1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
//===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
// Arguments to kernel and device functions are passed via param space,
// which imposes certain restrictions:
// http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
//
// Kernel parameters are read-only and accessible only via ld.param
// instruction, directly or via a pointer.
//
// Device function parameters are directly accessible via
// ld.param/st.param, but taking the address of one returns a pointer
// to a copy created in local space which *can't* be used with
// ld.param/st.param.
//
// Copying a byval struct into local memory in IR allows us to enforce
// the param space restrictions, gives the rest of IR a pointer w/o
// param space restrictions, and gives us an opportunity to eliminate
// the copy.
//
// Pointer arguments to kernel functions need more work to be lowered:
//
// 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
// global address space. This allows later optimizations to emit
// ld.global.*/st.global.* for accessing these pointer arguments. For
// example,
//
// define void @foo(float* %input) {
// %v = load float, float* %input, align 4
// ...
// }
//
// becomes
//
// define void @foo(float* %input) {
// %input2 = addrspacecast float* %input to float addrspace(1)*
// %input3 = addrspacecast float addrspace(1)* %input2 to float*
// %v = load float, float* %input3, align 4
// ...
// }
//
// Later, NVPTXInferAddressSpaces will optimize it to
//
// define void @foo(float* %input) {
// %input2 = addrspacecast float* %input to float addrspace(1)*
// %v = load float, float addrspace(1)* %input2, align 4
// ...
// }
//
// 2. Convert byval kernel parameters to pointers in the param address space
// (so that NVPTX emits ld/st.param). Convert pointers *within* a byval
// kernel parameter to pointers in the global address space. This allows
// NVPTX to emit ld/st.global.
//
// struct S {
// int *x;
// int *y;
// };
// __global__ void foo(S s) {
// int *b = s.y;
// // use b
// }
//
// "b" points to the global address space. In the IR level,
//
// define void @foo(ptr byval %input) {
// %b_ptr = getelementptr {ptr, ptr}, ptr %input, i64 0, i32 1
// %b = load ptr, ptr %b_ptr
// ; use %b
// }
//
// becomes
//
// define void @foo({i32*, i32*}* byval %input) {
// %b_param = addrspacecat ptr %input to ptr addrspace(101)
// %b_ptr = getelementptr {ptr, ptr}, ptr addrspace(101) %b_param, i64 0, i32 1
// %b = load ptr, ptr addrspace(101) %b_ptr
// %b_global = addrspacecast ptr %b to ptr addrspace(1)
// ; use %b_generic
// }
//
// Create a local copy of kernel byval parameters used in a way that *might* mutate
// the parameter, by storing it in an alloca. Mutations to "grid_constant" parameters
// are undefined behaviour, and don't require local copies.
//
// define void @foo(ptr byval(%struct.s) align 4 %input) {
// store i32 42, ptr %input
// ret void
// }
//
// becomes
//
// define void @foo(ptr byval(%struct.s) align 4 %input) #1 {
// %input1 = alloca %struct.s, align 4
// %input2 = addrspacecast ptr %input to ptr addrspace(101)
// %input3 = load %struct.s, ptr addrspace(101) %input2, align 4
// store %struct.s %input3, ptr %input1, align 4
// store i32 42, ptr %input1, align 4
// ret void
// }
//
// If %input were passed to a device function, or written to memory,
// conservatively assume that %input gets mutated, and create a local copy.
//
// Convert param pointers to grid_constant byval kernel parameters that are
// passed into calls (device functions, intrinsics, inline asm), or otherwise
// "escape" (into stores/ptrtoints) to the generic address space, using the
// `nvvm.ptr.param.to.gen` intrinsic, so that NVPTX emits cvta.param
// (available for sm70+)
//
// define void @foo(ptr byval(%struct.s) %input) {
// ; %input is a grid_constant
// %call = call i32 @escape(ptr %input)
// ret void
// }
//
// becomes
//
// define void @foo(ptr byval(%struct.s) %input) {
// %input1 = addrspacecast ptr %input to ptr addrspace(101)
// ; the following intrinsic converts pointer to generic. We don't use an addrspacecast
// ; to prevent generic -> param -> generic from getting cancelled out
// %input1.gen = call ptr @llvm.nvvm.ptr.param.to.gen.p0.p101(ptr addrspace(101) %input1)
// %call = call i32 @escape(ptr %input1.gen)
// ret void
// }
//
// TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
// cancel the addrspacecast pair this pass emits.
