1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
//===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <optional>
#define DEBUG_TYPE "lower-mem-intrinsics"
using namespace llvm;
void llvm::createMemCpyLoopKnownSize(
Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr,
ConstantInt *CopyLen, Align SrcAlign, Align DstAlign, bool SrcIsVolatile,
bool DstIsVolatile, bool CanOverlap, const TargetTransformInfo &TTI,
std::optional<uint32_t> AtomicElementSize) {
// No need to expand zero length copies.
if (CopyLen->isZero())
return;
BasicBlock *PreLoopBB = InsertBefore->getParent();
BasicBlock *PostLoopBB = nullptr;
Function *ParentFunc = PreLoopBB->getParent();
LLVMContext &Ctx = PreLoopBB->getContext();
const DataLayout &DL = ParentFunc->getDataLayout();
MDBuilder MDB(Ctx);
MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
StringRef Name = "MemCopyAliasScope";
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
Type *TypeOfCopyLen = CopyLen->getType();
Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
Ctx, CopyLen, SrcAS, DstAS, SrcAlign, DstAlign, AtomicElementSize);
assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
"Atomic memcpy lowering is not supported for vector operand type");
Type *Int8Type = Type::getInt8Ty(Ctx);
unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
"Atomic memcpy lowering is not supported for selected operand size");
uint64_t LoopEndCount = alignDown(CopyLen->getZExtValue(), LoopOpSize);
if (LoopEndCount != 0) {
// Split
PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
BasicBlock *LoopBB =
BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
IRBuilder<> LoopBuilder(LoopBB);
PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
// Loop Body
// If we used LoopOpType as GEP element type, we would iterate over the
// buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e.,
// we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use
// byte offsets computed from the TypeStoreSize.
Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr, LoopIndex);
LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
PartSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope,
MDNode::get(Ctx, NewScope));
}
Value *DstGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr, LoopIndex);
StoreInst *Store = LoopBuilder.CreateAlignedStore(
Load, DstGEP, PartDstAlign, DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
Value *NewIndex = LoopBuilder.CreateAdd(
LoopIndex, ConstantInt::get(TypeOfCopyLen, LoopOpSize));
LoopIndex->addIncoming(NewIndex, LoopBB);
// Create the loop branch condition.
Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
LoopBB, PostLoopBB);
}
uint64_t BytesCopied = LoopEndCount;
uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
if (RemainingBytes) {
BasicBlock::iterator InsertIt = PostLoopBB ? PostLoopBB->getFirstNonPHIIt()
: InsertBefore->getIterator();
IRBuilder<> RBuilder(InsertIt->getParent(), InsertIt);
SmallVector<Type *, 5> RemainingOps;
TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
SrcAS, DstAS, SrcAlign, DstAlign,
AtomicElementSize);
for (auto *OpTy : RemainingOps) {
Align PartSrcAlign(commonAlignment(SrcAlign, BytesCopied));
Align PartDstAlign(commonAlignment(DstAlign, BytesCopied));
unsigned OperandSize = DL.getTypeStoreSize(OpTy);
assert(
(!AtomicElementSize || OperandSize % *AtomicElementSize == 0) &&
"Atomic memcpy lowering is not supported for selected operand size");
Value *SrcGEP = RBuilder.CreateInBoundsGEP(
Int8Type, SrcAddr, ConstantInt::get(TypeOfCopyLen, BytesCopied));
LoadInst *Load =
RBuilder.CreateAlignedLoad(OpTy, SrcGEP, PartSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope,
MDNode::get(Ctx, NewScope));
}
Value *DstGEP = RBuilder.CreateInBoundsGEP(
Int8Type, DstAddr, ConstantInt::get(TypeOfCopyLen, BytesCopied));
StoreInst *Store = RBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
BytesCopied += OperandSize;
}
}
assert(BytesCopied == CopyLen->getZExtValue() &&
"Bytes copied should match size in the call!");
}
// \returns \p Len urem \p OpSize, checking for optimization opportunities.
static Value *getRuntimeLoopRemainder(const DataLayout &DL, IRBuilderBase &B,
Value *Len, Value *OpSize,
unsigned OpSizeVal) {
// For powers of 2, we can and by (OpSizeVal - 1) instead of using urem.
if (isPowerOf2_32(OpSizeVal))
return B.CreateAnd(Len, OpSizeVal - 1);
return B.CreateURem(Len, OpSize);
}
// \returns (\p Len udiv \p OpSize) mul \p OpSize, checking for optimization
// opportunities.
