File: VPlanVerifier.cpp

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,696 kB
  • sloc: cpp: 7,438,781; ansic: 1,393,871; asm: 1,012,926; python: 241,771; f90: 86,635; objc: 75,411; lisp: 42,144; pascal: 17,286; sh: 8,596; ml: 5,082; perl: 4,730; makefile: 3,591; awk: 3,523; javascript: 2,251; xml: 892; fortran: 672
file content (423 lines) | stat: -rw-r--r-- 14,079 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
//===-- VPlanVerifier.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the class VPlanVerifier, which contains utility functions
/// to check the consistency and invariants of a VPlan.
///
//===----------------------------------------------------------------------===//

#include "VPlanVerifier.h"
#include "VPlan.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TypeSwitch.h"

#define DEBUG_TYPE "loop-vectorize"

using namespace llvm;

namespace {
class VPlanVerifier {
  const VPDominatorTree &VPDT;
  VPTypeAnalysis &TypeInfo;

  SmallPtrSet<BasicBlock *, 8> WrappedIRBBs;

  // Verify that phi-like recipes are at the beginning of \p VPBB, with no
  // other recipes in between. Also check that only header blocks contain
  // VPHeaderPHIRecipes.
  bool verifyPhiRecipes(const VPBasicBlock *VPBB);

  /// Verify that \p EVL is used correctly. The user must be either in
  /// EVL-based recipes as a last operand or VPInstruction::Add which is
  /// incoming value into EVL's recipe.
  bool verifyEVLRecipe(const VPInstruction &EVL) const;

  bool verifyVPBasicBlock(const VPBasicBlock *VPBB);

  bool verifyBlock(const VPBlockBase *VPB);

  /// Helper function that verifies the CFG invariants of the VPBlockBases
  /// within
  /// \p Region. Checks in this function are generic for VPBlockBases. They are
  /// not specific for VPBasicBlocks or VPRegionBlocks.
  bool verifyBlocksInRegion(const VPRegionBlock *Region);

  /// Verify the CFG invariants of VPRegionBlock \p Region and its nested
  /// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
  bool verifyRegion(const VPRegionBlock *Region);

  /// Verify the CFG invariants of VPRegionBlock \p Region and its nested
  /// VPBlockBases. Recurse inside nested VPRegionBlocks.
  bool verifyRegionRec(const VPRegionBlock *Region);

public:
  VPlanVerifier(VPDominatorTree &VPDT, VPTypeAnalysis &TypeInfo)
      : VPDT(VPDT), TypeInfo(TypeInfo) {}

  bool verify(const VPlan &Plan);
};
} // namespace

bool VPlanVerifier::verifyPhiRecipes(const VPBasicBlock *VPBB) {
  auto RecipeI = VPBB->begin();
  auto End = VPBB->end();
  unsigned NumActiveLaneMaskPhiRecipes = 0;
  const VPRegionBlock *ParentR = VPBB->getParent();
  bool IsHeaderVPBB = ParentR && !ParentR->isReplicator() &&
                      ParentR->getEntryBasicBlock() == VPBB;
  while (RecipeI != End && RecipeI->isPhi()) {
    if (isa<VPActiveLaneMaskPHIRecipe>(RecipeI))
      NumActiveLaneMaskPhiRecipes++;

    if (IsHeaderVPBB && !isa<VPHeaderPHIRecipe, VPWidenPHIRecipe>(*RecipeI)) {
      errs() << "Found non-header PHI recipe in header VPBB";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
      errs() << ": ";
      RecipeI->dump();
#endif
      return false;
    }

    if (!IsHeaderVPBB && isa<VPHeaderPHIRecipe>(*RecipeI)) {
      errs() << "Found header PHI recipe in non-header VPBB";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
      errs() << ": ";
      RecipeI->dump();
#endif
      return false;
    }

    RecipeI++;
  }

  if (NumActiveLaneMaskPhiRecipes > 1) {
    errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe";
    return false;
  }

  while (RecipeI != End) {
    if (RecipeI->isPhi() && !isa<VPBlendRecipe>(&*RecipeI)) {
      errs() << "Found phi-like recipe after non-phi recipe";

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
      errs() << ": ";
      RecipeI->dump();
      errs() << "after\n";
      std::prev(RecipeI)->dump();
#endif
      return false;
    }
    RecipeI++;
  }
  return true;
}

