1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
|
//===- HexagonOptAddrMode.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implements a Hexagon-specific pass to optimize addressing mode for
// load/store instructions.
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RDFGraph.h"
#include "llvm/CodeGen/RDFLiveness.h"
#include "llvm/CodeGen/RDFRegisters.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#define DEBUG_TYPE "opt-addr-mode"
using namespace llvm;
using namespace rdf;
static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit",
cl::Hidden, cl::init(0), cl::desc("Code growth limit for address mode "
"optimization"));
extern cl::opt<unsigned> RDFFuncBlockLimit;
namespace llvm {
FunctionPass *createHexagonOptAddrMode();
void initializeHexagonOptAddrModePass(PassRegistry&);
} // end namespace llvm
namespace {
class HexagonOptAddrMode : public MachineFunctionPass {
public:
static char ID;
HexagonOptAddrMode() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "Optimize addressing mode of load/store";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.addRequired<MachineDominanceFrontier>();
AU.setPreservesAll();
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
using MISetType = DenseSet<MachineInstr *>;
using InstrEvalMap = DenseMap<MachineInstr *, bool>;
DenseSet<MachineInstr *> ProcessedAddiInsts;
MachineRegisterInfo *MRI = nullptr;
const TargetRegisterInfo *TRI = nullptr;
const HexagonInstrInfo *HII = nullptr;
const HexagonRegisterInfo *HRI = nullptr;
MachineDominatorTree *MDT = nullptr;
DataFlowGraph *DFG = nullptr;
DataFlowGraph::DefStackMap DefM;
Liveness *LV = nullptr;
MISetType Deleted;
bool processBlock(NodeAddr<BlockNode *> BA);
bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
NodeAddr<UseNode *> UseN, unsigned UseMOnum);
bool processAddBases(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI);
bool usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN, int64_t NewOffset);
bool findFirstReachedInst(
MachineInstr *AddMI,
std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>>
&AddiList,
NodeAddr<StmtNode *> &UseSN);
bool updateAddBases(MachineInstr *CurrentMI, MachineInstr *FirstReachedMI,
int64_t NewOffset);
bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI,
const NodeList &UNodeList);
bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI);
bool analyzeUses(unsigned DefR, const NodeList &UNodeList,
InstrEvalMap &InstrEvalResult, short &SizeInc);
bool hasRepForm(MachineInstr &MI, unsigned TfrDefR);
bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI,
const NodeList &UNodeList);
bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI,
unsigned LRExtReg, const NodeList &UNodeList);
void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList);
bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList);
short getBaseWithLongOffset(const MachineInstr &MI) const;
bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
unsigned ImmOpNum);
bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum);
bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI,
const MachineOperand &ImmOp, unsigned ImmOpNum);
bool isValidOffset(MachineInstr *MI, int Offset);
unsigned getBaseOpPosition(MachineInstr *MI);
unsigned getOffsetOpPosition(MachineInstr *MI);
};
} // end anonymous namespace
char HexagonOptAddrMode::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt",
"Optimize addressing mode", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt", "Optimize addressing mode",
false, false)
bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) {
const MCInstrDesc &MID = MI.getDesc();
if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI))
return false;
if (MID.mayStore()) {
MachineOperand StOp = MI.getOperand(MI.getNumOperands() - 1);
if (StOp.isReg() && StOp.getReg() == TfrDefR)
return false;
}
if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset)
// Tranform to Absolute plus register offset.
return (HII->changeAddrMode_rr_ur(MI) >= 0);
else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset)
// Tranform to absolute addressing mode.
return (HII->changeAddrMode_io_abs(MI) >= 0);
return false;
}
// Check if addasl instruction can be removed. This is possible only
// if it's feeding to only load/store instructions with base + register
// offset as these instruction can be tranformed to use 'absolute plus
// shifted register offset'.
// ex:
// Rs = ##foo
// Rx = addasl(Rs, Rt, #2)
// Rd = memw(Rx + #28)
// Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28)
bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN,
MachineInstr &MI,
const NodeList &UNodeList) {
// check offset size in addasl. if 'offset > 3' return false
const MachineOperand &OffsetOp = MI.getOperand(3);
if (!OffsetOp.isImm() || OffsetOp.getImm() > 3)
return false;
Register OffsetReg = MI.getOperand(2).getReg();
RegisterRef OffsetRR;
NodeId OffsetRegRD = 0;
for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(DFG->IsUse, *DFG)) {
RegisterRef RR = UA.Addr->getRegRef(*DFG);
if (OffsetReg == RR.Reg) {
OffsetRR = RR;
OffsetRegRD = UA.Addr->getReachingDef();
}
}
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UA = *I;
NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
return false;
NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(OffsetRR, IA);
if ((DFG->IsDef(AA) && AA.Id != OffsetRegRD) ||
AA.Addr->getReachingDef() != OffsetRegRD)
return false;
MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode();
NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(OffsetRegRD);
// Reaching Def to an offset register can't be a phi.