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include <numeric>
#include <queue>
#define DEBUG_TYPE "nvptx-lower-args"
using namespace llvm;
namespace llvm {
void initializeNVPTXLowerArgsPass(PassRegistry &);
}
namespace {
class NVPTXLowerArgs : public FunctionPass {
bool runOnFunction(Function &F) override;
bool runOnKernelFunction(const NVPTXTargetMachine &TM, Function &F);
bool runOnDeviceFunction(const NVPTXTargetMachine &TM, Function &F);
// handle byval parameters
void handleByValParam(const NVPTXTargetMachine &TM, Argument *Arg);
// Knowing Ptr must point to the global address space, this function
// addrspacecasts Ptr to global and then back to generic. This allows
// NVPTXInferAddressSpaces to fold the global-to-generic cast into
// loads/stores that appear later.
void markPointerAsGlobal(Value *Ptr);
public:
static char ID; // Pass identification, replacement for typeid
NVPTXLowerArgs() : FunctionPass(ID) {}
StringRef getPassName() const override {
return "Lower pointer arguments of CUDA kernels";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetPassConfig>();
}
};
} // namespace
char NVPTXLowerArgs::ID = 1;
INITIALIZE_PASS_BEGIN(NVPTXLowerArgs, "nvptx-lower-args",
"Lower arguments (NVPTX)", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(NVPTXLowerArgs, "nvptx-lower-args",
"Lower arguments (NVPTX)", false, false)
// =============================================================================
// If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
// and we can't guarantee that the only accesses are loads,
// then add the following instructions to the first basic block:
//
// %temp = alloca %struct.x, align 8
// %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
// %tv = load %struct.x addrspace(101)* %tempd
// store %struct.x %tv, %struct.x* %temp, align 8
//
// The above code allocates some space in the stack and copies the incoming
// struct from param space to local space.
// Then replace all occurrences of %d by %temp.
//
// In case we know that all users are GEPs or Loads, replace them with the same
// ones in parameter AS, so we can access them using ld.param.
// =============================================================================
// For Loads, replaces the \p OldUse of the pointer with a Use of the same
// pointer in parameter AS.
// For "escapes" (to memory, a function call, or a ptrtoint), cast the OldUse to
// generic using cvta.param.
static void convertToParamAS(Use *OldUse, Value *Param, bool HasCvtaParam,
bool IsGridConstant) {
Instruction *I = dyn_cast<Instruction>(OldUse->getUser());
assert(I && "OldUse must be in an instruction");
struct IP {
Use *OldUse;
Instruction *OldInstruction;
Value *NewParam;
};
SmallVector<IP> ItemsToConvert = {{OldUse, I, Param}};
SmallVector<Instruction *> InstructionsToDelete;
auto CloneInstInParamAS = [HasCvtaParam,
IsGridConstant](const IP &I) -> Value * {
if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
LI->setOperand(0, I.NewParam);
return LI;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
SmallVector<Value *, 4> Indices(GEP->indices());
auto *NewGEP = GetElementPtrInst::Create(
GEP->getSourceElementType(), I.NewParam, Indices, GEP->getName(),
GEP->getIterator());
NewGEP->setIsInBounds(GEP->isInBounds());
return NewGEP;
}
if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
auto *NewBCType = PointerType::get(BC->getContext(), ADDRESS_SPACE_PARAM);
return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
BC->getName(), BC->getIterator());
}
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
(void)ASC;
// Just pass through the argument, the old ASC is no longer needed.
return I.NewParam;
}
if (auto *MI = dyn_cast<MemTransferInst>(I.OldInstruction)) {
if (MI->getRawSource() == I.OldUse->get()) {
// convert to memcpy/memmove from param space.