bool VPlanVerifier::verifyEVLRecipe(const VPInstruction &EVL) const {
  if (EVL.getOpcode() != VPInstruction::ExplicitVectorLength) {
    errs() << "verifyEVLRecipe should only be called on "
              "VPInstruction::ExplicitVectorLength\n";
    return false;
  }
  auto VerifyEVLUse = [&](const VPRecipeBase &R,
                          const unsigned ExpectedIdx) -> bool {
    SmallVector<const VPValue *> Ops(R.operands());
    unsigned UseCount = count(Ops, &EVL);
    if (UseCount != 1 || Ops[ExpectedIdx] != &EVL) {
      errs() << "EVL is used as non-last operand in EVL-based recipe\n";
      return false;
    }
    return true;
  };
  return all_of(EVL.users(), [&VerifyEVLUse](VPUser *U) {
    return TypeSwitch<const VPUser *, bool>(U)
        .Case<VPWidenIntrinsicRecipe>([&](const VPWidenIntrinsicRecipe *S) {
          return VerifyEVLUse(*S, S->getNumOperands() - 1);
        })
        .Case<VPWidenStoreEVLRecipe, VPReductionEVLRecipe>(
            [&](const VPRecipeBase *S) { return VerifyEVLUse(*S, 2); })
        .Case<VPWidenLoadEVLRecipe, VPReverseVectorPointerRecipe>(
            [&](const VPRecipeBase *R) { return VerifyEVLUse(*R, 1); })
        .Case<VPWidenEVLRecipe>([&](const VPWidenEVLRecipe *W) {
          return VerifyEVLUse(*W,
                              Instruction::isUnaryOp(W->getOpcode()) ? 1 : 2);
        })
        .Case<VPScalarCastRecipe>(
            [&](const VPScalarCastRecipe *S) { return VerifyEVLUse(*S, 0); })
        .Case<VPInstruction>([&](const VPInstruction *I) {
          if (I->getOpcode() != Instruction::Add) {
            errs() << "EVL is used as an operand in non-VPInstruction::Add\n";
            return false;
          }
          if (I->getNumUsers() != 1) {
            errs() << "EVL is used in VPInstruction:Add with multiple "
                      "users\n";
            return false;
          }
          if (!isa<VPEVLBasedIVPHIRecipe>(*I->users().begin())) {
            errs() << "Result of VPInstruction::Add with EVL operand is "
                      "not used by VPEVLBasedIVPHIRecipe\n";
            return false;
          }
          return true;
        })
        .Default([&](const VPUser *U) {
          errs() << "EVL has unexpected user\n";
          return false;
        });
  });
}

bool VPlanVerifier::verifyVPBasicBlock(const VPBasicBlock *VPBB) {
  if (!verifyPhiRecipes(VPBB))
    return false;

  // Verify that defs in VPBB dominate all their uses. The current
  // implementation is still incomplete.
  DenseMap<const VPRecipeBase *, unsigned> RecipeNumbering;
  unsigned Cnt = 0;
  for (const VPRecipeBase &R : *VPBB)
    RecipeNumbering[&R] = Cnt++;

  for (const VPRecipeBase &R : *VPBB) {
    if (isa<VPIRInstruction>(&R) && !isa<VPIRBasicBlock>(VPBB)) {
      errs() << "VPIRInstructions ";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
      R.dump();
      errs() << " ";
#endif
      errs() << "not in a VPIRBasicBlock!\n";
      return false;
    }
    for (const VPValue *V : R.definedValues()) {
      // Verify that we can infer a scalar type for each defined value. With
      // assertions enabled, inferScalarType will perform some consistency
      // checks during type inference.
      if (!TypeInfo.inferScalarType(V)) {
        errs() << "Failed to infer scalar type!\n";
        return false;
      }

      for (const VPUser *U : V->users()) {
        auto *UI = cast<VPRecipeBase>(U);
        // TODO: check dominance of incoming values for phis properly.
        if (!UI ||
            isa<VPHeaderPHIRecipe, VPWidenPHIRecipe, VPPredInstPHIRecipe>(UI))
          continue;

        // If the user is in the same block, check it comes after R in the
        // block.
        if (UI->getParent() == VPBB) {
          if (RecipeNumbering[UI] < RecipeNumbering[&R]) {
            errs() << "Use before def!\n";
            return false;
          }
          continue;
        }

        if (!VPDT.dominates(VPBB, UI->getParent())) {
          errs() << "Use before def!\n";
          return false;
        }
      }
    }
    if (const auto *EVL = dyn_cast<VPInstruction>(&R)) {
      if (EVL->getOpcode() == VPInstruction::ExplicitVectorLength &&
          !verifyEVLRecipe(*EVL)) {
        errs() << "EVL VPValue is not used correctly\n";
        return false;
      }
    }
  }

  auto *IRBB = dyn_cast<VPIRBasicBlock>(VPBB);
  if (!IRBB)
    return true;

  if (!WrappedIRBBs.insert(IRBB->getIRBasicBlock()).second) {
    errs() << "Same IR basic block used by multiple wrapper blocks!\n";
    return false;
  }

  return true;
}

/// Utility function that checks whether \p VPBlockVec has duplicate
/// VPBlockBases.
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
  SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
  for (const auto *Block : VPBlockVec) {
    if (!VPBlockSet.insert(Block).second)
      return true;
  }
  return false;
}

bool VPlanVerifier::verifyBlock(const VPBlockBase *VPB) {
  auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
  // Check block's condition bit.
  if (VPB->getNumSuccessors() > 1 ||
      (VPBB && VPBB->getParent() && VPBB->isExiting() &&
       !VPBB->getParent()->isReplicator())) {
    if (!VPBB || !VPBB->getTerminator()) {
      errs() << "Block has multiple successors but doesn't "
                "have a proper branch recipe!\n";
      return false;
    }
  } else {
    if (VPBB && VPBB->getTerminator()) {
      errs() << "Unexpected branch recipe!\n";
      return false;
    }
  }

