1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
//===- VPRecipeBuilder.h - Helper class to build recipes --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H
#define LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H
#include "LoopVectorizationPlanner.h"
#include "VPlan.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/IRBuilder.h"
namespace llvm {
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class TargetLibraryInfo;
class TargetTransformInfo;
struct HistogramInfo;
/// A chain of instructions that form a partial reduction.
/// Designed to match: reduction_bin_op (bin_op (extend (A), (extend (B))),
/// accumulator).
struct PartialReductionChain {
PartialReductionChain(Instruction *Reduction, Instruction *ExtendA,
Instruction *ExtendB, Instruction *BinOp)
: Reduction(Reduction), ExtendA(ExtendA), ExtendB(ExtendB), BinOp(BinOp) {
}
/// The top-level binary operation that forms the reduction to a scalar
/// after the loop body.
Instruction *Reduction;
/// The extension of each of the inner binary operation's operands.
Instruction *ExtendA;
Instruction *ExtendB;
/// The binary operation using the extends that is then reduced.
Instruction *BinOp;
};
/// Helper class to create VPRecipies from IR instructions.
class VPRecipeBuilder {
/// The VPlan new recipes are added to.
VPlan &Plan;
/// The loop that we evaluate.
Loop *OrigLoop;
/// Target Library Info.
const TargetLibraryInfo *TLI;
// Target Transform Info.
const TargetTransformInfo *TTI;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitablity analysis.
LoopVectorizationCostModel &CM;
PredicatedScalarEvolution &PSE;
VPBuilder &Builder;
/// When we if-convert we need to create edge masks. We have to cache values
/// so that we don't end up with exponential recursion/IR. Note that
/// if-conversion currently takes place during VPlan-construction, so these
/// caches are only used at that stage.
using EdgeMaskCacheTy =
DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>;
using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>;
EdgeMaskCacheTy EdgeMaskCache;
BlockMaskCacheTy BlockMaskCache;
// VPlan construction support: Hold a mapping from ingredients to
// their recipe.
DenseMap<Instruction *, VPRecipeBase *> Ingredient2Recipe;
/// Cross-iteration reduction & first-order recurrence phis for which we need
/// to add the incoming value from the backedge after all recipes have been
/// created.
SmallVector<VPHeaderPHIRecipe *, 4> PhisToFix;
/// A mapping of partial reduction exit instructions to their scaling factor.
DenseMap<const Instruction *, unsigned> ScaledReductionMap;
/// Check if \p I can be widened at the start of \p Range and possibly
/// decrease the range such that the returned value holds for the entire \p
/// Range. The function should not be called for memory instructions or calls.
bool shouldWiden(Instruction *I, VFRange &Range) const;
/// Check if the load or store instruction \p I should widened for \p
/// Range.Start and potentially masked. Such instructions are handled by a
/// recipe that takes an additional VPInstruction for the mask.
VPWidenMemoryRecipe *tryToWidenMemory(Instruction *I,
ArrayRef<VPValue *> Operands,
VFRange &Range);
/// Check if an induction recipe should be constructed for \p Phi. If so build
/// and return it. If not, return null.
VPHeaderPHIRecipe *tryToOptimizeInductionPHI(PHINode *Phi,
ArrayRef<VPValue *> Operands,
VFRange &Range);
/// Optimize the special case where the operand of \p I is a constant integer
/// induction variable.
VPWidenIntOrFpInductionRecipe *
tryToOptimizeInductionTruncate(TruncInst *I, ArrayRef<VPValue *> Operands,
VFRange &Range);
/// Handle non-loop phi nodes. Return a new VPBlendRecipe otherwise. Currently
/// all such phi nodes are turned into a sequence of select instructions as
/// the vectorizer currently performs full if-conversion.
VPBlendRecipe *tryToBlend(PHINode *Phi, ArrayRef<VPValue *> Operands);
/// Handle call instructions. If \p CI can be widened for \p Range.Start,
/// return a new VPWidenCallRecipe or VPWidenIntrinsicRecipe. Range.End may be
/// decreased to ensure same decision from \p Range.Start to \p Range.End.
VPSingleDefRecipe *tryToWidenCall(CallInst *CI, ArrayRef<VPValue *> Operands,
VFRange &Range);
/// Check if \p I has an opcode that can be widened and return a VPWidenRecipe
/// if it can. The function should only be called if the cost-model indicates
/// that widening should be performed.
