1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
//===-- VPlanVerifier.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the class VPlanVerifier, which contains utility functions
/// to check the consistency and invariants of a VPlan.
///
//===----------------------------------------------------------------------===//
#include "VPlanVerifier.h"
#include "VPlan.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TypeSwitch.h"
#define DEBUG_TYPE "loop-vectorize"
using namespace llvm;
namespace {
class VPlanVerifier {
const VPDominatorTree &VPDT;
VPTypeAnalysis &TypeInfo;
SmallPtrSet<BasicBlock *, 8> WrappedIRBBs;
// Verify that phi-like recipes are at the beginning of \p VPBB, with no
// other recipes in between. Also check that only header blocks contain
// VPHeaderPHIRecipes.
bool verifyPhiRecipes(const VPBasicBlock *VPBB);
/// Verify that \p EVL is used correctly. The user must be either in
/// EVL-based recipes as a last operand or VPInstruction::Add which is
/// incoming value into EVL's recipe.
bool verifyEVLRecipe(const VPInstruction &EVL) const;
bool verifyVPBasicBlock(const VPBasicBlock *VPBB);
bool verifyBlock(const VPBlockBase *VPB);
/// Helper function that verifies the CFG invariants of the VPBlockBases
/// within
/// \p Region. Checks in this function are generic for VPBlockBases. They are
/// not specific for VPBasicBlocks or VPRegionBlocks.
bool verifyBlocksInRegion(const VPRegionBlock *Region);
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
/// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
bool verifyRegion(const VPRegionBlock *Region);
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
/// VPBlockBases. Recurse inside nested VPRegionBlocks.
bool verifyRegionRec(const VPRegionBlock *Region);
public:
VPlanVerifier(VPDominatorTree &VPDT, VPTypeAnalysis &TypeInfo)
: VPDT(VPDT), TypeInfo(TypeInfo) {}
bool verify(const VPlan &Plan);
};
} // namespace
bool VPlanVerifier::verifyPhiRecipes(const VPBasicBlock *VPBB) {
auto RecipeI = VPBB->begin();
auto End = VPBB->end();
unsigned NumActiveLaneMaskPhiRecipes = 0;
const VPRegionBlock *ParentR = VPBB->getParent();
bool IsHeaderVPBB = ParentR && !ParentR->isReplicator() &&
ParentR->getEntryBasicBlock() == VPBB;
while (RecipeI != End && RecipeI->isPhi()) {
if (isa<VPActiveLaneMaskPHIRecipe>(RecipeI))
NumActiveLaneMaskPhiRecipes++;
if (IsHeaderVPBB && !isa<VPHeaderPHIRecipe, VPWidenPHIRecipe>(*RecipeI)) {
errs() << "Found non-header PHI recipe in header VPBB";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
errs() << ": ";
RecipeI->dump();
#endif
return false;
}
if (!IsHeaderVPBB && isa<VPHeaderPHIRecipe>(*RecipeI)) {
errs() << "Found header PHI recipe in non-header VPBB";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
errs() << ": ";
RecipeI->dump();
#endif
return false;
}
RecipeI++;
}
if (NumActiveLaneMaskPhiRecipes > 1) {
errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe";
return false;
}
while (RecipeI != End) {
if (RecipeI->isPhi() && !isa<VPBlendRecipe>(&*RecipeI)) {
errs() << "Found phi-like recipe after non-phi recipe";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
errs() << ": ";
RecipeI->dump();
errs() << "after\n";
std::prev(RecipeI)->dump();
#endif
return false;
}
RecipeI++;
}
return true;
}
bool VPlanVerifier::verifyEVLRecipe(const VPInstruction &EVL) const {
if (EVL.getOpcode() != VPInstruction::ExplicitVectorLength) {
errs() << "verifyEVLRecipe should only be called on "
"VPInstruction::ExplicitVectorLength\n";
return false;
}
auto VerifyEVLUse = [&](const VPRecipeBase &R,
const unsigned ExpectedIdx) -> bool {
SmallVector<const VPValue *> Ops(R.operands());
unsigned UseCount = count(Ops, &EVL);
if (UseCount != 1 || Ops[ExpectedIdx] != &EVL) {
errs() << "EVL is used as non-last operand in EVL-based recipe\n";
return false;
}
return true;
};
return all_of(EVL.users(), [&VerifyEVLUse](VPUser *U) {
return TypeSwitch<const VPUser *, bool>(U)