if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
MI.getParent() != UseMI.getParent())
return false;
const MCInstrDesc &UseMID = UseMI.getDesc();
if ((!UseMID.mayLoad() && !UseMID.mayStore()) ||
HII->getAddrMode(UseMI) != HexagonII::BaseImmOffset ||
getBaseWithLongOffset(UseMI) < 0)
return false;
// Addasl output can't be a store value.
if (UseMID.mayStore() && UseMI.getOperand(2).isReg() &&
UseMI.getOperand(2).getReg() == MI.getOperand(0).getReg())
return false;
for (auto &Mo : UseMI.operands())
// Is it a frame index?
if (Mo.isFI())
return false;
// Is the OffsetReg definition actually reaches UseMI?
if (!UseMI.getParent()->isLiveIn(OffsetReg) &&
MI.getParent() != UseMI.getParent()) {
LLVM_DEBUG(dbgs() << " The offset reg " << printReg(OffsetReg, TRI)
<< " is NOT live in to MBB "
<< UseMI.getParent()->getName() << "\n");
return false;
}
}
return true;
}
bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA,
NodeList &UNodeList) {
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UN = *I;
RegisterRef UR = UN.Addr->getRegRef(*DFG);
NodeSet Visited, Defs;
const auto &P = LV->getAllReachingDefsRec(UR, UN, Visited, Defs);
if (!P.second) {
LLVM_DEBUG({
dbgs() << "*** Unable to collect all reaching defs for use ***\n"
<< PrintNode<UseNode*>(UN, *DFG) << '\n'
<< "The program's complexity may exceed the limits.\n";
});
return false;
}
const auto &ReachingDefs = P.first;
if (ReachingDefs.size() > 1) {
LLVM_DEBUG({
dbgs() << "*** Multiple Reaching Defs found!!! ***\n";
for (auto DI : ReachingDefs) {
NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI);
NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG);
dbgs() << "\t\t[Reaching Def]: "
<< Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
}
});
return false;
}
}
return true;
}
void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA,
NodeList &UNodeList) {
for (NodeAddr<DefNode *> DA : SA.Addr->members_if(DFG->IsDef, *DFG)) {
LLVM_DEBUG(dbgs() << "\t\t[DefNode]: "
<< Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n");
RegisterRef DR = DA.Addr->getRegRef(*DFG);
auto UseSet = LV->getAllReachedUses(DR, DA);
for (auto UI : UseSet) {
NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(UI);
LLVM_DEBUG({
NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG);
dbgs() << "\t\t\t[Reached Use]: "
<< Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
});
if (UA.Addr->getFlags() & NodeAttrs::PhiRef) {
NodeAddr<PhiNode *> PA = UA.Addr->getOwner(*DFG);
NodeId id = PA.Id;
const Liveness::RefMap &phiUse = LV->getRealUses(id);
LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses"
<< Print<Liveness::RefMap>(phiUse, *DFG) << "\n");
if (!phiUse.empty()) {
for (auto I : phiUse) {
if (!DFG->getPRI().alias(RegisterRef(I.first), DR))
continue;
auto phiUseSet = I.second;
for (auto phiUI : phiUseSet) {
NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(phiUI.first);
UNodeList.push_back(phiUA);
}
}
}
} else
UNodeList.push_back(UA);
}
}
}
bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN,
MachineInstr *MI, unsigned LRExtReg,
const NodeList &UNodeList) {
RegisterRef LRExtRR;
NodeId LRExtRegRD = 0;
// Iterate through all the UseNodes in SN and find the reaching def
// for the LRExtReg.
for (NodeAddr<UseNode *> UA : SN.Addr->members_if(DFG->IsUse, *DFG)) {
RegisterRef RR = UA.Addr->getRegRef(*DFG);
if (LRExtReg == RR.Reg) {
LRExtRR = RR;
LRExtRegRD = UA.Addr->getReachingDef();
}
}
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UA = *I;
NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
// The reaching def of LRExtRR at load/store node should be same as the
// one reaching at the SN.
if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
return false;
NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(LRExtRR, IA);
if ((DFG->IsDef(AA) && AA.Id != LRExtRegRD) ||
AA.Addr->getReachingDef() != LRExtRegRD) {
LLVM_DEBUG(
dbgs() << "isSafeToExtLR: Returning false; another reaching def\n");
return false;
}
// If the register is undefined (for example if it's a reserved register),
// it may still be possible to extend the range, but it's safer to be
// conservative and just punt.