IRBuilder<> Builder(I.OldInstruction);
Intrinsic::ID ID = MI->getIntrinsicID();
CallInst *B = Builder.CreateMemTransferInst(
ID, MI->getRawDest(), MI->getDestAlign(), I.NewParam,
MI->getSourceAlign(), MI->getLength(), MI->isVolatile());
for (unsigned I : {0, 1})
if (uint64_t Bytes = MI->getParamDereferenceableBytes(I))
B->addDereferenceableParamAttr(I, Bytes);
return B;
}
// We may be able to handle other cases if the argument is
// __grid_constant__
}
if (HasCvtaParam) {
auto GetParamAddrCastToGeneric =
[](Value *Addr, Instruction *OriginalUser) -> Value * {
PointerType *ReturnTy =
PointerType::get(OriginalUser->getContext(), ADDRESS_SPACE_GENERIC);
Function *CvtToGen = Intrinsic::getOrInsertDeclaration(
OriginalUser->getModule(), Intrinsic::nvvm_ptr_param_to_gen,
{ReturnTy, PointerType::get(OriginalUser->getContext(),
ADDRESS_SPACE_PARAM)});
// Cast param address to generic address space
Value *CvtToGenCall =
CallInst::Create(CvtToGen, Addr, Addr->getName() + ".gen",
OriginalUser->getIterator());
return CvtToGenCall;
};
auto *ParamInGenericAS =
GetParamAddrCastToGeneric(I.NewParam, I.OldInstruction);
// phi/select could use generic arg pointers w/o __grid_constant__
if (auto *PHI = dyn_cast<PHINode>(I.OldInstruction)) {
for (auto [Idx, V] : enumerate(PHI->incoming_values())) {
if (V.get() == I.OldUse->get())
PHI->setIncomingValue(Idx, ParamInGenericAS);
}
}
if (auto *SI = dyn_cast<SelectInst>(I.OldInstruction)) {
if (SI->getTrueValue() == I.OldUse->get())
SI->setTrueValue(ParamInGenericAS);
if (SI->getFalseValue() == I.OldUse->get())
SI->setFalseValue(ParamInGenericAS);
}
// Escapes or writes can only use generic param pointers if
// __grid_constant__ is in effect.
if (IsGridConstant) {
if (auto *CI = dyn_cast<CallInst>(I.OldInstruction)) {
I.OldUse->set(ParamInGenericAS);
return CI;
}
if (auto *SI = dyn_cast<StoreInst>(I.OldInstruction)) {
// byval address is being stored, cast it to generic
if (SI->getValueOperand() == I.OldUse->get())
SI->setOperand(0, ParamInGenericAS);
return SI;
}
if (auto *PI = dyn_cast<PtrToIntInst>(I.OldInstruction)) {
if (PI->getPointerOperand() == I.OldUse->get())
PI->setOperand(0, ParamInGenericAS);
return PI;
}
// TODO: iIf we allow stores, we should allow memcpy/memset to
// parameter, too.
}
}
llvm_unreachable("Unsupported instruction");
};
while (!ItemsToConvert.empty()) {
IP I = ItemsToConvert.pop_back_val();
Value *NewInst = CloneInstInParamAS(I);
if (NewInst && NewInst != I.OldInstruction) {
// We've created a new instruction. Queue users of the old instruction to
// be converted and the instruction itself to be deleted. We can't delete
// the old instruction yet, because it's still in use by a load somewhere.
for (Use &U : I.OldInstruction->uses())
ItemsToConvert.push_back({&U, cast<Instruction>(U.getUser()), NewInst});
InstructionsToDelete.push_back(I.OldInstruction);
}
}
// Now we know that all argument loads are using addresses in parameter space
// and we can finally remove the old instructions in generic AS. Instructions
// scheduled for removal should be processed in reverse order so the ones
// closest to the load are deleted first. Otherwise they may still be in use.
