
// ASM file
break;
case 'e':
case 'E':
if (!Rest.empty())
return createStringError(
"malformed specification, must be just 'e' or 'E'");
BigEndian = Specifier == 'E';
break;
case 'n': // Native integer types.
// n<size>[:<size>]...
for (StringRef Str : split(Rest, ':')) {
unsigned BitWidth;
if (Error Err = parseSize(Str, BitWidth))
return Err;
LegalIntWidths.push_back(BitWidth);
}
break;
case 'S': { // Stack natural alignment.
// S<size>
if (Rest.empty())
return createSpecFormatError("S<size>");
Align Alignment;
if (Error Err = parseAlignment(Rest, Alignment, "stack natural"))
return Err;
StackNaturalAlign = Alignment;
break;
}
case 'F': {
// F<type><abi>
if (Rest.empty())
return createSpecFormatError("F<type><abi>");
char Type = Rest.front();
Rest = Rest.drop_front();
switch (Type) {
case 'i':
TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
break;
case 'n':
TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
break;
default:
return createStringError("unknown function pointer alignment type '" +
Twine(Type) + "'");
}
Align Alignment;
if (Error Err = parseAlignment(Rest, Alignment, "ABI"))
return Err;
FunctionPtrAlign = Alignment;
break;
}
case 'P': { // Function address space.
if (Rest.empty())
return createSpecFormatError("P<address space>");
if (Error Err = parseAddrSpace(Rest, ProgramAddrSpace))
return Err;
break;
}
case 'A': { // Default stack/alloca address space.
if (Rest.empty())
return createSpecFormatError("A<address space>");
if (Error Err = parseAddrSpace(Rest, AllocaAddrSpace))
return Err;
break;
}
case 'G': { // Default address space for global variables.
if (Rest.empty())
return createSpecFormatError("G<address space>");
if (Error Err = parseAddrSpace(Rest, DefaultGlobalsAddrSpace))
return Err;
break;
}
case 'm':
if (!Rest.consume_front(":") || Rest.empty())
return createSpecFormatError("m:<mangling>");
if (Rest.size() > 1)
return createStringError("unknown mangling mode");
switch (Rest[0]) {
default:
return createStringError("unknown mangling mode");
case 'e':
ManglingMode = MM_ELF;
break;
case 'l':
ManglingMode = MM_GOFF;
break;
case 'o':
ManglingMode = MM_MachO;
break;
case 'm':
ManglingMode = MM_Mips;
break;
case 'w':
ManglingMode = MM_WinCOFF;
break;
case 'x':
ManglingMode = MM_WinCOFFX86;
break;
case 'a':
ManglingMode = MM_XCOFF;
break;
}
break;
default:
return createStringError("unknown specifier '" + Twine(Specifier) + "'");
}
return Error::success();
}
Error DataLayout::parseLayoutString(StringRef LayoutString) {
StringRepresentation = std::string(LayoutString);
if (LayoutString.empty())
return Error::success();
// Split the data layout string into specifications separated by '-' and
// parse each specification individually, updating internal data structures.
SmallVector<unsigned, 8> NonIntegralAddressSpaces;
for (StringRef Spec : split(LayoutString, '-')) {
if (Spec.empty())
return createStringError("empty specification is not allowed");
if (Error Err = parseSpecification(Spec, NonIntegralAddressSpaces))
return Err;
}
// Mark all address spaces that were qualified as non-integral now. This has
// to be done later since the non-integral property is not part of the data
// layout pointer specification.
for (unsigned AS : NonIntegralAddressSpaces) {
// If there is no special spec for a given AS, getPointerSpec(AS) returns
// the spec for AS0, and we then update that to mark it non-integral.
const PointerSpec &PS = getPointerSpec(AS);
setPointerSpec(AS, PS.BitWidth, PS.ABIAlign, PS.PrefAlign, PS.IndexBitWidth,
true);
}
return Error::success();
}
void DataLayout::setPrimitiveSpec(char Specifier, uint32_t BitWidth,
Align ABIAlign, Align PrefAlign) {
SmallVectorImpl<PrimitiveSpec> *Specs;
switch (Specifier) {
default:
llvm_unreachable("Unexpected specifier");
case 'i':
Specs = &IntSpecs;
break;
case 'f':
Specs = &FloatSpecs;
break;
case 'v':
Specs = &VectorSpecs;
break;
}
auto I = lower_bound(*Specs, BitWidth, LessPrimitiveBitWidth());
if (I != Specs->end() && I->BitWidth == BitWidth) {
// Update the abi, preferred alignments.