// If RTLoopRemainder is provided, it must be the result of
// getRuntimeLoopRemainder() with the same arguments.
static Value *getRuntimeLoopBytes(const DataLayout &DL, IRBuilderBase &B,
Value *Len, Value *OpSize, unsigned OpSizeVal,
Value *RTLoopRemainder = nullptr) {
if (!RTLoopRemainder)
RTLoopRemainder = getRuntimeLoopRemainder(DL, B, Len, OpSize, OpSizeVal);
return B.CreateSub(Len, RTLoopRemainder);
}
void llvm::createMemCpyLoopUnknownSize(
Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen,
Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile,
bool CanOverlap, const TargetTransformInfo &TTI,
std::optional<uint32_t> AtomicElementSize) {
BasicBlock *PreLoopBB = InsertBefore->getParent();
BasicBlock *PostLoopBB =
PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
Function *ParentFunc = PreLoopBB->getParent();
const DataLayout &DL = ParentFunc->getDataLayout();
LLVMContext &Ctx = PreLoopBB->getContext();
MDBuilder MDB(Ctx);
MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
StringRef Name = "MemCopyAliasScope";
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
Ctx, CopyLen, SrcAS, DstAS, SrcAlign, DstAlign, AtomicElementSize);
assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
"Atomic memcpy lowering is not supported for vector operand type");
unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
"Atomic memcpy lowering is not supported for selected operand size");
IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
// Calculate the loop trip count, and remaining bytes to copy after the loop.
Type *CopyLenType = CopyLen->getType();
IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
assert(ILengthType &&
"expected size argument to memcpy to be an integer type!");
Type *Int8Type = Type::getInt8Ty(Ctx);
bool LoopOpIsInt8 = LoopOpType == Int8Type;
ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
Value *RuntimeLoopBytes = CopyLen;
Value *RuntimeResidualBytes = nullptr;
if (!LoopOpIsInt8) {
RuntimeResidualBytes = getRuntimeLoopRemainder(DL, PLBuilder, CopyLen,
CILoopOpSize, LoopOpSize);
RuntimeLoopBytes = getRuntimeLoopBytes(DL, PLBuilder, CopyLen, CILoopOpSize,
LoopOpSize, RuntimeResidualBytes);
}
BasicBlock *LoopBB =
BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
IRBuilder<> LoopBuilder(LoopBB);
Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
// If we used LoopOpType as GEP element type, we would iterate over the
// buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e.,
// we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use byte
// offsets computed from the TypeStoreSize.
Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr, LoopIndex);
LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
PartSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope, MDNode::get(Ctx, NewScope));
}
Value *DstGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr, LoopIndex);
StoreInst *Store =
LoopBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign, DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
Value *NewIndex = LoopBuilder.CreateAdd(
LoopIndex, ConstantInt::get(CopyLenType, LoopOpSize));
LoopIndex->addIncoming(NewIndex, LoopBB);
bool RequiresResidual =
!LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize);
if (RequiresResidual) {
Type *ResLoopOpType = AtomicElementSize
? Type::getIntNTy(Ctx, *AtomicElementSize * 8)
: Int8Type;
unsigned ResLoopOpSize = DL.getTypeStoreSize(ResLoopOpType);
assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) &&
"Store size is expected to match type size");
Align ResSrcAlign(commonAlignment(PartSrcAlign, ResLoopOpSize));
Align ResDstAlign(commonAlignment(PartDstAlign, ResLoopOpSize));
// Loop body for the residual copy.
BasicBlock *ResLoopBB = BasicBlock::Create(
Ctx, "loop-memcpy-residual", PreLoopBB->getParent(), PostLoopBB);
// Residual loop header.
BasicBlock *ResHeaderBB = BasicBlock::Create(
Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
// Need to update the pre-loop basic block to branch to the correct place.
// branch to the main loop if the count is non-zero, branch to the residual
// loop if the copy size is smaller then 1 iteration of the main loop but
// non-zero and finally branch to after the residual loop if the memcpy
// size is zero.
ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopBytes, Zero),
LoopBB, ResHeaderBB);
PreLoopBB->getTerminator()->eraseFromParent();
LoopBuilder.CreateCondBr(
LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopBytes), LoopBB,
ResHeaderBB);
// Determine if we need to branch to the residual loop or bypass it.
IRBuilder<> RHBuilder(ResHeaderBB);
RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidualBytes, Zero),
ResLoopBB, PostLoopBB);
// Copy the residual with single byte load/store loop.
IRBuilder<> ResBuilder(ResLoopBB);
PHINode *ResidualIndex =
ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
ResidualIndex->addIncoming(Zero, ResHeaderBB);
Value *FullOffset = ResBuilder.CreateAdd(RuntimeLoopBytes, ResidualIndex);
Value *SrcGEP = ResBuilder.CreateInBoundsGEP(Int8Type, SrcAddr, FullOffset);
LoadInst *Load = ResBuilder.CreateAlignedLoad(ResLoopOpType, SrcGEP,
ResSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope,
MDNode::get(Ctx, NewScope));
}
Value *DstGEP = ResBuilder.CreateInBoundsGEP(Int8Type, DstAddr, FullOffset);
StoreInst *Store =
ResBuilder.CreateAlignedStore(Load, DstGEP, ResDstAlign, DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
Value *ResNewIndex = ResBuilder.CreateAdd(
ResidualIndex, ConstantInt::get(CopyLenType, ResLoopOpSize));
ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
// Create the loop branch condition.