// E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
// have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
// the BitCast.
for (Instruction *I : llvm::reverse(InstructionsToDelete))
I->eraseFromParent();
}
// Adjust alignment of arguments passed byval in .param address space. We can
// increase alignment of such arguments in a way that ensures that we can
// effectively vectorize their loads. We should also traverse all loads from
// byval pointer and adjust their alignment, if those were using known offset.
// Such alignment changes must be conformed with parameter store and load in
// NVPTXTargetLowering::LowerCall.
static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
const NVPTXTargetLowering *TLI) {
Function *Func = Arg->getParent();
Type *StructType = Arg->getParamByValType();
const DataLayout &DL = Func->getDataLayout();
uint64_t NewArgAlign =
TLI->getFunctionParamOptimizedAlign(Func, StructType, DL).value();
uint64_t CurArgAlign =
Arg->getAttribute(Attribute::Alignment).getValueAsInt();
if (CurArgAlign >= NewArgAlign)
return;
LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign << " instead of "
<< CurArgAlign << " for " << *Arg << '\n');
auto NewAlignAttr =
Attribute::get(Func->getContext(), Attribute::Alignment, NewArgAlign);
Arg->removeAttr(Attribute::Alignment);
Arg->addAttr(NewAlignAttr);
struct Load {
LoadInst *Inst;
uint64_t Offset;
};
struct LoadContext {
Value *InitialVal;
uint64_t Offset;
};
SmallVector<Load> Loads;
std::queue<LoadContext> Worklist;
Worklist.push({ArgInParamAS, 0});
bool IsGridConstant = isParamGridConstant(*Arg);
while (!Worklist.empty()) {
LoadContext Ctx = Worklist.front();
Worklist.pop();
for (User *CurUser : Ctx.InitialVal->users()) {
if (auto *I = dyn_cast<LoadInst>(CurUser)) {
Loads.push_back({I, Ctx.Offset});
continue;
}
if (auto *I = dyn_cast<BitCastInst>(CurUser)) {
Worklist.push({I, Ctx.Offset});
continue;
}
if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
APInt OffsetAccumulated =
APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
continue;
uint64_t OffsetLimit = -1;
uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
Worklist.push({I, Ctx.Offset + Offset});
continue;
}
if (isa<MemTransferInst>(CurUser))
continue;
// supported for grid_constant
if (IsGridConstant &&
(isa<CallInst>(CurUser) || isa<StoreInst>(CurUser) ||
isa<PtrToIntInst>(CurUser)))
continue;
llvm_unreachable("All users must be one of: load, "
"bitcast, getelementptr, call, store, ptrtoint");
}
}
for (Load &CurLoad : Loads) {
Align NewLoadAlign(std::gcd(NewArgAlign, CurLoad.Offset));
Align CurLoadAlign(CurLoad.Inst->getAlign());
CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
}
}
namespace {
struct ArgUseChecker : PtrUseVisitor<ArgUseChecker> {
using Base = PtrUseVisitor<ArgUseChecker>;
bool IsGridConstant;
// Set of phi/select instructions using the Arg
SmallPtrSet<Instruction *, 4> Conditionals;
ArgUseChecker(const DataLayout &DL, bool IsGridConstant)
: PtrUseVisitor(DL), IsGridConstant(IsGridConstant) {}
PtrInfo visitArgPtr(Argument &A) {
assert(A.getType()->isPointerTy());
IntegerType *IntIdxTy = cast<IntegerType>(DL.getIndexType(A.getType()));
IsOffsetKnown = false;
Offset = APInt(IntIdxTy->getBitWidth(), 0);
PI.reset();
Conditionals.clear();
LLVM_DEBUG(dbgs() << "Checking Argument " << A << "\n");
// Enqueue the uses of this pointer.
enqueueUsers(A);
// Visit all the uses off the worklist until it is empty.
