1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
//===-- lib/Semantics/compute-offsets.cpp -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "compute-offsets.h"
#include "flang/Evaluate/fold-designator.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/type.h"
#include "flang/Runtime/descriptor-consts.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <vector>
namespace Fortran::semantics {
class ComputeOffsetsHelper {
public:
ComputeOffsetsHelper(SemanticsContext &context) : context_{context} {}
void Compute(Scope &);
private:
struct SizeAndAlignment {
SizeAndAlignment() {}
SizeAndAlignment(std::size_t bytes) : size{bytes}, alignment{bytes} {}
SizeAndAlignment(std::size_t bytes, std::size_t align)
: size{bytes}, alignment{align} {}
std::size_t size{0};
std::size_t alignment{0};
};
struct SymbolAndOffset {
SymbolAndOffset(Symbol &s, std::size_t off, const EquivalenceObject &obj)
: symbol{s}, offset{off}, object{&obj} {}
SymbolAndOffset(const SymbolAndOffset &) = default;
MutableSymbolRef symbol;
std::size_t offset;
const EquivalenceObject *object;
};
void DoCommonBlock(Symbol &);
void DoEquivalenceBlockBase(Symbol &, SizeAndAlignment &);
void DoEquivalenceSet(const EquivalenceSet &);
SymbolAndOffset Resolve(const SymbolAndOffset &);
std::size_t ComputeOffset(const EquivalenceObject &);
// Returns amount of padding that was needed for alignment
std::size_t DoSymbol(
Symbol &, std::optional<const size_t> newAlign = std::nullopt);
SizeAndAlignment GetSizeAndAlignment(const Symbol &, bool entire);
std::size_t Align(std::size_t, std::size_t);
std::optional<size_t> CompAlignment(const Symbol &);
std::optional<size_t> HasSpecialAlign(const Symbol &, Scope &);
SemanticsContext &context_;
std::size_t offset_{0};
std::size_t alignment_{1};
// symbol -> symbol+offset that determines its location, from EQUIVALENCE
std::map<MutableSymbolRef, SymbolAndOffset, SymbolAddressCompare> dependents_;
// base symbol -> SizeAndAlignment for each distinct EQUIVALENCE block
std::map<MutableSymbolRef, SizeAndAlignment, SymbolAddressCompare>
equivalenceBlock_;
};
// This function is only called if the target platform is AIX.
static bool isReal8OrLarger(const Fortran::semantics::DeclTypeSpec *type) {
return ((type->IsNumeric(common::TypeCategory::Real) ||
type->IsNumeric(common::TypeCategory::Complex)) &&
evaluate::ToInt64(type->numericTypeSpec().kind()) > 4);
}
// This function is only called if the target platform is AIX.
// It determines the alignment of a component. If the component is a derived
// type, the alignment is computed accordingly.
std::optional<size_t> ComputeOffsetsHelper::CompAlignment(const Symbol &sym) {
size_t max_align{0};
constexpr size_t fourByteAlign{4};
bool contain_double{false};
auto derivedTypeSpec{sym.GetType()->AsDerived()};
DirectComponentIterator directs{*derivedTypeSpec};
for (auto it{directs.begin()}; it != directs.end(); ++it) {
auto type{it->GetType()};
auto s{GetSizeAndAlignment(*it, true)};
if (isReal8OrLarger(type)) {
max_align = std::max(max_align, fourByteAlign);
contain_double = true;
} else if (type->AsDerived()) {
if (const auto newAlgin{CompAlignment(*it)}) {
max_align = std::max(max_align, s.alignment);
} else {
return std::nullopt;
}
} else {
max_align = std::max(max_align, s.alignment);
}
}
if (contain_double) {
return max_align;
} else {
return std::nullopt;
}
}
// This function is only called if the target platform is AIX.
// Special alignment is needed only if it is a bind(c) derived type
// and contain real type components that have larger than 4 bytes.
std::optional<size_t> ComputeOffsetsHelper::HasSpecialAlign(
const Symbol &sym, Scope &scope) {
// On AIX, if the component that is not the first component and is
// a float of 8 bytes or larger, it has the 4-byte alignment.