if (LRExtRegRD == 0)
return false;
MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode();
NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
// Reaching Def to LRExtReg can't be a phi.
if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
MI->getParent() != UseMI->getParent())
return false;
// Is the OffsetReg definition actually reaches UseMI?
if (!UseMI->getParent()->isLiveIn(LRExtReg) &&
MI->getParent() != UseMI->getParent()) {
LLVM_DEBUG(dbgs() << " The LRExtReg reg " << printReg(LRExtReg, TRI)
<< " is NOT live in to MBB "
<< UseMI->getParent()->getName() << "\n");
return false;
}
}
return true;
}
bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) {
if (HII->isHVXVec(*MI)) {
// only HVX vgather instructions handled
// TODO: extend the pass to other vector load/store operations
switch (MI->getOpcode()) {
case Hexagon::V6_vgathermh_pseudo:
case Hexagon::V6_vgathermw_pseudo:
case Hexagon::V6_vgathermhw_pseudo:
case Hexagon::V6_vgathermhq_pseudo:
case Hexagon::V6_vgathermwq_pseudo:
case Hexagon::V6_vgathermhwq_pseudo:
return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
default:
if (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) {
// The immediates are mentioned in multiples of vector counts
unsigned AlignMask = HII->getMemAccessSize(*MI) - 1;
if ((AlignMask & Offset) == 0)
return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
}
return false;
}
}
if (HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
return false;
unsigned AlignMask = 0;
switch (HII->getMemAccessSize(*MI)) {
case HexagonII::MemAccessSize::DoubleWordAccess:
AlignMask = 0x7;
break;
case HexagonII::MemAccessSize::WordAccess:
AlignMask = 0x3;
break;
case HexagonII::MemAccessSize::HalfWordAccess:
AlignMask = 0x1;
break;
case HexagonII::MemAccessSize::ByteAccess:
AlignMask = 0x0;
break;
default:
return false;
}
if ((AlignMask & Offset) != 0)
return false;
return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
}
unsigned HexagonOptAddrMode::getBaseOpPosition(MachineInstr *MI) {
const MCInstrDesc &MID = MI->getDesc();
switch (MI->getOpcode()) {
// vgather pseudos are mayLoad and mayStore
// hence need to explicitly specify Base and
// Offset operand positions
case Hexagon::V6_vgathermh_pseudo:
case Hexagon::V6_vgathermw_pseudo:
case Hexagon::V6_vgathermhw_pseudo:
case Hexagon::V6_vgathermhq_pseudo:
case Hexagon::V6_vgathermwq_pseudo:
case Hexagon::V6_vgathermhwq_pseudo:
return 0;
default:
return MID.mayLoad() ? 1 : 0;
}
}
unsigned HexagonOptAddrMode::getOffsetOpPosition(MachineInstr *MI) {
assert(
(HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) &&
"Looking for an offset in non-BaseImmOffset addressing mode instruction");
const MCInstrDesc &MID = MI->getDesc();
switch (MI->getOpcode()) {
// vgather pseudos are mayLoad and mayStore
// hence need to explicitly specify Base and
// Offset operand positions
case Hexagon::V6_vgathermh_pseudo:
case Hexagon::V6_vgathermw_pseudo:
case Hexagon::V6_vgathermhw_pseudo:
case Hexagon::V6_vgathermhq_pseudo:
case Hexagon::V6_vgathermwq_pseudo:
case Hexagon::V6_vgathermhwq_pseudo:
return 1;
default:
return MID.mayLoad() ? 2 : 1;
}
}
bool HexagonOptAddrMode::usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN,
int64_t NewOffset) {
NodeList LoadStoreUseList;
getAllRealUses(CurrentInstSN, LoadStoreUseList);
bool FoundLoadStoreUse = false;
for (auto I = LoadStoreUseList.begin(), E = LoadStoreUseList.end(); I != E;
++I) {
NodeAddr<UseNode *> UN = *I;
NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
MachineInstr *LoadStoreMI = SN.Addr->getCode();
const MCInstrDesc &MID = LoadStoreMI->getDesc();
if ((MID.mayLoad() || MID.mayStore()) &&
isValidOffset(LoadStoreMI, NewOffset)) {
FoundLoadStoreUse = true;
break;
}
}
return FoundLoadStoreUse;
}
bool HexagonOptAddrMode::findFirstReachedInst(
MachineInstr *AddMI,
std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> &AddiList,
NodeAddr<StmtNode *> &UseSN) {
// Find the very first Addi instruction in the current basic block among the
// AddiList This is the Addi that should be preserved so that we do not need
// to handle the complexity of moving instructions
//
// TODO: find Addi instructions across basic blocks
//
// TODO: Try to remove this and add a solution that optimizes the number of
// Addi instructions that can be modified.
