File: NVPTXUsage.rst

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.8-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,388 kB
  • sloc: cpp: 7,438,767; ansic: 1,393,871; asm: 1,012,926; python: 241,728; f90: 86,635; objc: 75,411; lisp: 42,144; pascal: 17,286; sh: 10,027; ml: 5,082; perl: 4,730; awk: 3,523; makefile: 3,349; javascript: 2,251; xml: 892; fortran: 672
file content (1681 lines) | stat: -rw-r--r-- 61,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
=============================
User Guide for NVPTX Back-end
=============================

.. contents::
   :local:
   :depth: 3


Introduction
============

To support GPU programming, the NVPTX back-end supports a subset of LLVM IR
along with a defined set of conventions used to represent GPU programming
concepts. This document provides an overview of the general usage of the back-
end, including a description of the conventions used and the set of accepted
LLVM IR.

.. note::

   This document assumes a basic familiarity with CUDA and the PTX
   assembly language. Information about the CUDA Driver API and the PTX assembly
   language can be found in the `CUDA documentation
   <http://docs.nvidia.com/cuda/index.html>`_.



Conventions
===========

Marking Functions as Kernels
----------------------------

In PTX, there are two types of functions: *device functions*, which are only
callable by device code, and *kernel functions*, which are callable by host
code. By default, the back-end will emit device functions. Metadata is used to
declare a function as a kernel function. This metadata is attached to the
``nvvm.annotations`` named metadata object, and has the following format:

.. code-block:: text

   !0 = !{<function-ref>, metadata !"kernel", i32 1}

The first parameter is a reference to the kernel function. The following
example shows a kernel function calling a device function in LLVM IR. The
function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.

.. code-block:: llvm

    define float @my_fmad(float %x, float %y, float %z) {
      %mul = fmul float %x, %y
      %add = fadd float %mul, %z
      ret float %add
    }

    define void @my_kernel(ptr %ptr) {
      %val = load float, ptr %ptr
      %ret = call float @my_fmad(float %val, float %val, float %val)
      store float %ret, ptr %ptr
      ret void
    }

    !nvvm.annotations = !{!1}
    !1 = !{ptr @my_kernel, !"kernel", i32 1}

When compiled, the PTX kernel functions are callable by host-side code.


.. _address_spaces:

Address Spaces
--------------

The NVPTX back-end uses the following address space mapping:

   ============= ======================
   Address Space Memory Space
   ============= ======================
   0             Generic
   1             Global
   2             Internal Use
   3             Shared
   4             Constant
   5             Local
   ============= ======================

Every global variable and pointer type is assigned to one of these address
spaces, with 0 being the default address space. Intrinsics are provided which
can be used to convert pointers between the generic and non-generic address
spaces.

As an example, the following IR will define an array ``@g`` that resides in
global device memory.

.. code-block:: llvm

    @g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]

LLVM IR functions can read and write to this array, and host-side code can
copy data to it by name with the CUDA Driver API.

Note that since address space 0 is the generic space, it is illegal to have
global variables in address space 0.  Address space 0 is the default address
space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
variables.


Triples
-------

The NVPTX target uses the module triple to select between 32/64-bit code
generation and the driver-compiler interface to use. The triple architecture
can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
operating system should be one of ``cuda`` or ``nvcl``, which determines the
interface used by the generated code to communicate with the driver.  Most
users will want to use ``cuda`` as the operating system, which makes the
generated PTX compatible with the CUDA Driver API.

Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``

Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``



.. _nvptx_intrinsics:

NVPTX Intrinsics
================

Reading PTX Special Registers
-----------------------------

'``llvm.nvvm.read.ptx.sreg.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()

Overview:
"""""""""

The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX
special registers, in particular the kernel launch bounds.  These registers
map in the following way to CUDA builtins:

   ============ =====================================
   CUDA Builtin PTX Special Register Intrinsic
   ============ =====================================
   ``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*``
   ``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*``
   ``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*``
   ``gridDim``  ``@llvm.nvvm.read.ptx.sreg.nctaid.*``
   ============ =====================================


Barriers
--------

'``llvm.nvvm.barrier0``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.barrier0()

Overview:
"""""""""

The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0``
instruction, equivalent to the ``__syncthreads()`` call in CUDA.