ResBuilder.CreateCondBr(
ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidualBytes), ResLoopBB,
PostLoopBB);
} else {
// In this case the loop operand type was a byte, and there is no need for a
// residual loop to copy the remaining memory after the main loop.
// We do however need to patch up the control flow by creating the
// terminators for the preloop block and the memcpy loop.
ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopBytes, Zero),
LoopBB, PostLoopBB);
PreLoopBB->getTerminator()->eraseFromParent();
LoopBuilder.CreateCondBr(
LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopBytes), LoopBB,
PostLoopBB);
}
}
// If \p Addr1 and \p Addr2 are pointers to different address spaces, create an
// addresspacecast to obtain a pair of pointers in the same addressspace. The
// caller needs to ensure that addrspacecasting is possible.
// No-op if the pointers are in the same address space.
static std::pair<Value *, Value *>
tryInsertCastToCommonAddrSpace(IRBuilderBase &B, Value *Addr1, Value *Addr2,
const TargetTransformInfo &TTI) {
Value *ResAddr1 = Addr1;
Value *ResAddr2 = Addr2;
unsigned AS1 = cast<PointerType>(Addr1->getType())->getAddressSpace();
unsigned AS2 = cast<PointerType>(Addr2->getType())->getAddressSpace();
if (AS1 != AS2) {
if (TTI.isValidAddrSpaceCast(AS2, AS1))
ResAddr2 = B.CreateAddrSpaceCast(Addr2, Addr1->getType());
else if (TTI.isValidAddrSpaceCast(AS1, AS2))
ResAddr1 = B.CreateAddrSpaceCast(Addr1, Addr2->getType());
else
llvm_unreachable("Can only lower memmove between address spaces if they "
"support addrspacecast");
}
return {ResAddr1, ResAddr2};
}
// Lower memmove to IR. memmove is required to correctly copy overlapping memory
// regions; therefore, it has to check the relative positions of the source and
// destination pointers and choose the copy direction accordingly.
//
// The code below is an IR rendition of this C function:
//
// void* memmove(void* dst, const void* src, size_t n) {
// unsigned char* d = dst;
// const unsigned char* s = src;
// if (s < d) {
// // copy backwards
// while (n--) {
// d[n] = s[n];
// }
// } else {
// // copy forward
// for (size_t i = 0; i < n; ++i) {
// d[i] = s[i];
// }
// }
// return dst;
// }
//
// If the TargetTransformInfo specifies a wider MemcpyLoopLoweringType, it is
// used for the memory accesses in the loops. Then, additional loops with
// byte-wise accesses are added for the remaining bytes.
static void createMemMoveLoopUnknownSize(Instruction *InsertBefore,
Value *SrcAddr, Value *DstAddr,
Value *CopyLen, Align SrcAlign,
Align DstAlign, bool SrcIsVolatile,
bool DstIsVolatile,
const TargetTransformInfo &TTI) {
Type *TypeOfCopyLen = CopyLen->getType();
BasicBlock *OrigBB = InsertBefore->getParent();
Function *F = OrigBB->getParent();
const DataLayout &DL = F->getDataLayout();
LLVMContext &Ctx = OrigBB->getContext();
unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
Type *LoopOpType = TTI.getMemcpyLoopLoweringType(Ctx, CopyLen, SrcAS, DstAS,
SrcAlign, DstAlign);
unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
Type *Int8Type = Type::getInt8Ty(Ctx);
bool LoopOpIsInt8 = LoopOpType == Int8Type;
// If the memory accesses are wider than one byte, residual loops with
// i8-accesses are required to move remaining bytes.
bool RequiresResidual = !LoopOpIsInt8;
Type *ResidualLoopOpType = Int8Type;
unsigned ResidualLoopOpSize = DL.getTypeStoreSize(ResidualLoopOpType);
// Calculate the loop trip count and remaining bytes to copy after the loop.
IntegerType *ILengthType = cast<IntegerType>(TypeOfCopyLen);
ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
ConstantInt *CIResidualLoopOpSize =
ConstantInt::get(ILengthType, ResidualLoopOpSize);
ConstantInt *Zero = ConstantInt::get(ILengthType, 0);
IRBuilder<> PLBuilder(InsertBefore);
Value *RuntimeLoopBytes = CopyLen;
Value *RuntimeLoopRemainder = nullptr;
Value *SkipResidualCondition = nullptr;
if (RequiresResidual) {
RuntimeLoopRemainder = getRuntimeLoopRemainder(DL, PLBuilder, CopyLen,
CILoopOpSize, LoopOpSize);
RuntimeLoopBytes = getRuntimeLoopBytes(DL, PLBuilder, CopyLen, CILoopOpSize,
LoopOpSize, RuntimeLoopRemainder);
SkipResidualCondition =
PLBuilder.CreateICmpEQ(RuntimeLoopRemainder, Zero, "skip_residual");
}
Value *SkipMainCondition =
PLBuilder.CreateICmpEQ(RuntimeLoopBytes, Zero, "skip_main");
// Create the a comparison of src and dst, based on which we jump to either
// the forward-copy part of the function (if src >= dst) or the backwards-copy
// part (if src < dst).
// SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
// structure. Its block terminators (unconditional branches) are replaced by
// the appropriate conditional branches when the loop is built.
// If the pointers are in different address spaces, they need to be converted
// to a compatible one. Cases where memory ranges in the different address
// spaces cannot overlap are lowered as memcpy and not handled here.
auto [CmpSrcAddr, CmpDstAddr] =
tryInsertCastToCommonAddrSpace(PLBuilder, SrcAddr, DstAddr, TTI);
Value *PtrCompare =
PLBuilder.CreateICmpULT(CmpSrcAddr, CmpDstAddr, "compare_src_dst");
Instruction *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore->getIterator(),
&ThenTerm, &ElseTerm);
// If the LoopOpSize is greater than 1, each part of the function consists of
// four blocks:
// memmove_copy_backwards:
// skip the residual loop when 0 iterations are required
// memmove_bwd_residual_loop:
// copy the last few bytes individually so that the remaining length is
// a multiple of the LoopOpSize
// memmove_bwd_middle: skip the main loop when 0 iterations are required
// memmove_bwd_main_loop: the actual backwards loop BB with wide accesses
// memmove_copy_forward: skip the main loop when 0 iterations are required
// memmove_fwd_main_loop: the actual forward loop BB with wide accesses
// memmove_fwd_middle: skip the residual loop when 0 iterations are required
// memmove_fwd_residual_loop: copy the last few bytes individually
//
// The main and residual loop are switched between copying forward and
// backward so that the residual loop always operates on the end of the moved
// range. This is based on the assumption that buffers whose start is aligned
// with the LoopOpSize are more common than buffers whose end is.
//
// If the LoopOpSize is 1, each part of the function consists of two blocks:
// memmove_copy_backwards: skip the loop when 0 iterations are required
// memmove_bwd_main_loop: the actual backwards loop BB
// memmove_copy_forward: skip the loop when 0 iterations are required
// memmove_fwd_main_loop: the actual forward loop BB
BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
CopyBackwardsBB->setName("memmove_copy_backwards");
BasicBlock *CopyForwardBB = ElseTerm->getParent();
CopyForwardBB->setName("memmove_copy_forward");
BasicBlock *ExitBB = InsertBefore->getParent();
ExitBB->setName("memmove_done");
Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
// Accesses in the residual loops do not share the same alignment as those in
// the main loops.
Align ResidualSrcAlign(commonAlignment(PartSrcAlign, ResidualLoopOpSize));
Align ResidualDstAlign(commonAlignment(PartDstAlign, ResidualLoopOpSize));
// Copying backwards.
{
BasicBlock *MainLoopBB = BasicBlock::Create(
F->getContext(), "memmove_bwd_main_loop", F, CopyForwardBB);
// The predecessor of the memmove_bwd_main_loop. Updated in the
// following if a residual loop is emitted first.
BasicBlock *PredBB = CopyBackwardsBB;
if (RequiresResidual) {
// backwards residual loop
BasicBlock *ResidualLoopBB = BasicBlock::Create(
F->getContext(), "memmove_bwd_residual_loop", F, MainLoopBB);
IRBuilder<> ResidualLoopBuilder(ResidualLoopBB);
PHINode *ResidualLoopPhi = ResidualLoopBuilder.CreatePHI(ILengthType, 0);
Value *ResidualIndex = ResidualLoopBuilder.CreateSub(
ResidualLoopPhi, CIResidualLoopOpSize, "bwd_residual_index");
// If we used LoopOpType as GEP element type, we would iterate over the
// buffers in TypeStoreSize strides while copying TypeAllocSize bytes,
// i.e., we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore,
// use byte offsets computed from the TypeStoreSize.
Value *LoadGEP = ResidualLoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr,
ResidualIndex);
Value *Element = ResidualLoopBuilder.CreateAlignedLoad(
ResidualLoopOpType, LoadGEP, ResidualSrcAlign, SrcIsVolatile,
"element");
Value *StoreGEP = ResidualLoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr,
ResidualIndex);
ResidualLoopBuilder.CreateAlignedStore(Element, StoreGEP,
ResidualDstAlign, DstIsVolatile);
// After the residual loop, go to an intermediate block.
BasicBlock *IntermediateBB = BasicBlock::Create(
F->getContext(), "memmove_bwd_middle", F, MainLoopBB);
// Later code expects a terminator in the PredBB.