I->ABIAlign = ABIAlign;
I->PrefAlign = PrefAlign;
} else {
// Insert before I to keep the vector sorted.
Specs->insert(I, PrimitiveSpec{BitWidth, ABIAlign, PrefAlign});
}
}
const DataLayout::PointerSpec &
DataLayout::getPointerSpec(uint32_t AddrSpace) const {
if (AddrSpace != 0) {
auto I = lower_bound(PointerSpecs, AddrSpace, LessPointerAddrSpace());
if (I != PointerSpecs.end() && I->AddrSpace == AddrSpace)
return *I;
}
assert(PointerSpecs[0].AddrSpace == 0);
return PointerSpecs[0];
}
void DataLayout::setPointerSpec(uint32_t AddrSpace, uint32_t BitWidth,
Align ABIAlign, Align PrefAlign,
uint32_t IndexBitWidth, bool IsNonIntegral) {
auto I = lower_bound(PointerSpecs, AddrSpace, LessPointerAddrSpace());
if (I == PointerSpecs.end() || I->AddrSpace != AddrSpace) {
PointerSpecs.insert(I, PointerSpec{AddrSpace, BitWidth, ABIAlign, PrefAlign,
IndexBitWidth, IsNonIntegral});
} else {
I->BitWidth = BitWidth;
I->ABIAlign = ABIAlign;
I->PrefAlign = PrefAlign;
I->IndexBitWidth = IndexBitWidth;
I->IsNonIntegral = IsNonIntegral;
}
}
Align DataLayout::getIntegerAlignment(uint32_t BitWidth,
bool abi_or_pref) const {
auto I = lower_bound(IntSpecs, BitWidth, LessPrimitiveBitWidth());
// If we don't have an exact match, use alignment of next larger integer
// type. If there is none, use alignment of largest integer type by going
// back one element.
if (I == IntSpecs.end())
--I;
return abi_or_pref ? I->ABIAlign : I->PrefAlign;
}
DataLayout::~DataLayout() { delete static_cast<StructLayoutMap *>(LayoutMap); }
const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
if (!LayoutMap)
LayoutMap = new StructLayoutMap();
StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
StructLayout *&SL = (*STM)[Ty];
if (SL) return SL;
// Otherwise, create the struct layout. Because it is variable length, we
// malloc it, then use placement new.
StructLayout *L = (StructLayout *)safe_malloc(
StructLayout::totalSizeToAlloc<TypeSize>(Ty->getNumElements()));
// Set SL before calling StructLayout's ctor. The ctor could cause other
// entries to be added to TheMap, invalidating our reference.
SL = L;
new (L) StructLayout(Ty, *this);
return L;
}
Align DataLayout::getPointerABIAlignment(unsigned AS) const {
return getPointerSpec(AS).ABIAlign;
}
Align DataLayout::getPointerPrefAlignment(unsigned AS) const {
return getPointerSpec(AS).PrefAlign;
}
unsigned DataLayout::getPointerSize(unsigned AS) const {
return divideCeil(getPointerSpec(AS).BitWidth, 8);
}
unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
assert(Ty->isPtrOrPtrVectorTy() &&
"This should only be called with a pointer or pointer vector type");
Ty = Ty->getScalarType();
return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
}
unsigned DataLayout::getIndexSize(unsigned AS) const {
return divideCeil(getPointerSpec(AS).IndexBitWidth, 8);
}
unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
assert(Ty->isPtrOrPtrVectorTy() &&
"This should only be called with a pointer or pointer vector type");
Ty = Ty->getScalarType();
return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
}
/*!
\param abi_or_pref Flag that determines which alignment is returned. true
returns the ABI alignment, false returns the preferred alignment.
\param Ty The underlying type for which alignment is determined.
Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
== false) for the requested type \a Ty.