// Only set the special alignment for bind(c) derived type on that platform.
if (const auto type{sym.GetType()}) {
auto &symOwner{sym.owner()};
if (symOwner.symbol() && symOwner.IsDerivedType() &&
symOwner.symbol()->attrs().HasAny({semantics::Attr::BIND_C}) &&
&sym != &(*scope.GetSymbols().front())) {
if (isReal8OrLarger(type)) {
return 4UL;
} else if (type->AsDerived()) {
return CompAlignment(sym);
}
}
}
return std::nullopt;
}
void ComputeOffsetsHelper::Compute(Scope &scope) {
for (Scope &child : scope.children()) {
ComputeOffsets(context_, child);
}
if (scope.symbol() && scope.IsDerivedTypeWithKindParameter()) {
return; // only process instantiations of kind parameterized derived types
}
if (scope.alignment().has_value()) {
return; // prevent infinite recursion in error cases
}
scope.SetAlignment(0);
// Build dependents_ from equivalences: symbol -> symbol+offset
for (const EquivalenceSet &set : scope.equivalenceSets()) {
DoEquivalenceSet(set);
}
// Compute a base symbol and overall block size for each
// disjoint EQUIVALENCE storage sequence.
for (auto &[symbol, dep] : dependents_) {
dep = Resolve(dep);
CHECK(symbol->size() == 0);
auto symInfo{GetSizeAndAlignment(*symbol, true)};
symbol->set_size(symInfo.size);
Symbol &base{*dep.symbol};
auto iter{equivalenceBlock_.find(base)};
std::size_t minBlockSize{dep.offset + symInfo.size};
if (iter == equivalenceBlock_.end()) {
equivalenceBlock_.emplace(
base, SizeAndAlignment{minBlockSize, symInfo.alignment});
} else {
SizeAndAlignment &blockInfo{iter->second};
blockInfo.size = std::max(blockInfo.size, minBlockSize);
blockInfo.alignment = std::max(blockInfo.alignment, symInfo.alignment);
}
}
// Assign offsets for non-COMMON EQUIVALENCE blocks
for (auto &[symbol, blockInfo] : equivalenceBlock_) {
if (!FindCommonBlockContaining(*symbol)) {
DoSymbol(*symbol);
DoEquivalenceBlockBase(*symbol, blockInfo);
offset_ = std::max(offset_, symbol->offset() + blockInfo.size);
}
}
// Process remaining non-COMMON symbols; this is all of them if there
// was no use of EQUIVALENCE in the scope.
for (auto &symbol : scope.GetSymbols()) {
if (!FindCommonBlockContaining(*symbol) &&
dependents_.find(symbol) == dependents_.end() &&
equivalenceBlock_.find(symbol) == equivalenceBlock_.end()) {
std::optional<size_t> newAlign{std::nullopt};
// Handle special alignment requirement for AIX
auto triple{llvm::Triple(
llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple()))};
if (triple.getOS() == llvm::Triple::OSType::AIX) {
newAlign = HasSpecialAlign(*symbol, scope);
}
DoSymbol(*symbol, newAlign);
if (auto *generic{symbol->detailsIf<GenericDetails>()}) {
if (Symbol * specific{generic->specific()};
specific && !FindCommonBlockContaining(*specific)) {
// might be a shadowed procedure pointer
DoSymbol(*specific);
}
}
}
}
// Ensure that the size is a multiple of the alignment
offset_ = Align(offset_, alignment_);
scope.set_size(offset_);
scope.SetAlignment(alignment_);
// Assign offsets in COMMON blocks, unless this scope is a BLOCK construct,
// where COMMON blocks are illegal (C1107 and C1108).