VPWidenRecipe *tryToWiden(Instruction *I, ArrayRef<VPValue *> Operands,
VPBasicBlock *VPBB);
/// Makes Histogram count operations safe for vectorization, by emitting a
/// llvm.experimental.vector.histogram.add intrinsic in place of the
/// Load + Add|Sub + Store operations that perform the histogram in the
/// original scalar loop.
VPHistogramRecipe *tryToWidenHistogram(const HistogramInfo *HI,
ArrayRef<VPValue *> Operands);
/// Examines reduction operations to see if the target can use a cheaper
/// operation with a wider per-iteration input VF and narrower PHI VF.
/// Each element within Chains is a pair with a struct containing reduction
/// information and the scaling factor between the number of elements in
/// the input and output.
/// Recursively calls itself to identify chained scaled reductions.
/// Returns true if this invocation added an entry to Chains, otherwise false.
/// i.e. returns false in the case that a subcall adds an entry to Chains,
/// but the top-level call does not.
bool getScaledReductions(
Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains);
public:
VPRecipeBuilder(VPlan &Plan, Loop *OrigLoop, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI,
LoopVectorizationLegality *Legal,
LoopVectorizationCostModel &CM,
PredicatedScalarEvolution &PSE, VPBuilder &Builder)
: Plan(Plan), OrigLoop(OrigLoop), TLI(TLI), TTI(TTI), Legal(Legal),
CM(CM), PSE(PSE), Builder(Builder) {}
std::optional<unsigned> getScalingForReduction(const Instruction *ExitInst) {
auto It = ScaledReductionMap.find(ExitInst);
return It == ScaledReductionMap.end() ? std::nullopt
: std::make_optional(It->second);
}
/// Find all possible partial reductions in the loop and track all of those
/// that are valid so recipes can be formed later.
void collectScaledReductions(VFRange &Range);
/// Create and return a widened recipe for \p I if one can be created within
/// the given VF \p Range.
VPRecipeBase *tryToCreateWidenRecipe(Instruction *Instr,
ArrayRef<VPValue *> Operands,
VFRange &Range, VPBasicBlock *VPBB);
/// Create and return a partial reduction recipe for a reduction instruction
/// along with binary operation and reduction phi operands.
VPRecipeBase *tryToCreatePartialReduction(Instruction *Reduction,
ArrayRef<VPValue *> Operands);
/// Set the recipe created for given ingredient.
void setRecipe(Instruction *I, VPRecipeBase *R) {
assert(!Ingredient2Recipe.contains(I) &&
"Cannot reset recipe for instruction.");
Ingredient2Recipe[I] = R;
}
/// Create the mask for the vector loop header block.
void createHeaderMask();
/// A helper function that computes the predicate of the block BB, assuming
/// that the header block of the loop is set to True or the loop mask when
/// tail folding.
void createBlockInMask(BasicBlock *BB);
/// Returns the *entry* mask for the block \p BB.
VPValue *getBlockInMask(BasicBlock *BB) const;
/// Create an edge mask for every destination of cases and/or default.
void createSwitchEdgeMasks(SwitchInst *SI);
/// A helper function that computes the predicate of the edge between SRC
/// and DST.
VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
/// A helper that returns the previously computed predicate of the edge
/// between SRC and DST.
VPValue *getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const;
/// Return the recipe created for given ingredient.
VPRecipeBase *getRecipe(Instruction *I) {
assert(Ingredient2Recipe.count(I) &&
"Recording this ingredients recipe was not requested");
assert(Ingredient2Recipe[I] != nullptr &&
"Ingredient doesn't have a recipe");
return Ingredient2Recipe[I];
}
/// Build a VPReplicationRecipe for \p I. If it is predicated, add the mask as
/// last operand. Range.End may be decreased to ensure same recipe behavior
/// from \p Range.Start to \p Range.End.
VPReplicateRecipe *handleReplication(Instruction *I, VFRange &Range);
/// Add the incoming values from the backedge to reduction & first-order
/// recurrence cross-iteration phis.
void fixHeaderPhis();
/// Returns a range mapping the values of the range \p Operands to their
/// corresponding VPValues.
iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
mapToVPValues(User::op_range Operands);
VPValue *getVPValueOrAddLiveIn(Value *V) {
if (auto *I = dyn_cast<Instruction>(V)) {
if (auto *R = Ingredient2Recipe.lookup(I))
return R->getVPSingleValue();
}
return Plan.getOrAddLiveIn(V);
}
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H
|