IRBuilder<> IntermediateBuilder(IntermediateBB);
IntermediateBuilder.CreateUnreachable();
ResidualLoopBuilder.CreateCondBr(
ResidualLoopBuilder.CreateICmpEQ(ResidualIndex, RuntimeLoopBytes),
IntermediateBB, ResidualLoopBB);
ResidualLoopPhi->addIncoming(ResidualIndex, ResidualLoopBB);
ResidualLoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
// How to get to the residual:
BranchInst::Create(IntermediateBB, ResidualLoopBB, SkipResidualCondition,
ThenTerm->getIterator());
ThenTerm->eraseFromParent();
PredBB = IntermediateBB;
}
// main loop
IRBuilder<> MainLoopBuilder(MainLoopBB);
PHINode *MainLoopPhi = MainLoopBuilder.CreatePHI(ILengthType, 0);
Value *MainIndex =
MainLoopBuilder.CreateSub(MainLoopPhi, CILoopOpSize, "bwd_main_index");
Value *LoadGEP =
MainLoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr, MainIndex);
Value *Element = MainLoopBuilder.CreateAlignedLoad(
LoopOpType, LoadGEP, PartSrcAlign, SrcIsVolatile, "element");
Value *StoreGEP =
MainLoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr, MainIndex);
MainLoopBuilder.CreateAlignedStore(Element, StoreGEP, PartDstAlign,
DstIsVolatile);
MainLoopBuilder.CreateCondBr(MainLoopBuilder.CreateICmpEQ(MainIndex, Zero),
ExitBB, MainLoopBB);
MainLoopPhi->addIncoming(MainIndex, MainLoopBB);
MainLoopPhi->addIncoming(RuntimeLoopBytes, PredBB);
// How to get to the main loop:
Instruction *PredBBTerm = PredBB->getTerminator();
BranchInst::Create(ExitBB, MainLoopBB, SkipMainCondition,
PredBBTerm->getIterator());
PredBBTerm->eraseFromParent();
}
// Copying forward.
// main loop
{
BasicBlock *MainLoopBB =
BasicBlock::Create(F->getContext(), "memmove_fwd_main_loop", F, ExitBB);
IRBuilder<> MainLoopBuilder(MainLoopBB);
PHINode *MainLoopPhi =
MainLoopBuilder.CreatePHI(ILengthType, 0, "fwd_main_index");
Value *LoadGEP =
MainLoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr, MainLoopPhi);
Value *Element = MainLoopBuilder.CreateAlignedLoad(
LoopOpType, LoadGEP, PartSrcAlign, SrcIsVolatile, "element");
Value *StoreGEP =
MainLoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr, MainLoopPhi);
MainLoopBuilder.CreateAlignedStore(Element, StoreGEP, PartDstAlign,
DstIsVolatile);
Value *MainIndex = MainLoopBuilder.CreateAdd(MainLoopPhi, CILoopOpSize);
MainLoopPhi->addIncoming(MainIndex, MainLoopBB);
MainLoopPhi->addIncoming(Zero, CopyForwardBB);
Instruction *CopyFwdBBTerm = CopyForwardBB->getTerminator();
BasicBlock *SuccessorBB = ExitBB;
if (RequiresResidual)
SuccessorBB =
BasicBlock::Create(F->getContext(), "memmove_fwd_middle", F, ExitBB);
// leaving or staying in the main loop
MainLoopBuilder.CreateCondBr(
MainLoopBuilder.CreateICmpEQ(MainIndex, RuntimeLoopBytes), SuccessorBB,
MainLoopBB);
// getting in or skipping the main loop
BranchInst::Create(SuccessorBB, MainLoopBB, SkipMainCondition,
CopyFwdBBTerm->getIterator());
CopyFwdBBTerm->eraseFromParent();
if (RequiresResidual) {
BasicBlock *IntermediateBB = SuccessorBB;
IRBuilder<> IntermediateBuilder(IntermediateBB);
BasicBlock *ResidualLoopBB = BasicBlock::Create(
F->getContext(), "memmove_fwd_residual_loop", F, ExitBB);
IntermediateBuilder.CreateCondBr(SkipResidualCondition, ExitBB,
ResidualLoopBB);
// Residual loop
IRBuilder<> ResidualLoopBuilder(ResidualLoopBB);
PHINode *ResidualLoopPhi =
ResidualLoopBuilder.CreatePHI(ILengthType, 0, "fwd_residual_index");
Value *LoadGEP = ResidualLoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr,
ResidualLoopPhi);
Value *Element = ResidualLoopBuilder.CreateAlignedLoad(
ResidualLoopOpType, LoadGEP, ResidualSrcAlign, SrcIsVolatile,
"element");
Value *StoreGEP = ResidualLoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr,
ResidualLoopPhi);
ResidualLoopBuilder.CreateAlignedStore(Element, StoreGEP,
ResidualDstAlign, DstIsVolatile);
Value *ResidualIndex =
ResidualLoopBuilder.CreateAdd(ResidualLoopPhi, CIResidualLoopOpSize);
ResidualLoopBuilder.CreateCondBr(
ResidualLoopBuilder.CreateICmpEQ(ResidualIndex, CopyLen), ExitBB,
ResidualLoopBB);
ResidualLoopPhi->addIncoming(ResidualIndex, ResidualLoopBB);
ResidualLoopPhi->addIncoming(RuntimeLoopBytes, IntermediateBB);
}
}
}
// Similar to createMemMoveLoopUnknownSize, only the trip counts are computed at
// compile time, obsolete loops and branches are omitted, and the residual code
// is straight-line code instead of a loop.