// Note that unlike PtrUseVisitor we intentionally do not track offsets.
// We're only interested in how we use the pointer.
while (!(Worklist.empty() || PI.isAborted())) {
UseToVisit ToVisit = Worklist.pop_back_val();
U = ToVisit.UseAndIsOffsetKnown.getPointer();
Instruction *I = cast<Instruction>(U->getUser());
if (isa<PHINode>(I) || isa<SelectInst>(I))
Conditionals.insert(I);
LLVM_DEBUG(dbgs() << "Processing " << *I << "\n");
Base::visit(I);
}
if (PI.isEscaped())
LLVM_DEBUG(dbgs() << "Argument pointer escaped: " << *PI.getEscapingInst()
<< "\n");
else if (PI.isAborted())
LLVM_DEBUG(dbgs() << "Pointer use needs a copy: " << *PI.getAbortingInst()
<< "\n");
LLVM_DEBUG(dbgs() << "Traversed " << Conditionals.size()
<< " conditionals\n");
return PI;
}
void visitStoreInst(StoreInst &SI) {
// Storing the pointer escapes it.
if (U->get() == SI.getValueOperand())
return PI.setEscapedAndAborted(&SI);
// Writes to the pointer are UB w/ __grid_constant__, but do not force a
// copy.
if (!IsGridConstant)
return PI.setAborted(&SI);
}
void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
// ASC to param space are no-ops and do not need a copy
if (ASC.getDestAddressSpace() != ADDRESS_SPACE_PARAM)
return PI.setEscapedAndAborted(&ASC);
Base::visitAddrSpaceCastInst(ASC);
}
void visitPtrToIntInst(PtrToIntInst &I) {
if (IsGridConstant)
return;
Base::visitPtrToIntInst(I);
}
void visitPHINodeOrSelectInst(Instruction &I) {
assert(isa<PHINode>(I) || isa<SelectInst>(I));
}
// PHI and select just pass through the pointers.
void visitPHINode(PHINode &PN) { enqueueUsers(PN); }
void visitSelectInst(SelectInst &SI) { enqueueUsers(SI); }
void visitMemTransferInst(MemTransferInst &II) {
if (*U == II.getRawDest() && !IsGridConstant)
PI.setAborted(&II);
// memcpy/memmove are OK when the pointer is source. We can convert them to
// AS-specific memcpy.
}
void visitMemSetInst(MemSetInst &II) {
if (!IsGridConstant)
PI.setAborted(&II);
}
}; // struct ArgUseChecker
void copyByValParam(Function &F, Argument &Arg) {
LLVM_DEBUG(dbgs() << "Creating a local copy of " << Arg << "\n");
// Otherwise we have to create a temporary copy.
BasicBlock::iterator FirstInst = F.getEntryBlock().begin();
Type *StructType = Arg.getParamByValType();
const DataLayout &DL = F.getDataLayout();
AllocaInst *AllocA = new AllocaInst(StructType, DL.getAllocaAddrSpace(),
Arg.getName(), FirstInst);
// Set the alignment to alignment of the byval parameter. This is because,
// later load/stores assume that alignment, and we are going to replace
// the use of the byval parameter with this alloca instruction.