  // Check block's successors.
  const auto &Successors = VPB->getSuccessors();
  // There must be only one instance of a successor in block's successor list.
  // TODO: This won't work for switch statements.
  if (hasDuplicates(Successors)) {
    errs() << "Multiple instances of the same successor.\n";
    return false;
  }

  for (const VPBlockBase *Succ : Successors) {
    // There must be a bi-directional link between block and successor.
    const auto &SuccPreds = Succ->getPredecessors();
    if (!is_contained(SuccPreds, VPB)) {
      errs() << "Missing predecessor link.\n";
      return false;
    }
  }

  // Check block's predecessors.
  const auto &Predecessors = VPB->getPredecessors();
  // There must be only one instance of a predecessor in block's predecessor
  // list.
  // TODO: This won't work for switch statements.
  if (hasDuplicates(Predecessors)) {
    errs() << "Multiple instances of the same predecessor.\n";
    return false;
  }

  for (const VPBlockBase *Pred : Predecessors) {
    // Block and predecessor must be inside the same region.
    if (Pred->getParent() != VPB->getParent()) {
      errs() << "Predecessor is not in the same region.\n";
      return false;
    }

    // There must be a bi-directional link between block and predecessor.
    const auto &PredSuccs = Pred->getSuccessors();
    if (!is_contained(PredSuccs, VPB)) {
      errs() << "Missing successor link.\n";
      return false;
    }
  }
  return !VPBB || verifyVPBasicBlock(VPBB);
}

bool VPlanVerifier::verifyBlocksInRegion(const VPRegionBlock *Region) {
  for (const VPBlockBase *VPB : vp_depth_first_shallow(Region->getEntry())) {
    // Check block's parent.
    if (VPB->getParent() != Region) {
      errs() << "VPBlockBase has wrong parent\n";
      return false;
    }

    if (!verifyBlock(VPB))
      return false;
  }
  return true;
}

bool VPlanVerifier::verifyRegion(const VPRegionBlock *Region) {
  const VPBlockBase *Entry = Region->getEntry();
  const VPBlockBase *Exiting = Region->getExiting();

  // Entry and Exiting shouldn't have any predecessor/successor, respectively.
  if (Entry->getNumPredecessors() != 0) {
    errs() << "region entry block has predecessors\n";
    return false;
  }
  if (Exiting->getNumSuccessors() != 0) {
    errs() << "region exiting block has successors\n";
    return false;
  }

  return verifyBlocksInRegion(Region);
}

bool VPlanVerifier::verifyRegionRec(const VPRegionBlock *Region) {
  // Recurse inside nested regions and check all blocks inside the region.
  return verifyRegion(Region) &&
         all_of(vp_depth_first_shallow(Region->getEntry()),
                [this](const VPBlockBase *VPB) {
                  const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB);
                  return !SubRegion || verifyRegionRec(SubRegion);
                });
}

bool VPlanVerifier::verify(const VPlan &Plan) {
  if (any_of(vp_depth_first_shallow(Plan.getEntry()),
             [this](const VPBlockBase *VPB) { return !verifyBlock(VPB); }))
    return false;

  const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
  if (!verifyRegionRec(TopRegion))
    return false;

  if (TopRegion->getParent()) {
    errs() << "VPlan Top Region should have no parent.\n";
    return false;
  }

  const VPBasicBlock *Entry = dyn_cast<VPBasicBlock>(TopRegion->getEntry());
  if (!Entry) {
    errs() << "VPlan entry block is not a VPBasicBlock\n";
    return false;
  }

  if (!isa<VPCanonicalIVPHIRecipe>(&*Entry->begin())) {
    errs() << "VPlan vector loop header does not start with a "
              "VPCanonicalIVPHIRecipe\n";
    return false;
  }

  const VPBasicBlock *Exiting = dyn_cast<VPBasicBlock>(TopRegion->getExiting());
  if (!Exiting) {
    errs() << "VPlan exiting block is not a VPBasicBlock\n";
    return false;
  }

  if (Exiting->empty()) {
    errs() << "VPlan vector loop exiting block must end with BranchOnCount or "
              "BranchOnCond VPInstruction but is empty\n";
    return false;
  }

  auto *LastInst = dyn_cast<VPInstruction>(std::prev(Exiting->end()));
  if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount &&
                    LastInst->getOpcode() != VPInstruction::BranchOnCond)) {
    errs() << "VPlan vector loop exit must end with BranchOnCount or "
              "BranchOnCond VPInstruction\n";
    return false;
  }

  return true;
}

bool llvm::verifyVPlanIsValid(const VPlan &Plan) {
  VPDominatorTree VPDT;
  VPDT.recalculate(const_cast<VPlan &>(Plan));
  VPTypeAnalysis TypeInfo(
      const_cast<VPlan &>(Plan).getCanonicalIV()->getScalarType());
  VPlanVerifier Verifier(VPDT, TypeInfo);
  return Verifier.verify(Plan);
}