static void createMemMoveLoopKnownSize(Instruction *InsertBefore,
Value *SrcAddr, Value *DstAddr,
ConstantInt *CopyLen, Align SrcAlign,
Align DstAlign, bool SrcIsVolatile,
bool DstIsVolatile,
const TargetTransformInfo &TTI) {
// No need to expand zero length moves.
if (CopyLen->isZero())
return;
Type *TypeOfCopyLen = CopyLen->getType();
BasicBlock *OrigBB = InsertBefore->getParent();
Function *F = OrigBB->getParent();
const DataLayout &DL = F->getDataLayout();
LLVMContext &Ctx = OrigBB->getContext();
unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
Type *LoopOpType = TTI.getMemcpyLoopLoweringType(Ctx, CopyLen, SrcAS, DstAS,
SrcAlign, DstAlign);
unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
Type *Int8Type = Type::getInt8Ty(Ctx);
// Calculate the loop trip count and remaining bytes to copy after the loop.
uint64_t BytesCopiedInLoop = alignDown(CopyLen->getZExtValue(), LoopOpSize);
uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopiedInLoop;
IntegerType *ILengthType = cast<IntegerType>(TypeOfCopyLen);
ConstantInt *Zero = ConstantInt::get(ILengthType, 0);
ConstantInt *LoopBound = ConstantInt::get(ILengthType, BytesCopiedInLoop);
ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
IRBuilder<> PLBuilder(InsertBefore);
auto [CmpSrcAddr, CmpDstAddr] =
tryInsertCastToCommonAddrSpace(PLBuilder, SrcAddr, DstAddr, TTI);
Value *PtrCompare =
PLBuilder.CreateICmpULT(CmpSrcAddr, CmpDstAddr, "compare_src_dst");
Instruction *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore->getIterator(),
&ThenTerm, &ElseTerm);
BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
BasicBlock *CopyForwardBB = ElseTerm->getParent();
BasicBlock *ExitBB = InsertBefore->getParent();
ExitBB->setName("memmove_done");
Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
// Helper function to generate a load/store pair of a given type in the
// residual. Used in the forward and backward branches.
auto GenerateResidualLdStPair = [&](Type *OpTy, IRBuilderBase &Builder,
uint64_t &BytesCopied) {
Align ResSrcAlign(commonAlignment(SrcAlign, BytesCopied));
Align ResDstAlign(commonAlignment(DstAlign, BytesCopied));
unsigned OperandSize = DL.getTypeStoreSize(OpTy);
// If we used LoopOpType as GEP element type, we would iterate over the
// buffers in TypeStoreSize strides while copying TypeAllocSize bytes, i.e.,
// we would miss bytes if TypeStoreSize != TypeAllocSize. Therefore, use
// byte offsets computed from the TypeStoreSize.
Value *SrcGEP = Builder.CreateInBoundsGEP(
Int8Type, SrcAddr, ConstantInt::get(TypeOfCopyLen, BytesCopied));
LoadInst *Load =
Builder.CreateAlignedLoad(OpTy, SrcGEP, ResSrcAlign, SrcIsVolatile);
Value *DstGEP = Builder.CreateInBoundsGEP(
Int8Type, DstAddr, ConstantInt::get(TypeOfCopyLen, BytesCopied));
Builder.CreateAlignedStore(Load, DstGEP, ResDstAlign, DstIsVolatile);
BytesCopied += OperandSize;
};
// Copying backwards.
if (RemainingBytes != 0) {
CopyBackwardsBB->setName("memmove_bwd_residual");
uint64_t BytesCopied = BytesCopiedInLoop;
// Residual code is required to move the remaining bytes. We need the same
// instructions as in the forward case, only in reverse. So we generate code
// the same way, except that we change the IRBuilder insert point for each
// load/store pair so that each one is inserted before the previous one
// instead of after it.
IRBuilder<> BwdResBuilder(CopyBackwardsBB,
CopyBackwardsBB->getFirstNonPHIIt());
SmallVector<Type *, 5> RemainingOps;
TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
SrcAS, DstAS, PartSrcAlign,
PartDstAlign);
for (auto *OpTy : RemainingOps) {
// reverse the order of the emitted operations
BwdResBuilder.SetInsertPoint(CopyBackwardsBB,
CopyBackwardsBB->getFirstNonPHIIt());
GenerateResidualLdStPair(OpTy, BwdResBuilder, BytesCopied);
}
}
if (BytesCopiedInLoop != 0) {
BasicBlock *LoopBB = CopyBackwardsBB;
BasicBlock *PredBB = OrigBB;
if (RemainingBytes != 0) {
// if we introduce residual code, it needs its separate BB
LoopBB = CopyBackwardsBB->splitBasicBlock(
CopyBackwardsBB->getTerminator(), "memmove_bwd_loop");
PredBB = CopyBackwardsBB;
} else {
CopyBackwardsBB->setName("memmove_bwd_loop");
}
IRBuilder<> LoopBuilder(LoopBB->getTerminator());
PHINode *LoopPhi = LoopBuilder.CreatePHI(ILengthType, 0);
Value *Index = LoopBuilder.CreateSub(LoopPhi, CILoopOpSize, "bwd_index");
Value *LoadGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr, Index);
Value *Element = LoopBuilder.CreateAlignedLoad(
LoopOpType, LoadGEP, PartSrcAlign, SrcIsVolatile, "element");
Value *StoreGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr, Index);
LoopBuilder.CreateAlignedStore(Element, StoreGEP, PartDstAlign,
DstIsVolatile);
// Replace the unconditional branch introduced by
// SplitBlockAndInsertIfThenElse to turn LoopBB into a loop.