// This change requires choosing the Addi with the median offset value, but
// would also require moving that instruction above the others. Since this
// pass runs after register allocation, there might be multiple cases that
// need to be handled if we move instructions around
MachineBasicBlock *CurrentMBB = AddMI->getParent();
for (auto &InstIter : *CurrentMBB) {
// If the instruction is an Addi and is in the AddiList
if (InstIter.getOpcode() == Hexagon::A2_addi) {
auto Iter = std::find_if(
AddiList.begin(), AddiList.end(), [&InstIter](const auto &SUPair) {
return SUPair.first.Addr->getCode() == &InstIter;
});
if (Iter != AddiList.end()) {
UseSN = Iter->first;
return true;
}
}
}
return false;
}
// This function tries to modify the immediate value in Hexagon::Addi
// instructions, so that the immediates could then be moved into a load/store
// instruction with offset and the add removed completely when we call
// processAddUses
//
// For Example, If we have the below sequence of instructions:
//
// r1 = add(r2,#1024)
// ...
// r3 = add(r2,#1152)
// ...
// r4 = add(r2,#1280)
//
// Where the register r2 has the same reaching definition, They get modified to
// the below sequence:
//
// r1 = add(r2,#1024)
// ...
// r3 = add(r1,#128)
// ...
// r4 = add(r1,#256)
//
// The below change helps the processAddUses method to later move the
// immediates #128 and #256 into a load/store instruction that can take an
// offset, like the Vd = mem(Rt+#s4)
bool HexagonOptAddrMode::processAddBases(NodeAddr<StmtNode *> AddSN,
MachineInstr *AddMI) {
bool Changed = false;
LLVM_DEBUG(dbgs() << "\n\t\t[Processing Addi]: " << *AddMI << "\n");
auto Processed =
[](const MachineInstr *MI,
const DenseSet<MachineInstr *> &ProcessedAddiInsts) -> bool {
// If we've already processed this Addi, just return
if (ProcessedAddiInsts.find(MI) != ProcessedAddiInsts.end()) {
LLVM_DEBUG(dbgs() << "\t\t\tAddi already found in ProcessedAddiInsts: "
<< *MI << "\n\t\t\tSkipping...");
return true;
}
return false;
};
if (Processed(AddMI, ProcessedAddiInsts))
return Changed;
ProcessedAddiInsts.insert(AddMI);
// Get the base register that would be shared by other Addi Intructions
Register BaseReg = AddMI->getOperand(1).getReg();
// Store a list of all Addi instructions that share the above common base
// register
std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> AddiList;
NodeId UAReachingDefID;
// Find the UseNode that contains the base register and it's reachingDef
for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) {
RegisterRef URR = UA.Addr->getRegRef(*DFG);
if (BaseReg != URR.Reg)
continue;
UAReachingDefID = UA.Addr->getReachingDef();
NodeAddr<DefNode *> UADef = DFG->addr<DefNode *>(UAReachingDefID);
if (!UAReachingDefID || UADef.Addr->getFlags() & NodeAttrs::PhiRef) {
LLVM_DEBUG(dbgs() << "\t\t\t Could not find reachingDef. Skipping...\n");
return false;
}
}
NodeAddr<DefNode *> UAReachingDef = DFG->addr<DefNode *>(UAReachingDefID);
NodeAddr<StmtNode *> ReachingDefStmt = UAReachingDef.Addr->getOwner(*DFG);
// If the reaching definition is a predicated instruction, this might not be
// the only definition of our base register, so return immediately.
MachineInstr *ReachingDefInstr = ReachingDefStmt.Addr->getCode();
if (HII->isPredicated(*ReachingDefInstr))
return false;
NodeList AddiUseList;
// Find all Addi instructions that share the same base register and add them
// to the AddiList
getAllRealUses(ReachingDefStmt, AddiUseList);
for (auto I = AddiUseList.begin(), E = AddiUseList.end(); I != E; ++I) {
NodeAddr<UseNode *> UN = *I;
NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
MachineInstr *MI = SN.Addr->getCode();
// Only add instructions if it's an Addi and it's not already processed.