if (scope.kind() != Scope::Kind::BlockConstruct) {
for (auto &pair : scope.commonBlocks()) {
DoCommonBlock(*pair.second);
}
}
for (auto &[symbol, dep] : dependents_) {
symbol->set_offset(dep.symbol->offset() + dep.offset);
if (const auto *block{FindCommonBlockContaining(*dep.symbol)}) {
symbol->get<ObjectEntityDetails>().set_commonBlock(*block);
}
}
}
auto ComputeOffsetsHelper::Resolve(const SymbolAndOffset &dep)
-> SymbolAndOffset {
auto it{dependents_.find(*dep.symbol)};
if (it == dependents_.end()) {
return dep;
} else {
SymbolAndOffset result{Resolve(it->second)};
result.offset += dep.offset;
result.object = dep.object;
return result;
}
}
void ComputeOffsetsHelper::DoCommonBlock(Symbol &commonBlock) {
auto &details{commonBlock.get<CommonBlockDetails>()};
offset_ = 0;
alignment_ = 0;
std::size_t minSize{0};
std::size_t minAlignment{0};
UnorderedSymbolSet previous;
for (auto object : details.objects()) {
Symbol &symbol{*object};
auto errorSite{
commonBlock.name().empty() ? symbol.name() : commonBlock.name()};
if (std::size_t padding{DoSymbol(symbol.GetUltimate())}) {
context_.Warn(common::UsageWarning::CommonBlockPadding, errorSite,
"COMMON block /%s/ requires %zd bytes of padding before '%s' for alignment"_port_en_US,
commonBlock.name(), padding, symbol.name());
}
previous.emplace(symbol);
auto eqIter{equivalenceBlock_.end()};
auto iter{dependents_.find(symbol)};
if (iter == dependents_.end()) {
eqIter = equivalenceBlock_.find(symbol);
if (eqIter != equivalenceBlock_.end()) {
DoEquivalenceBlockBase(symbol, eqIter->second);
}
} else {
SymbolAndOffset &dep{iter->second};
Symbol &base{*dep.symbol};
if (const auto *baseBlock{FindCommonBlockContaining(base)}) {
if (baseBlock == &commonBlock) {
if (previous.find(SymbolRef{base}) == previous.end() ||
base.offset() != symbol.offset() - dep.offset) {
context_.Say(errorSite,
"'%s' is storage associated with '%s' by EQUIVALENCE elsewhere in COMMON block /%s/"_err_en_US,
symbol.name(), base.name(), commonBlock.name());
}
} else { // F'2023 8.10.3 p1
context_.Say(errorSite,
"'%s' in COMMON block /%s/ must not be storage associated with '%s' in COMMON block /%s/ by EQUIVALENCE"_err_en_US,
symbol.name(), commonBlock.name(), base.name(),
baseBlock->name());
}
} else if (dep.offset > symbol.offset()) { // 8.10.3(3)
context_.Say(errorSite,
"'%s' cannot backward-extend COMMON block /%s/ via EQUIVALENCE with '%s'"_err_en_US,
symbol.name(), commonBlock.name(), base.name());
} else {
eqIter = equivalenceBlock_.find(base);
base.get<ObjectEntityDetails>().set_commonBlock(commonBlock);
base.set_offset(symbol.offset() - dep.offset);
previous.emplace(base);
}
}
// Get full extent of any EQUIVALENCE block into size of COMMON ( see
// 8.10.2.2 point 1 (2))
if (eqIter != equivalenceBlock_.end()) {
SizeAndAlignment &blockInfo{eqIter->second};
minSize = std::max(
minSize, std::max(offset_, eqIter->first->offset() + blockInfo.size));
minAlignment = std::max(minAlignment, blockInfo.alignment);
}
}
commonBlock.set_size(std::max(minSize, offset_));
details.set_alignment(std::max(minAlignment, alignment_));
context_.MapCommonBlockAndCheckConflicts(commonBlock);
}
void ComputeOffsetsHelper::DoEquivalenceBlockBase(
Symbol &symbol, SizeAndAlignment &blockInfo) {
if (symbol.size() > blockInfo.size) {
blockInfo.size = symbol.size();
}
}
void ComputeOffsetsHelper::DoEquivalenceSet(const EquivalenceSet &set) {
std::vector<SymbolAndOffset> symbolOffsets;
std::optional<std::size_t> representative;
for (const EquivalenceObject &object : set) {
std::size_t offset{ComputeOffset(object)};
SymbolAndOffset resolved{
Resolve(SymbolAndOffset{object.symbol, offset, object})};
symbolOffsets.push_back(resolved);
if (!representative ||
resolved.offset >= symbolOffsets[*representative].offset) {
// The equivalenced object with the largest offset from its resolved
// symbol will be the representative of this set, since the offsets
// of the other objects will be positive relative to it.
representative = symbolOffsets.size() - 1;
}
}
CHECK(representative);
const SymbolAndOffset &base{symbolOffsets[*representative]};
for (const auto &[symbol, offset, object] : symbolOffsets) {
if (symbol == base.symbol) {
if (offset != base.offset) {
auto x{evaluate::OffsetToDesignator(
context_.foldingContext(), *symbol, base.offset, 1)};
auto y{evaluate::OffsetToDesignator(
context_.foldingContext(), *symbol, offset, 1)};
if (x && y) {
context_
.Say(base.object->source,
"'%s' and '%s' cannot have the same first storage unit"_err_en_US,
x->AsFortran(), y->AsFortran())
.Attach(object->source, "Incompatible reference to '%s'"_en_US,
y->AsFortran());
} else { // error recovery
context_
.Say(base.object->source,
"'%s' (offset %zd bytes and %zd bytes) cannot have the same first storage unit"_err_en_US,
symbol->name(), base.offset, offset)
.Attach(object->source,
"Incompatible reference to '%s' offset %zd bytes"_en_US,
symbol->name(), offset);
}
}
} else {
dependents_.emplace(*symbol,
SymbolAndOffset{*base.symbol, base.offset - offset, *object});
}
}
}
// Offset of this equivalence object from the start of its variable.