Instruction *UncondTerm = LoopBB->getTerminator();
LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpEQ(Index, Zero), ExitBB,
LoopBB);
UncondTerm->eraseFromParent();
LoopPhi->addIncoming(Index, LoopBB);
LoopPhi->addIncoming(LoopBound, PredBB);
}
// Copying forward.
BasicBlock *FwdResidualBB = CopyForwardBB;
if (BytesCopiedInLoop != 0) {
CopyForwardBB->setName("memmove_fwd_loop");
BasicBlock *LoopBB = CopyForwardBB;
BasicBlock *SuccBB = ExitBB;
if (RemainingBytes != 0) {
// if we introduce residual code, it needs its separate BB
SuccBB = CopyForwardBB->splitBasicBlock(CopyForwardBB->getTerminator(),
"memmove_fwd_residual");
FwdResidualBB = SuccBB;
}
IRBuilder<> LoopBuilder(LoopBB->getTerminator());
PHINode *LoopPhi = LoopBuilder.CreatePHI(ILengthType, 0, "fwd_index");
Value *LoadGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, SrcAddr, LoopPhi);
Value *Element = LoopBuilder.CreateAlignedLoad(
LoopOpType, LoadGEP, PartSrcAlign, SrcIsVolatile, "element");
Value *StoreGEP = LoopBuilder.CreateInBoundsGEP(Int8Type, DstAddr, LoopPhi);
LoopBuilder.CreateAlignedStore(Element, StoreGEP, PartDstAlign,
DstIsVolatile);
Value *Index = LoopBuilder.CreateAdd(LoopPhi, CILoopOpSize);
LoopPhi->addIncoming(Index, LoopBB);
LoopPhi->addIncoming(Zero, OrigBB);
// Replace the unconditional branch to turn LoopBB into a loop.
Instruction *UncondTerm = LoopBB->getTerminator();
LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpEQ(Index, LoopBound), SuccBB,
LoopBB);
UncondTerm->eraseFromParent();
}
if (RemainingBytes != 0) {
uint64_t BytesCopied = BytesCopiedInLoop;
// Residual code is required to move the remaining bytes. In the forward
// case, we emit it in the normal order.
IRBuilder<> FwdResBuilder(FwdResidualBB->getTerminator());
SmallVector<Type *, 5> RemainingOps;
TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
SrcAS, DstAS, PartSrcAlign,
PartDstAlign);
for (auto *OpTy : RemainingOps)
GenerateResidualLdStPair(OpTy, FwdResBuilder, BytesCopied);
}
}
static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr,
Value *CopyLen, Value *SetValue, Align DstAlign,
bool IsVolatile) {
Type *TypeOfCopyLen = CopyLen->getType();
BasicBlock *OrigBB = InsertBefore->getParent();
Function *F = OrigBB->getParent();
const DataLayout &DL = F->getDataLayout();
BasicBlock *NewBB =
OrigBB->splitBasicBlock(InsertBefore, "split");
BasicBlock *LoopBB
= BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
IRBuilder<> Builder(OrigBB->getTerminator());
Builder.CreateCondBr(
Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
LoopBB);
OrigBB->getTerminator()->eraseFromParent();
unsigned PartSize = DL.getTypeStoreSize(SetValue->getType());
Align PartAlign(commonAlignment(DstAlign, PartSize));
IRBuilder<> LoopBuilder(LoopBB);
PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
LoopBuilder.CreateAlignedStore(
SetValue,
LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
PartAlign, IsVolatile);
Value *NewIndex =
LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
LoopIndex->addIncoming(NewIndex, LoopBB);
LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
NewBB);
}
template <typename T>
static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) {
if (SE) {
const SCEV *SrcSCEV = SE->getSCEV(Memcpy->getRawSource());
const SCEV *DestSCEV = SE->getSCEV(Memcpy->getRawDest());
if (SE->isKnownPredicateAt(CmpInst::ICMP_NE, SrcSCEV, DestSCEV, Memcpy))
return false;
}
return true;
}
void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy,
const TargetTransformInfo &TTI,
ScalarEvolution *SE) {
bool CanOverlap = canOverlap(Memcpy, SE);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
createMemCpyLoopKnownSize(
/* InsertBefore */ Memcpy,
/* SrcAddr */ Memcpy->getRawSource(),
/* DstAddr */ Memcpy->getRawDest(),
/* CopyLen */ CI,
/* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ Memcpy->isVolatile(),
/* DstIsVolatile */ Memcpy->isVolatile(),