if (MI->getOpcode() == Hexagon::A2_addi &&
!(MI != AddMI && Processed(MI, ProcessedAddiInsts))) {
AddiList.push_back({SN, UN});
// This ensures that we process each instruction only once
ProcessedAddiInsts.insert(MI);
}
}
// If there's only one Addi instruction, nothing to do here
if (AddiList.size() <= 1)
return Changed;
NodeAddr<StmtNode *> FirstReachedUseSN;
// Find the first reached use of Addi instruction from the list
if (!findFirstReachedInst(AddMI, AddiList, FirstReachedUseSN))
return Changed;
// If we reach this point we know that the StmtNode FirstReachedUseSN is for
// an Addi instruction. So, we're guaranteed to have just one DefNode, and
// hence we can access the front() directly without checks
NodeAddr<DefNode *> FirstReachedUseDN =
FirstReachedUseSN.Addr->members_if(DFG->IsDef, *DFG).front();
MachineInstr *FirstReachedMI = FirstReachedUseSN.Addr->getCode();
const MachineOperand FirstReachedMIImmOp = FirstReachedMI->getOperand(2);
if (!FirstReachedMIImmOp.isImm())
return false;
for (auto &I : AddiList) {
NodeAddr<StmtNode *> CurrentInstSN = I.first;
NodeAddr<UseNode *> CurrentInstUN = I.second;
MachineInstr *CurrentMI = CurrentInstSN.Addr->getCode();
MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(2);
int64_t NewOffset;
// Even though we know it's an Addi instruction, the second operand could be
// a global value and not an immediate
if (!CurrentMIImmOp.isImm())
continue;
NewOffset = CurrentMIImmOp.getImm() - FirstReachedMIImmOp.getImm();
// This is the first occuring Addi, so skip modifying this
if (CurrentMI == FirstReachedMI) {
continue;
}
if (CurrentMI->getParent() != FirstReachedMI->getParent())
continue;
// Modify the Addi instruction only if it could be used to modify a
// future load/store instruction and get removed
//
// This check is needed because, if we modify the current Addi instruction
// we create RAW dependence between the FirstReached Addi and the current
// one, which could result in extra packets. So we only do this change if
// we know the current Addi would get removed later
if (!usedInLoadStore(CurrentInstSN, NewOffset)) {
return false;
}
// Verify whether the First Addi's definition register is still live when
// we reach the current Addi
RegisterRef FirstReachedDefRR = FirstReachedUseDN.Addr->getRegRef(*DFG);
NodeAddr<InstrNode *> CurrentAddiIN = CurrentInstUN.Addr->getOwner(*DFG);
NodeAddr<RefNode *> NearestAA =
LV->getNearestAliasedRef(FirstReachedDefRR, CurrentAddiIN);
if ((DFG->IsDef(NearestAA) && NearestAA.Id != FirstReachedUseDN.Id) ||
(!DFG->IsDef(NearestAA) &&
NearestAA.Addr->getReachingDef() != FirstReachedUseDN.Id)) {
// Found another definition of FirstReachedDef
LLVM_DEBUG(dbgs() << "\t\t\tCould not modify below Addi since the first "
"defined Addi register was redefined\n");
continue;
}
MachineOperand CurrentMIBaseOp = CurrentMI->getOperand(1);
if (CurrentMIBaseOp.getReg() != FirstReachedMI->getOperand(1).getReg()) {
continue;
}
// If we reached this point, then we can modify MI to use the result of
// FirstReachedMI
Changed |= updateAddBases(CurrentMI, FirstReachedMI, NewOffset);
// Update the reachingDef of the Current AddI use after change
CurrentInstUN.Addr->linkToDef(CurrentInstUN.Id, FirstReachedUseDN);
}
return Changed;
}
bool HexagonOptAddrMode::updateAddBases(MachineInstr *CurrentMI,
MachineInstr *FirstReachedMI,
int64_t NewOffset) {
LLVM_DEBUG(dbgs() << "[About to modify the Addi]: " << *CurrentMI << "\n");
const MachineOperand FirstReachedDef = FirstReachedMI->getOperand(0);
Register FirstDefRegister = FirstReachedDef.getReg();
MachineOperand &CurrentMIBaseOp = CurrentMI->getOperand(1);
MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(2);
CurrentMIBaseOp.setReg(FirstDefRegister);
CurrentMIBaseOp.setIsUndef(FirstReachedDef.isUndef());
CurrentMIBaseOp.setImplicit(FirstReachedDef.isImplicit());
CurrentMIImmOp.setImm(NewOffset);
ProcessedAddiInsts.insert(CurrentMI);
MRI->clearKillFlags(FirstDefRegister);
return true;
}
bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN,
MachineInstr *AddMI,
const NodeList &UNodeList) {
Register AddDefR = AddMI->getOperand(0).getReg();
Register BaseReg = AddMI->getOperand(1).getReg();
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UN = *I;
NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
MachineInstr *MI = SN.Addr->getCode();
const MCInstrDesc &MID = MI->getDesc();
if ((!MID.mayLoad() && !MID.mayStore()) ||
HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
return false;
MachineOperand BaseOp = MI->getOperand(getBaseOpPosition(MI));
if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR)
return false;
MachineOperand OffsetOp = MI->getOperand(getOffsetOpPosition(MI));
if (!OffsetOp.isImm())
return false;
int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(2).getImm();
if (!isValidOffset(MI, newOffset))
return false;
// Since we'll be extending the live range of Rt in the following example,
// make sure that is safe. another definition of Rt doesn't exist between 'add'
// and load/store instruction.