AllocA->setAlignment(F.getParamAlign(Arg.getArgNo())
.value_or(DL.getPrefTypeAlign(StructType)));
Arg.replaceAllUsesWith(AllocA);
Value *ArgInParam = new AddrSpaceCastInst(
&Arg, PointerType::get(Arg.getContext(), ADDRESS_SPACE_PARAM),
Arg.getName(), FirstInst);
// Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
// addrspacecast preserves alignment. Since params are constant, this load
// is definitely not volatile.
const auto ArgSize = *AllocA->getAllocationSize(DL);
IRBuilder<> IRB(&*FirstInst);
IRB.CreateMemCpy(AllocA, AllocA->getAlign(), ArgInParam, AllocA->getAlign(),
ArgSize);
}
} // namespace
void NVPTXLowerArgs::handleByValParam(const NVPTXTargetMachine &TM,
Argument *Arg) {
Function *Func = Arg->getParent();
bool HasCvtaParam =
TM.getSubtargetImpl(*Func)->hasCvtaParam() && isKernelFunction(*Func);
bool IsGridConstant = HasCvtaParam && isParamGridConstant(*Arg);
const DataLayout &DL = Func->getDataLayout();
BasicBlock::iterator FirstInst = Func->getEntryBlock().begin();
Type *StructType = Arg->getParamByValType();
assert(StructType && "Missing byval type");
ArgUseChecker AUC(DL, IsGridConstant);
ArgUseChecker::PtrInfo PI = AUC.visitArgPtr(*Arg);
bool ArgUseIsReadOnly = !(PI.isEscaped() || PI.isAborted());
// Easy case, accessing parameter directly is fine.
if (ArgUseIsReadOnly && AUC.Conditionals.empty()) {
// Convert all loads and intermediate operations to use parameter AS and
// skip creation of a local copy of the argument.
SmallVector<Use *, 16> UsesToUpdate;
for (Use &U : Arg->uses())
UsesToUpdate.push_back(&U);
Value *ArgInParamAS = new AddrSpaceCastInst(
Arg, PointerType::get(StructType->getContext(), ADDRESS_SPACE_PARAM),
Arg->getName(), FirstInst);
for (Use *U : UsesToUpdate)
convertToParamAS(U, ArgInParamAS, HasCvtaParam, IsGridConstant);
LLVM_DEBUG(dbgs() << "No need to copy or cast " << *Arg << "\n");
const auto *TLI =
cast<NVPTXTargetLowering>(TM.getSubtargetImpl()->getTargetLowering());
adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
return;
}
// We can't access byval arg directly and need a pointer. on sm_70+ we have
// ability to take a pointer to the argument without making a local copy.
// However, we're still not allowed to write to it. If the user specified
// `__grid_constant__` for the argument, we'll consider escaped pointer as
// read-only.
if (HasCvtaParam && (ArgUseIsReadOnly || IsGridConstant)) {
LLVM_DEBUG(dbgs() << "Using non-copy pointer to " << *Arg << "\n");
// Replace all argument pointer uses (which might include a device function
// call) with a cast to the generic address space using cvta.param
// instruction, which avoids a local copy.
IRBuilder<> IRB(&Func->getEntryBlock().front());
// Cast argument to param address space
auto *CastToParam = cast<AddrSpaceCastInst>(IRB.CreateAddrSpaceCast(
Arg, IRB.getPtrTy(ADDRESS_SPACE_PARAM), Arg->getName() + ".param"));
// Cast param address to generic address space. We do not use an
// addrspacecast to generic here, because, LLVM considers `Arg` to be in the
// generic address space, and a `generic -> param` cast followed by a `param
// -> generic` cast will be folded away. The `param -> generic` intrinsic
// will be correctly lowered to `cvta.param`.
Value *CvtToGenCall = IRB.CreateIntrinsic(
IRB.getPtrTy(ADDRESS_SPACE_GENERIC), Intrinsic::nvvm_ptr_param_to_gen,
CastToParam, nullptr, CastToParam->getName() + ".gen");
Arg->replaceAllUsesWith(CvtToGenCall);
// Do not replace Arg in the cast to param space
CastToParam->setOperand(0, Arg);
} else
copyByValParam(*Func, *Arg);
}
void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
if (Ptr->getType()->getPointerAddressSpace() != ADDRESS_SPACE_GENERIC)
return;
// Deciding where to emit the addrspacecast pair.
BasicBlock::iterator InsertPt;
if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
// Insert at the functon entry if Ptr is an argument.