/* CanOverlap */ CanOverlap,
/* TargetTransformInfo */ TTI);
} else {
createMemCpyLoopUnknownSize(
/* InsertBefore */ Memcpy,
/* SrcAddr */ Memcpy->getRawSource(),
/* DstAddr */ Memcpy->getRawDest(),
/* CopyLen */ Memcpy->getLength(),
/* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ Memcpy->isVolatile(),
/* DstIsVolatile */ Memcpy->isVolatile(),
/* CanOverlap */ CanOverlap,
/* TargetTransformInfo */ TTI);
}
}
bool llvm::expandMemMoveAsLoop(MemMoveInst *Memmove,
const TargetTransformInfo &TTI) {
Value *CopyLen = Memmove->getLength();
Value *SrcAddr = Memmove->getRawSource();
Value *DstAddr = Memmove->getRawDest();
Align SrcAlign = Memmove->getSourceAlign().valueOrOne();
Align DstAlign = Memmove->getDestAlign().valueOrOne();
bool SrcIsVolatile = Memmove->isVolatile();
bool DstIsVolatile = SrcIsVolatile;
IRBuilder<> CastBuilder(Memmove);
unsigned SrcAS = SrcAddr->getType()->getPointerAddressSpace();
unsigned DstAS = DstAddr->getType()->getPointerAddressSpace();
if (SrcAS != DstAS) {
if (!TTI.addrspacesMayAlias(SrcAS, DstAS)) {
// We may not be able to emit a pointer comparison, but we don't have
// to. Expand as memcpy.
if (ConstantInt *CI = dyn_cast<ConstantInt>(CopyLen)) {
createMemCpyLoopKnownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
CI, SrcAlign, DstAlign, SrcIsVolatile,
DstIsVolatile,
/*CanOverlap=*/false, TTI);
} else {
createMemCpyLoopUnknownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
CopyLen, SrcAlign, DstAlign, SrcIsVolatile,
DstIsVolatile,
/*CanOverlap=*/false, TTI);
}
return true;
}
if (!(TTI.isValidAddrSpaceCast(DstAS, SrcAS) ||
TTI.isValidAddrSpaceCast(SrcAS, DstAS))) {
// We don't know generically if it's legal to introduce an
// addrspacecast. We need to know either if it's legal to insert an
// addrspacecast, or if the address spaces cannot alias.
LLVM_DEBUG(
dbgs() << "Do not know how to expand memmove between different "
"address spaces\n");
return false;
}
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(CopyLen)) {
createMemMoveLoopKnownSize(
/*InsertBefore=*/Memmove, SrcAddr, DstAddr, CI, SrcAlign, DstAlign,
SrcIsVolatile, DstIsVolatile, TTI);
} else {
createMemMoveLoopUnknownSize(
/*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, DstAlign,
SrcIsVolatile, DstIsVolatile, TTI);
}
return true;
}
void llvm::expandMemSetAsLoop(MemSetInst *Memset) {
createMemSetLoop(/* InsertBefore */ Memset,
/* DstAddr */ Memset->getRawDest(),
/* CopyLen */ Memset->getLength(),
/* SetValue */ Memset->getValue(),
/* Alignment */ Memset->getDestAlign().valueOrOne(),
Memset->isVolatile());
}
void llvm::expandMemSetPatternAsLoop(MemSetPatternInst *Memset) {
createMemSetLoop(/* InsertBefore=*/Memset,
/* DstAddr=*/Memset->getRawDest(),
/* CopyLen=*/Memset->getLength(),
/* SetValue=*/Memset->getValue(),
/* Alignment=*/Memset->getDestAlign().valueOrOne(),
Memset->isVolatile());
}
void llvm::expandAtomicMemCpyAsLoop(AtomicMemCpyInst *AtomicMemcpy,
const TargetTransformInfo &TTI,
ScalarEvolution *SE) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(AtomicMemcpy->getLength())) {
createMemCpyLoopKnownSize(
/* InsertBefore */ AtomicMemcpy,
/* SrcAddr */ AtomicMemcpy->getRawSource(),
/* DstAddr */ AtomicMemcpy->getRawDest(),
/* CopyLen */ CI,
/* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
/* DstIsVolatile */ AtomicMemcpy->isVolatile(),
/* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
/* TargetTransformInfo */ TTI,
/* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
} else {
createMemCpyLoopUnknownSize(
/* InsertBefore */ AtomicMemcpy,
/* SrcAddr */ AtomicMemcpy->getRawSource(),
/* DstAddr */ AtomicMemcpy->getRawDest(),
/* CopyLen */ AtomicMemcpy->getLength(),
/* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
/* DstIsVolatile */ AtomicMemcpy->isVolatile(),
/* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
/* TargetTransformInfo */ TTI,
/* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
}
}
|