Electing a thread
-----------------

'``llvm.nvvm.elect.sync``'
^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare {i32, i1} @llvm.nvvm.elect.sync(i32 %membermask)

Overview:
"""""""""

The '``@llvm.nvvm.elect.sync``' intrinsic generates the ``elect.sync``
PTX instruction, which elects one predicated active leader thread from
a set of threads specified by ``membermask``. The behavior is undefined
if the executing thread is not in ``membermask``. The laneid of the
elected thread is captured in the i32 return value. The i1 return
value is set to ``True`` for the leader thread and ``False`` for all
the other threads. Election of a leader thread happens deterministically,
i.e. the same leader thread is elected for the same ``membermask``
every time. For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-elect-sync>`_.

Membar/Fences
-------------

'``llvm.nvvm.fence.proxy.tensormap_generic.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.cta()
  declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.cluster()
  declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.gpu()
  declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.sys()

  declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.cta(ptr %addr, i32 %size)
  declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.cluster(ptr %addr, i32 %size)
  declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.gpu(ptr %addr, i32 %size)
  declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.sys(ptr %addr, i32 %size)

Overview:
"""""""""

The ``@llvm.nvvm.fence.proxy.tensormap_generic.*`` is a uni-directional fence used to establish ordering between a prior memory access performed via the generic `proxy<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#proxies>_` and a subsequent memory access performed via the tensormap proxy. ``nvvm.fence.proxy.tensormap_generic.release`` can form a release sequence that synchronizes with an acquire sequence that contains the ``nvvm.fence.proxy.tensormap_generic.acquire`` proxy fence. The following table describes the mapping between LLVM Intrinsic and the PTX instruction:

  ====================================================== =========================================================
  NVVM Intrinsic                                         PTX Instruction
  ====================================================== =========================================================
  ``@llvm.nvvm.fence.proxy.tensormap_generic.release.*`` ``fence.proxy.tensormap::generic.release.*``
  ``@llvm.nvvm.fence.proxy.tensormap_generic.acquire.*`` ``fence.proxy.tensormap::generic.acquire.* [addr], size``
  ====================================================== =========================================================

The address operand ``addr`` and the operand ``size`` together specify the memory range ``[addr, addr+size)`` on which the ordering guarantees on the memory accesses across the proxies is to be provided. The only supported value for the ``size`` operand is ``128`` and must be an immediate. Generic Addressing is used unconditionally, and the address specified by the operand addr must fall within the ``.global`` state space. Otherwise, the behavior is undefined. For more information, see `PTX ISA <https://docs.nvidia.com/cuda/parallel-thread-execution/#parallel-synchronization-and-communication-instructions-membar>`_.

Address Space Intrinsics
------------------------

'``llvm.nvvm.isspacep.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i1 @llvm.nvvm.isspacep.const(ptr %p)
    declare i1 @llvm.nvvm.isspacep.global(ptr %p)
    declare i1 @llvm.nvvm.isspacep.local(ptr %p)
    declare i1 @llvm.nvvm.isspacep.shared(ptr %p)
    declare i1 @llvm.nvvm.isspacep.shared.cluster(ptr %p)

Overview:
"""""""""

The '``llvm.nvvm.isspacep.*``' intrinsics determine whether the provided generic
pointer references memory which falls within a particular address space.

Semantics:
""""""""""

If the given pointer in the generic address space refers to memory which falls
within the state space of the intrinsic (and therefore could be safely address
space casted to this space), 1 is returned, otherwise 0 is returned.

Arithmetic Intrinsics
---------------------

'``llvm.nvvm.idp2a.[us].[us]``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.idp2a.s.s(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
    declare i32 @llvm.nvvm.idp2a.s.u(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
    declare i32 @llvm.nvvm.idp2a.u.s(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
    declare i32 @llvm.nvvm.idp2a.u.u(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)


Overview:
"""""""""

The '``llvm.nvvm.idp2a.[us].[us]``' intrinsics performs a 2-element vector dot
product followed by addition. They corresponds directly to the ``dp2a`` PTX 
instruction.