//
// Ex: Rx= add(Rt,#10)
// memw(Rx+#0) = Rs
// will be replaced with => memw(Rt+#10) = Rs
if (!isSafeToExtLR(AddSN, AddMI, BaseReg, UNodeList))
return false;
}
NodeId LRExtRegRD = 0;
// Iterate through all the UseNodes in SN and find the reaching def
// for the LRExtReg.
for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) {
RegisterRef RR = UA.Addr->getRegRef(*DFG);
if (BaseReg == RR.Reg)
LRExtRegRD = UA.Addr->getReachingDef();
}
// Update all the uses of 'add' with the appropriate base and offset
// values.
bool Changed = false;
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UseN = *I;
assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
"Found a PhiRef node as a real reached use!!");
NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
MachineInstr *UseMI = OwnerN.Addr->getCode();
LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber()
<< ">]: " << *UseMI << "\n");
Changed |= updateAddUses(AddMI, UseMI);
// Set the reachingDef for UseNode under consideration
// after updating the Add use. This local change is
// to avoid rebuilding of the RDF graph after update.
NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
UseN.Addr->linkToDef(UseN.Id, LRExtRegDN);
}
if (Changed)
Deleted.insert(AddMI);
return Changed;
}
bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI,
MachineInstr *UseMI) {
const MachineOperand ImmOp = AddMI->getOperand(2);
const MachineOperand AddRegOp = AddMI->getOperand(1);
Register NewReg = AddRegOp.getReg();
MachineOperand &BaseOp = UseMI->getOperand(getBaseOpPosition(UseMI));
MachineOperand &OffsetOp = UseMI->getOperand(getOffsetOpPosition(UseMI));
BaseOp.setReg(NewReg);
BaseOp.setIsUndef(AddRegOp.isUndef());
BaseOp.setImplicit(AddRegOp.isImplicit());
OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm());
MRI->clearKillFlags(NewReg);
return true;
}
bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR,
const NodeList &UNodeList,
InstrEvalMap &InstrEvalResult,
short &SizeInc) {
bool KeepTfr = false;
bool HasRepInstr = false;
InstrEvalResult.clear();
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
bool CanBeReplaced = false;
NodeAddr<UseNode *> UN = *I;
NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
MachineInstr &MI = *SN.Addr->getCode();
const MCInstrDesc &MID = MI.getDesc();
if ((MID.mayLoad() || MID.mayStore())) {
if (!hasRepForm(MI, tfrDefR)) {
KeepTfr = true;
continue;
}
SizeInc++;
CanBeReplaced = true;
} else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) {
NodeList AddaslUseList;
LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n");
getAllRealUses(SN, AddaslUseList);
// Process phi nodes.
if (allValidCandidates(SN, AddaslUseList) &&
canRemoveAddasl(SN, MI, AddaslUseList)) {
SizeInc += AddaslUseList.size();
SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed.
CanBeReplaced = true;
} else
SizeInc++;
} else
// Currently, only load/store and addasl are handled.
// Some other instructions to consider -
// A2_add -> A2_addi
// M4_mpyrr_addr -> M4_mpyrr_addi
KeepTfr = true;
InstrEvalResult[&MI] = CanBeReplaced;
HasRepInstr |= CanBeReplaced;
}
// Reduce total size by 2 if original tfr can be deleted.