*/
Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
switch (Ty->getTypeID()) {
// Early escape for the non-numeric types.
case Type::LabelTyID:
return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
case Type::PointerTyID: {
unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
return abi_or_pref ? getPointerABIAlignment(AS)
: getPointerPrefAlignment(AS);
}
case Type::ArrayTyID:
return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
case Type::StructTyID: {
// Packed structure types always have an ABI alignment of one.
if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
return Align(1);
// Get the layout annotation... which is lazily created on demand.
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
const Align Align = abi_or_pref ? StructABIAlignment : StructPrefAlignment;
return std::max(Align, Layout->getAlignment());
}
case Type::IntegerTyID:
return getIntegerAlignment(Ty->getIntegerBitWidth(), abi_or_pref);
case Type::HalfTyID:
case Type::BFloatTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
// PPC_FP128TyID and FP128TyID have different data contents, but the
// same size and alignment, so they look the same here.
case Type::PPC_FP128TyID:
case Type::FP128TyID:
case Type::X86_FP80TyID: {
unsigned BitWidth = getTypeSizeInBits(Ty).getFixedValue();
auto I = lower_bound(FloatSpecs, BitWidth, LessPrimitiveBitWidth());
if (I != FloatSpecs.end() && I->BitWidth == BitWidth)
return abi_or_pref ? I->ABIAlign : I->PrefAlign;
// If we still couldn't find a reasonable default alignment, fall back
// to a simple heuristic that the alignment is the first power of two
// greater-or-equal to the store size of the type. This is a reasonable
// approximation of reality, and if the user wanted something less
// less conservative, they should have specified it explicitly in the data
// layout.
return Align(PowerOf2Ceil(BitWidth / 8));
}
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID: {
unsigned BitWidth = getTypeSizeInBits(Ty).getKnownMinValue();
auto I = lower_bound(VectorSpecs, BitWidth, LessPrimitiveBitWidth());
if (I != VectorSpecs.end() && I->BitWidth == BitWidth)
return abi_or_pref ? I->ABIAlign : I->PrefAlign;
// By default, use natural alignment for vector types. This is consistent
// with what clang and llvm-gcc do.
//
// We're only calculating a natural alignment, so it doesn't have to be
// based on the full size for scalable vectors. Using the minimum element
// count should be enough here.
return Align(PowerOf2Ceil(getTypeStoreSize(Ty).getKnownMinValue()));
}
case Type::X86_AMXTyID:
return Align(64);
case Type::TargetExtTyID: {
Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType();
return getAlignment(LayoutTy, abi_or_pref);
}
default:
llvm_unreachable("Bad type for getAlignment!!!");
}
}
Align DataLayout::getABITypeAlign(Type *Ty) const {
return getAlignment(Ty, true);
}
Align DataLayout::getPrefTypeAlign(Type *Ty) const {
return getAlignment(Ty, false);
}
IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
unsigned AddressSpace) const {
return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
}
Type *DataLayout::getIntPtrType(Type *Ty) const {
assert(Ty->isPtrOrPtrVectorTy() &&
"Expected a pointer or pointer vector type.");
unsigned NumBits = getPointerTypeSizeInBits(Ty);
IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
return VectorType::get(IntTy, VecTy);
return IntTy;
}
Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
for (unsigned LegalIntWidth : LegalIntWidths)
if (Width <= LegalIntWidth)
return Type::getIntNTy(C, LegalIntWidth);
return nullptr;
}
unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
auto Max = llvm::max_element(LegalIntWidths);
return Max != LegalIntWidths.end() ? *Max : 0;
}
IntegerType *DataLayout::getIndexType(LLVMContext &C,
unsigned AddressSpace) const {
return IntegerType::get(C, getIndexSizeInBits(AddressSpace));
}
Type *DataLayout::getIndexType(Type *Ty) const {
assert(Ty->isPtrOrPtrVectorTy() &&
"Expected a pointer or pointer vector type.");
unsigned NumBits = getIndexTypeSizeInBits(Ty);
IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
return VectorType::get(IntTy, VecTy);
return IntTy;
}
int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
ArrayRef<Value *> Indices) const {
int64_t Result = 0;
generic_gep_type_iterator<Value* const*>
GTI = gep_type_begin(ElemTy, Indices),
GTE = gep_type_end(ElemTy, Indices);
for (; GTI != GTE; ++GTI) {
Value *Idx = GTI.getOperand();
if (StructType *STy = GTI.getStructTypeOrNull()) {
assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();
// Get structure layout information...
const StructLayout *Layout = getStructLayout(STy);
// Add in the offset, as calculated by the structure layout info...