InsertPt = Arg->getParent()->getEntryBlock().begin();
} else {
// Insert right after Ptr if Ptr is an instruction.
InsertPt = ++cast<Instruction>(Ptr)->getIterator();
assert(InsertPt != InsertPt->getParent()->end() &&
"We don't call this function with Ptr being a terminator.");
}
Instruction *PtrInGlobal = new AddrSpaceCastInst(
Ptr, PointerType::get(Ptr->getContext(), ADDRESS_SPACE_GLOBAL),
Ptr->getName(), InsertPt);
Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
Ptr->getName(), InsertPt);
// Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
Ptr->replaceAllUsesWith(PtrInGeneric);
PtrInGlobal->setOperand(0, Ptr);
}
// =============================================================================
// Main function for this pass.
// =============================================================================
bool NVPTXLowerArgs::runOnKernelFunction(const NVPTXTargetMachine &TM,
Function &F) {
// Copying of byval aggregates + SROA may result in pointers being loaded as
// integers, followed by intotoptr. We may want to mark those as global, too,
// but only if the loaded integer is used exclusively for conversion to a
// pointer with inttoptr.
auto HandleIntToPtr = [this](Value &V) {
if (llvm::all_of(V.users(), [](User *U) { return isa<IntToPtrInst>(U); })) {
SmallVector<User *, 16> UsersToUpdate(V.users());
for (User *U : UsersToUpdate)
markPointerAsGlobal(U);
}
};
if (TM.getDrvInterface() == NVPTX::CUDA) {
// Mark pointers in byval structs as global.
for (auto &B : F) {
for (auto &I : B) {
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (LI->getType()->isPointerTy() || LI->getType()->isIntegerTy()) {
Value *UO = getUnderlyingObject(LI->getPointerOperand());
if (Argument *Arg = dyn_cast<Argument>(UO)) {
if (Arg->hasByValAttr()) {
// LI is a load from a pointer within a byval kernel parameter.
if (LI->getType()->isPointerTy())
markPointerAsGlobal(LI);
else
HandleIntToPtr(*LI);
}
}
}
}
}
}
}
LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
for (Argument &Arg : F.args()) {
if (Arg.getType()->isPointerTy()) {
if (Arg.hasByValAttr())
handleByValParam(TM, &Arg);
else if (TM.getDrvInterface() == NVPTX::CUDA)
markPointerAsGlobal(&Arg);
} else if (Arg.getType()->isIntegerTy() &&
TM.getDrvInterface() == NVPTX::CUDA) {
HandleIntToPtr(Arg);
}
}
return true;
}
// Device functions only need to copy byval args into local memory.
bool NVPTXLowerArgs::runOnDeviceFunction(const NVPTXTargetMachine &TM,
Function &F) {
LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
for (Argument &Arg : F.args())
if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
handleByValParam(TM, &Arg);
return true;
}
bool NVPTXLowerArgs::runOnFunction(Function &F) {
auto &TM = getAnalysis<TargetPassConfig>().getTM<NVPTXTargetMachine>();
return isKernelFunction(F) ? runOnKernelFunction(TM, F)
: runOnDeviceFunction(TM, F);
}
FunctionPass *llvm::createNVPTXLowerArgsPass() { return new NVPTXLowerArgs(); }
static bool copyFunctionByValArgs(Function &F) {
LLVM_DEBUG(dbgs() << "Creating a copy of byval args of " << F.getName()
<< "\n");
bool Changed = false;
for (Argument &Arg : F.args())
if (Arg.getType()->isPointerTy() && Arg.hasByValAttr() &&
!(isParamGridConstant(Arg) && isKernelFunction(F))) {
copyByValParam(F, Arg);
Changed = true;
}
return Changed;
}
PreservedAnalyses NVPTXCopyByValArgsPass::run(Function &F,
FunctionAnalysisManager &AM) {
return copyFunctionByValArgs(F) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
|