if (!KeepTfr)
SizeInc -= 2;
return HasRepInstr;
}
bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp,
unsigned ImmOpNum) {
bool Changed = false;
MachineBasicBlock *BB = OldMI->getParent();
auto UsePos = MachineBasicBlock::iterator(OldMI);
MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
++InsertPt;
unsigned OpStart;
unsigned OpEnd = OldMI->getNumOperands();
MachineInstrBuilder MIB;
if (ImmOpNum == 1) {
if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(0));
MIB.add(OldMI->getOperand(2));
MIB.add(OldMI->getOperand(3));
MIB.add(ImmOp);
OpStart = 4;
Changed = true;
} else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset &&
OldMI->getOperand(2).isImm()) {
short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode))
.add(OldMI->getOperand(0));
const GlobalValue *GV = ImmOp.getGlobal();
int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(2).getImm();
MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
OpStart = 3;
Changed = true;
} else
Changed = false;
LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
} else if (ImmOpNum == 2) {
if (OldMI->getOperand(3).isImm() && OldMI->getOperand(3).getImm() == 0) {
short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(0));
MIB.add(OldMI->getOperand(1));
MIB.add(ImmOp);
OpStart = 4;
Changed = true;
LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
}
}
if (Changed)
for (unsigned i = OpStart; i < OpEnd; ++i)
MIB.add(OldMI->getOperand(i));
return Changed;
}
bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
unsigned ImmOpNum) {
bool Changed = false;
unsigned OpStart = 0;
unsigned OpEnd = OldMI->getNumOperands();
MachineBasicBlock *BB = OldMI->getParent();
auto UsePos = MachineBasicBlock::iterator(OldMI);
MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
++InsertPt;
MachineInstrBuilder MIB;
if (ImmOpNum == 0) {
if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(1));
MIB.add(OldMI->getOperand(2));
MIB.add(ImmOp);
MIB.add(OldMI->getOperand(3));
OpStart = 4;
Changed = true;
} else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset) {
short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
const GlobalValue *GV = ImmOp.getGlobal();
int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(1).getImm();
MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
MIB.add(OldMI->getOperand(2));
OpStart = 3;
Changed = true;
}
} else if (ImmOpNum == 1 && OldMI->getOperand(2).getImm() == 0) {
short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
MIB.add(OldMI->getOperand(0));
MIB.add(ImmOp);
OpStart = 3;
Changed = true;
}
if (Changed) {
LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
for (unsigned i = OpStart; i < OpEnd; ++i)
MIB.add(OldMI->getOperand(i));
}
return Changed;
}
short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const {
if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) {
short TempOpCode = HII->changeAddrMode_io_rr(MI);
return HII->changeAddrMode_rr_ur(TempOpCode);
}
return HII->changeAddrMode_rr_ur(MI);
}
bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN,
MachineInstr *AddAslMI,
const MachineOperand &ImmOp,
unsigned ImmOpNum) {
NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(*DFG);
LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n");
NodeList UNodeList;
getAllRealUses(SA, UNodeList);
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UseUN = *I;
assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) &&
"Can't transform this 'AddAsl' instruction!");
NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(*DFG);
LLVM_DEBUG(dbgs() << "[InstrNode]: "
<< Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n");
MachineInstr *UseMI = UseIA.Addr->getCode();
LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent())
<< ">]: " << *UseMI << "\n");
const MCInstrDesc &UseMID = UseMI->getDesc();
assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset);
auto UsePos = MachineBasicBlock::iterator(UseMI);
MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
short NewOpCode = getBaseWithLongOffset(*UseMI);
assert(NewOpCode >= 0 && "Invalid New opcode\n");
unsigned OpStart;
unsigned OpEnd = UseMI->getNumOperands();
MachineBasicBlock *BB = UseMI->getParent();
MachineInstrBuilder MIB =
BuildMI(*BB, InsertPt, UseMI->getDebugLoc(), HII->get(NewOpCode));
// change mem(Rs + # ) -> mem(Rt << # + ##)
if (UseMID.mayLoad()) {
MIB.add(UseMI->getOperand(0));
MIB.add(AddAslMI->getOperand(2));
MIB.add(AddAslMI->getOperand(3));
const GlobalValue *GV = ImmOp.getGlobal();
MIB.addGlobalAddress(GV, UseMI->getOperand(2).getImm()+ImmOp.getOffset(),
ImmOp.getTargetFlags());
OpStart = 3;
} else if (UseMID.mayStore()) {
MIB.add(AddAslMI->getOperand(2));
MIB.add(AddAslMI->getOperand(3));
const GlobalValue *GV = ImmOp.getGlobal();
MIB.addGlobalAddress(GV, UseMI->getOperand(1).getImm()+ImmOp.getOffset(),
ImmOp.getTargetFlags());
MIB.add(UseMI->getOperand(2));
OpStart = 3;
} else
llvm_unreachable("Unhandled instruction");
for (unsigned i = OpStart; i < OpEnd; ++i)
MIB.add(UseMI->getOperand(i));
Deleted.insert(UseMI);
}
return true;
}
bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
NodeAddr<UseNode *> UseN,
unsigned UseMOnum) {
const MachineOperand ImmOp = TfrMI->getOperand(1);
const MCInstrDesc &MID = UseMI->getDesc();
unsigned Changed = false;
if (MID.mayLoad())
Changed = changeLoad(UseMI, ImmOp, UseMOnum);
else if (MID.mayStore())
Changed = changeStore(UseMI, ImmOp, UseMOnum);
else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri)
Changed = changeAddAsl(UseN, UseMI, ImmOp, UseMOnum);
if (Changed)
Deleted.insert(UseMI);
return Changed;
}
bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) {
bool Changed = false;
for (auto IA : BA.Addr->members(*DFG)) {
if (!DFG->IsCode<NodeAttrs::Stmt>(IA))
continue;
NodeAddr<StmtNode *> SA = IA;
MachineInstr *MI = SA.Addr->getCode();
if ((MI->getOpcode() != Hexagon::A2_tfrsi ||
!MI->getOperand(1).isGlobal()) &&
(MI->getOpcode() != Hexagon::A2_addi ||
!MI->getOperand(2).isImm() || HII->isConstExtended(*MI)))
continue;
LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode())
<< "]: " << *MI << "\n\t[InstrNode]: "
<< Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n');
if (MI->getOpcode() == Hexagon::A2_addi)
Changed |= processAddBases(SA, MI);
NodeList UNodeList;
getAllRealUses(SA, UNodeList);
if (!allValidCandidates(SA, UNodeList))
continue;
// Analyze all uses of 'add'. If the output of 'add' is used as an address
// in the base+immediate addressing mode load/store instructions, see if
// they can be updated to use the immediate value as an offet. Thus,
// providing us the opportunity to eliminate 'add'.