Result += Layout->getElementOffset(FieldNo);
} else {
if (int64_t ArrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
Result += ArrayIdx * GTI.getSequentialElementStride(*this);
}
}
return Result;
}
static APInt getElementIndex(TypeSize ElemSize, APInt &Offset) {
// Skip over scalable or zero size elements. Also skip element sizes larger
// than the positive index space, because the arithmetic below may not be
// correct in that case.
unsigned BitWidth = Offset.getBitWidth();
if (ElemSize.isScalable() || ElemSize == 0 ||
!isUIntN(BitWidth - 1, ElemSize)) {
return APInt::getZero(BitWidth);
}
APInt Index = Offset.sdiv(ElemSize);
Offset -= Index * ElemSize;
if (Offset.isNegative()) {
// Prefer a positive remaining offset to allow struct indexing.
--Index;
Offset += ElemSize;
assert(Offset.isNonNegative() && "Remaining offset shouldn't be negative");
}
return Index;
}
std::optional<APInt> DataLayout::getGEPIndexForOffset(Type *&ElemTy,
APInt &Offset) const {
if (auto *ArrTy = dyn_cast<ArrayType>(ElemTy)) {
ElemTy = ArrTy->getElementType();
return getElementIndex(getTypeAllocSize(ElemTy), Offset);
}
if (isa<VectorType>(ElemTy)) {
// Vector GEPs are partially broken (e.g. for overaligned element types),
// and may be forbidden in the future, so avoid generating GEPs into
// vectors. See https://discourse.llvm.org/t/67497
return std::nullopt;
}
if (auto *STy = dyn_cast<StructType>(ElemTy)) {
const StructLayout *SL = getStructLayout(STy);
uint64_t IntOffset = Offset.getZExtValue();
if (IntOffset >= SL->getSizeInBytes())
return std::nullopt;
unsigned Index = SL->getElementContainingOffset(IntOffset);
Offset -= SL->getElementOffset(Index);
ElemTy = STy->getElementType(Index);
return APInt(32, Index);
}
// Non-aggregate type.
return std::nullopt;
}
SmallVector<APInt> DataLayout::getGEPIndicesForOffset(Type *&ElemTy,
APInt &Offset) const {
assert(ElemTy->isSized() && "Element type must be sized");
SmallVector<APInt> Indices;
Indices.push_back(getElementIndex(getTypeAllocSize(ElemTy), Offset));
while (Offset != 0) {
std::optional<APInt> Index = getGEPIndexForOffset(ElemTy, Offset);
if (!Index)
break;
Indices.push_back(*Index);
}
return Indices;
}
/// getPreferredAlign - Return the preferred alignment of the specified global.
/// This includes an explicitly requested alignment (if the global has one).
Align DataLayout::getPreferredAlign(const GlobalVariable *GV) const {
MaybeAlign GVAlignment = GV->getAlign();
// If a section is specified, always precisely honor explicit alignment,
// so we don't insert padding into a section we don't control.
if (GVAlignment && GV->hasSection())
return *GVAlignment;
// If no explicit alignment is specified, compute the alignment based on
// the IR type. If an alignment is specified, increase it to match the ABI
// alignment of the IR type.
//
// FIXME: Not sure it makes sense to use the alignment of the type if
// there's already an explicit alignment specification.
Type *ElemType = GV->getValueType();
Align Alignment = getPrefTypeAlign(ElemType);
if (GVAlignment) {
if (*GVAlignment >= Alignment)
Alignment = *GVAlignment;
else
Alignment = std::max(*GVAlignment, getABITypeAlign(ElemType));
}
// If no explicit alignment is specified, and the global is large, increase
// the alignment to 16.
// FIXME: Why 16, specifically?
if (GV->hasInitializer() && !GVAlignment) {
if (Alignment < Align(16)) {
// If the global is not external, see if it is large. If so, give it a
// larger alignment.
if (getTypeSizeInBits(ElemType) > 128)
Alignment = Align(16); // 16-byte alignment.
}
}
return Alignment;
}
|