.Case<VPWidenIntrinsicRecipe>([&](const VPWidenIntrinsicRecipe *S) {
return VerifyEVLUse(*S, S->getNumOperands() - 1);
})
.Case<VPWidenStoreEVLRecipe, VPReductionEVLRecipe>(
[&](const VPRecipeBase *S) { return VerifyEVLUse(*S, 2); })
.Case<VPWidenLoadEVLRecipe, VPReverseVectorPointerRecipe>(
[&](const VPRecipeBase *R) { return VerifyEVLUse(*R, 1); })
.Case<VPWidenEVLRecipe>([&](const VPWidenEVLRecipe *W) {
return VerifyEVLUse(*W,
Instruction::isUnaryOp(W->getOpcode()) ? 1 : 2);
})
.Case<VPScalarCastRecipe>(
[&](const VPScalarCastRecipe *S) { return VerifyEVLUse(*S, 0); })
.Case<VPInstruction>([&](const VPInstruction *I) {
if (I->getOpcode() != Instruction::Add) {
errs() << "EVL is used as an operand in non-VPInstruction::Add\n";
return false;
}
if (I->getNumUsers() != 1) {
errs() << "EVL is used in VPInstruction:Add with multiple "
"users\n";
return false;
}
if (!isa<VPEVLBasedIVPHIRecipe>(*I->users().begin())) {
errs() << "Result of VPInstruction::Add with EVL operand is "
"not used by VPEVLBasedIVPHIRecipe\n";
return false;
}
return true;
})
.Default([&](const VPUser *U) {
errs() << "EVL has unexpected user\n";
return false;
});
});
}
bool VPlanVerifier::verifyVPBasicBlock(const VPBasicBlock *VPBB) {
if (!verifyPhiRecipes(VPBB))
return false;
// Verify that defs in VPBB dominate all their uses. The current
// implementation is still incomplete.
DenseMap<const VPRecipeBase *, unsigned> RecipeNumbering;
unsigned Cnt = 0;
for (const VPRecipeBase &R : *VPBB)
RecipeNumbering[&R] = Cnt++;
for (const VPRecipeBase &R : *VPBB) {
if (isa<VPIRInstruction>(&R) && !isa<VPIRBasicBlock>(VPBB)) {
errs() << "VPIRInstructions ";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
R.dump();
errs() << " ";
#endif
errs() << "not in a VPIRBasicBlock!\n";
return false;
}
for (const VPValue *V : R.definedValues()) {
// Verify that we can infer a scalar type for each defined value. With
// assertions enabled, inferScalarType will perform some consistency
// checks during type inference.
if (!TypeInfo.inferScalarType(V)) {
errs() << "Failed to infer scalar type!\n";
return false;
}
for (const VPUser *U : V->users()) {
auto *UI = cast<VPRecipeBase>(U);
// TODO: check dominance of incoming values for phis properly.
if (!UI ||
isa<VPHeaderPHIRecipe, VPWidenPHIRecipe, VPPredInstPHIRecipe>(UI))
continue;
// If the user is in the same block, check it comes after R in the
// block.
if (UI->getParent() == VPBB) {
if (RecipeNumbering[UI] < RecipeNumbering[&R]) {
errs() << "Use before def!\n";
return false;
}
continue;
}
if (!VPDT.dominates(VPBB, UI->getParent())) {
errs() << "Use before def!\n";
return false;
}
}
}
if (const auto *EVL = dyn_cast<VPInstruction>(&R)) {
if (EVL->getOpcode() == VPInstruction::ExplicitVectorLength &&
!verifyEVLRecipe(*EVL)) {
errs() << "EVL VPValue is not used correctly\n";
return false;
}
}
}
auto *IRBB = dyn_cast<VPIRBasicBlock>(VPBB);
if (!IRBB)
return true;
if (!WrappedIRBBs.insert(IRBB->getIRBasicBlock()).second) {
errs() << "Same IR basic block used by multiple wrapper blocks!\n";
return false;
}
return true;
}
/// Utility function that checks whether \p VPBlockVec has duplicate
/// VPBlockBases.
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
for (const auto *Block : VPBlockVec) {
if (!VPBlockSet.insert(Block).second)
return true;
}
return false;
}
bool VPlanVerifier::verifyBlock(const VPBlockBase *VPB) {
auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
// Check block's condition bit.
if (VPB->getNumSuccessors() > 1 ||
(VPBB && VPBB->getParent() && VPBB->isExiting() &&
!VPBB->getParent()->isReplicator())) {
if (!VPBB || !VPBB->getTerminator()) {
errs() << "Block has multiple successors but doesn't "
"have a proper branch recipe!\n";
return false;
}
} else {
if (VPBB && VPBB->getTerminator()) {
errs() << "Unexpected branch recipe!\n";
return false;
}
}
// Check block's successors.
const auto &Successors = VPB->getSuccessors();
// There must be only one instance of a successor in block's successor list.