// Ex: Rx= add(Rt,#12)
// memw(Rx+#0) = Rs
// This can be replaced with memw(Rt+#12) = Rs
//
// This transformation is only performed if all uses can be updated and
// the offset isn't required to be constant extended.
if (MI->getOpcode() == Hexagon::A2_addi) {
Changed |= processAddUses(SA, MI, UNodeList);
continue;
}
short SizeInc = 0;
Register DefR = MI->getOperand(0).getReg();
InstrEvalMap InstrEvalResult;
// Analyze all uses and calculate increase in size. Perform the optimization
// only if there is no increase in size.
if (!analyzeUses(DefR, UNodeList, InstrEvalResult, SizeInc))
continue;
if (SizeInc > CodeGrowthLimit)
continue;
bool KeepTfr = false;
LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size()
<< "\n");
LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n");
for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
NodeAddr<UseNode *> UseN = *I;
assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
"Found a PhiRef node as a real reached use!!");
NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
MachineInstr *UseMI = OwnerN.Addr->getCode();
LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent())
<< ">]: " << *UseMI << "\n");
int UseMOnum = -1;
unsigned NumOperands = UseMI->getNumOperands();
for (unsigned j = 0; j < NumOperands - 1; ++j) {
const MachineOperand &op = UseMI->getOperand(j);
if (op.isReg() && op.isUse() && DefR == op.getReg())
UseMOnum = j;
}
// It is possible that the register will not be found in any operand.
// This could happen, for example, when DefR = R4, but the used
// register is D2.
// Change UseMI if replacement is possible. If any replacement failed,
// or wasn't attempted, make sure to keep the TFR.
bool Xformed = false;
if (UseMOnum >= 0 && InstrEvalResult[UseMI])
Xformed = xformUseMI(MI, UseMI, UseN, UseMOnum);
Changed |= Xformed;
KeepTfr |= !Xformed;
}
if (!KeepTfr)
Deleted.insert(MI);
}
return Changed;
}
bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
// Perform RDF optimizations only if number of basic blocks in the
// function is less than the limit
if (MF.size() > RDFFuncBlockLimit) {
LLVM_DEBUG(dbgs() << "Skipping " << getPassName()
<< ": too many basic blocks\n");
return false;
}
bool Changed = false;
auto &HST = MF.getSubtarget<HexagonSubtarget>();
MRI = &MF.getRegInfo();
TRI = MF.getSubtarget().getRegisterInfo();
HII = HST.getInstrInfo();
HRI = HST.getRegisterInfo();
const auto &MDF = getAnalysis<MachineDominanceFrontier>();
MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF);
// Need to keep dead phis because we can propagate uses of registers into
// nodes dominated by those would-be phis.
G.build(BuildOptions::KeepDeadPhis);
DFG = &G;
Liveness L(*MRI, *DFG);
L.computePhiInfo();
LV = &L;
Deleted.clear();
ProcessedAddiInsts.clear();
NodeAddr<FuncNode *> FA = DFG->getFunc();
LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n "
<< Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n");
for (NodeAddr<BlockNode *> BA : FA.Addr->members(*DFG))
Changed |= processBlock(BA);
for (auto *MI : Deleted)
MI->eraseFromParent();
if (Changed) {
G.build();
L.computeLiveIns();
L.resetLiveIns();
L.resetKills();
}
return Changed;
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonOptAddrMode() {
return new HexagonOptAddrMode();
}
|