std::size_t ComputeOffsetsHelper::ComputeOffset(
const EquivalenceObject &object) {
std::size_t offset{0};
if (!object.subscripts.empty()) {
if (const auto *details{object.symbol.detailsIf<ObjectEntityDetails>()}) {
const ArraySpec &shape{details->shape()};
auto lbound{[&](std::size_t i) {
return *ToInt64(shape[i].lbound().GetExplicit());
}};
auto ubound{[&](std::size_t i) {
return *ToInt64(shape[i].ubound().GetExplicit());
}};
for (std::size_t i{object.subscripts.size() - 1};;) {
offset += object.subscripts[i] - lbound(i);
if (i == 0) {
break;
}
--i;
offset *= ubound(i) - lbound(i) + 1;
}
}
}
auto result{offset * GetSizeAndAlignment(object.symbol, false).size};
if (object.substringStart) {
int kind{context_.defaultKinds().GetDefaultKind(TypeCategory::Character)};
if (const DeclTypeSpec * type{object.symbol.GetType()}) {
if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
kind = ToInt64(intrinsic->kind()).value_or(kind);
}
}
result += kind * (*object.substringStart - 1);
}
return result;
}
std::size_t ComputeOffsetsHelper::DoSymbol(
Symbol &symbol, std::optional<const size_t> newAlign) {
if (!symbol.has<ObjectEntityDetails>() && !symbol.has<ProcEntityDetails>()) {
return 0;
}
SizeAndAlignment s{GetSizeAndAlignment(symbol, true)};
if (s.size == 0) {
return 0;
}
std::size_t previousOffset{offset_};
size_t alignVal{newAlign.value_or(s.alignment)};
offset_ = Align(offset_, alignVal);
std::size_t padding{offset_ - previousOffset};
symbol.set_size(s.size);
symbol.set_offset(offset_);
offset_ += s.size;
alignment_ = std::max(alignment_, alignVal);
return padding;
}
auto ComputeOffsetsHelper::GetSizeAndAlignment(
const Symbol &symbol, bool entire) -> SizeAndAlignment {
auto &targetCharacteristics{context_.targetCharacteristics()};
if (IsDescriptor(symbol)) {
auto dyType{evaluate::DynamicType::From(symbol)};
const auto *derived{evaluate::GetDerivedTypeSpec(dyType)};
int lenParams{derived ? CountLenParameters(*derived) : 0};
bool needAddendum{derived || (dyType && dyType->IsUnlimitedPolymorphic())};
// FIXME: Get descriptor size from targetCharacteristics instead
// overapproximation
std::size_t size{runtime::MaxDescriptorSizeInBytes(
symbol.Rank(), needAddendum, lenParams)};
return {size, targetCharacteristics.descriptorAlignment()};
}
if (IsProcedurePointer(symbol)) {
return {targetCharacteristics.procedurePointerByteSize(),
targetCharacteristics.procedurePointerAlignment()};
}
if (IsProcedure(symbol)) {
return {};
}
auto &foldingContext{context_.foldingContext()};
if (auto chars{evaluate::characteristics::TypeAndShape::Characterize(
symbol, foldingContext)}) {
if (entire) {
if (auto size{ToInt64(chars->MeasureSizeInBytes(foldingContext))}) {
return {static_cast<std::size_t>(*size),
chars->type().GetAlignment(targetCharacteristics)};
}
} else { // element size only
if (auto size{ToInt64(chars->MeasureElementSizeInBytes(
foldingContext, true /*aligned*/))}) {
return {static_cast<std::size_t>(*size),
chars->type().GetAlignment(targetCharacteristics)};
}
}
}
return {};
}
// Align a size to its natural alignment, up to maxAlignment.
std::size_t ComputeOffsetsHelper::Align(std::size_t x, std::size_t alignment) {
alignment =
std::min(alignment, context_.targetCharacteristics().maxAlignment());
return (x + alignment - 1) & -alignment;
}
void ComputeOffsets(SemanticsContext &context, Scope &scope) {
ComputeOffsetsHelper{context}.Compute(scope);
}
} // namespace Fortran::semantics
|