// TODO: This won't work for switch statements.
if (hasDuplicates(Successors)) {
errs() << "Multiple instances of the same successor.\n";
return false;
}
for (const VPBlockBase *Succ : Successors) {
// There must be a bi-directional link between block and successor.
const auto &SuccPreds = Succ->getPredecessors();
if (!is_contained(SuccPreds, VPB)) {
errs() << "Missing predecessor link.\n";
return false;
}
}
// Check block's predecessors.
const auto &Predecessors = VPB->getPredecessors();
// There must be only one instance of a predecessor in block's predecessor
// list.
// TODO: This won't work for switch statements.
if (hasDuplicates(Predecessors)) {
errs() << "Multiple instances of the same predecessor.\n";
return false;
}
for (const VPBlockBase *Pred : Predecessors) {
// Block and predecessor must be inside the same region.
if (Pred->getParent() != VPB->getParent()) {
errs() << "Predecessor is not in the same region.\n";
return false;
}
// There must be a bi-directional link between block and predecessor.
const auto &PredSuccs = Pred->getSuccessors();
if (!is_contained(PredSuccs, VPB)) {
errs() << "Missing successor link.\n";
return false;
}
}
return !VPBB || verifyVPBasicBlock(VPBB);
}
bool VPlanVerifier::verifyBlocksInRegion(const VPRegionBlock *Region) {
for (const VPBlockBase *VPB : vp_depth_first_shallow(Region->getEntry())) {
// Check block's parent.
if (VPB->getParent() != Region) {
errs() << "VPBlockBase has wrong parent\n";
return false;
}
if (!verifyBlock(VPB))
return false;
}
return true;
}
bool VPlanVerifier::verifyRegion(const VPRegionBlock *Region) {
const VPBlockBase *Entry = Region->getEntry();
const VPBlockBase *Exiting = Region->getExiting();
// Entry and Exiting shouldn't have any predecessor/successor, respectively.
if (Entry->getNumPredecessors() != 0) {
errs() << "region entry block has predecessors\n";
return false;
}
if (Exiting->getNumSuccessors() != 0) {
errs() << "region exiting block has successors\n";
return false;
}
return verifyBlocksInRegion(Region);
}
bool VPlanVerifier::verifyRegionRec(const VPRegionBlock *Region) {
// Recurse inside nested regions and check all blocks inside the region.
return verifyRegion(Region) &&
all_of(vp_depth_first_shallow(Region->getEntry()),
[this](const VPBlockBase *VPB) {
const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB);
return !SubRegion || verifyRegionRec(SubRegion);
});
}
bool VPlanVerifier::verify(const VPlan &Plan) {
if (any_of(vp_depth_first_shallow(Plan.getEntry()),
[this](const VPBlockBase *VPB) { return !verifyBlock(VPB); }))
return false;
const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
if (!verifyRegionRec(TopRegion))
return false;
if (TopRegion->getParent()) {
errs() << "VPlan Top Region should have no parent.\n";
return false;
}
const VPBasicBlock *Entry = dyn_cast<VPBasicBlock>(TopRegion->getEntry());
if (!Entry) {
errs() << "VPlan entry block is not a VPBasicBlock\n";
return false;
}
if (!isa<VPCanonicalIVPHIRecipe>(&*Entry->begin())) {
errs() << "VPlan vector loop header does not start with a "
"VPCanonicalIVPHIRecipe\n";
return false;
}
const VPBasicBlock *Exiting = dyn_cast<VPBasicBlock>(TopRegion->getExiting());
if (!Exiting) {
errs() << "VPlan exiting block is not a VPBasicBlock\n";
return false;
}
if (Exiting->empty()) {
errs() << "VPlan vector loop exiting block must end with BranchOnCount or "
"BranchOnCond VPInstruction but is empty\n";
return false;
}
auto *LastInst = dyn_cast<VPInstruction>(std::prev(Exiting->end()));
if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount &&
LastInst->getOpcode() != VPInstruction::BranchOnCond)) {
errs() << "VPlan vector loop exit must end with BranchOnCount or "
"BranchOnCond VPInstruction\n";
return false;
}
return true;
}
bool llvm::verifyVPlanIsValid(const VPlan &Plan) {
VPDominatorTree VPDT;
VPDT.recalculate(const_cast<VPlan &>(Plan));
VPTypeAnalysis TypeInfo(
const_cast<VPlan &>(Plan).getCanonicalIV()->getScalarType());
VPlanVerifier Verifier(VPDT, TypeInfo);
return Verifier.verify(Plan);
}
|