Semantics:
""""""""""

The 32-bit value in ``%a`` is broken into 2 16-bit values which are extended to
32 bits. For the '``llvm.nvvm.idp2a.u.[us]``' variants zero-extension is used,
while for the '``llvm.nvvm.idp2a.s.[us]``' sign-extension is used. Two bytes are
selected from ``%b``, if ``%is.hi`` is true, the most significant bytes are
selected, otherwise the least significant bytes are selected. These bytes are
then extended to 32-bits. For the '``llvm.nvvm.idp2a.[us].u``' variants
zero-extension is used, while for the '``llvm.nvvm.idp2a.[us].s``'
sign-extension is used. The dot product of these 2-element vectors is added to
``%c`` to produce the return.


'``llvm.nvvm.idp4a.[us].[us]``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.idp4a.s.s(i32 %a, i32 %b, i32 %c)
    declare i32 @llvm.nvvm.idp4a.s.u(i32 %a, i32 %b, i32 %c)
    declare i32 @llvm.nvvm.idp4a.u.s(i32 %a, i32 %b, i32 %c)
    declare i32 @llvm.nvvm.idp4a.u.u(i32 %a, i32 %b, i32 %c)

Overview:
"""""""""

The '``llvm.nvvm.idp4a.[us].[us]``' intrinsics perform a 4-element vector dot
product followed by addition. They corresponds directly to the ``dp4a`` PTX
instruction.

Semantics:
""""""""""

Each of the 4 bytes in both ``%a`` and ``%b`` are extended to 32-bit integers
forming 2 ``<4 x i32>``. For ``%a``, zero-extension is used in the
'``llvm.nvvm.idp4a.u.[us]``' variants, while sign-extension is used with
'``llvm.nvvm.idp4a.s.[us]``' variants. Similarly, for ``%b``, zero-extension is
used in the '``llvm.nvvm.idp4a.[us].u``' variants, while sign-extension is used
with '``llvm.nvvm.idp4a.[us].s``' variants. The dot product of these 4-element
vectors is added to ``%c`` to produce the return.

Bit Manipulation Intrinsics
---------------------------

'``llvm.nvvm.fshl.clamp.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.fshl.clamp.i32(i32 %hi, i32 %lo, i32 %n)

Overview:
"""""""""

The '``llvm.nvvm.fshl.clamp``' family of intrinsics performs a clamped funnel
shift left. These intrinsics are very similar to '``llvm.fshl``', except the
shift ammont is clamped at the integer width (instead of modulo it). Currently,
only ``i32`` is supported.

Semantics:
""""""""""

The '``llvm.nvvm.fshl.clamp``' family of intrinsic functions performs a clamped
funnel shift left: the first two values are concatenated as { %hi : %lo } (%hi
is the most significant bits of the wide value), the combined value is shifted
left, and the most significant bits are extracted to produce a result that is
the same size as the original arguments. The shift amount is the minimum of the
value of %n and the bit width of the integer type.

'``llvm.nvvm.fshr.clamp.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.fshr.clamp.i32(i32 %hi, i32 %lo, i32 %n)

Overview:
"""""""""

The '``llvm.nvvm.fshr.clamp``' family of intrinsics perform a clamped funnel
shift right. These intrinsics are very similar to '``llvm.fshr``', except the
shift ammont is clamped at the integer width (instead of modulo it). Currently,
only ``i32`` is supported.

Semantics:
""""""""""

The '``llvm.nvvm.fshr.clamp``' family of intrinsic functions performs a clamped
funnel shift right: the first two values are concatenated as { %hi : %lo } (%hi
is the most significant bits of the wide value), the combined value is shifted
right, and the least significant bits are extracted to produce a result that is
the same size as the original arguments. The shift amount is the minimum of the
value of %n and the bit width of the integer type.

'``llvm.nvvm.flo.u.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.flo.u.i32(i32 %a, i1 %shiftamt)
    declare i32 @llvm.nvvm.flo.u.i64(i64 %a, i1 %shiftamt)

Overview:
"""""""""

The '``llvm.nvvm.flo.u``' family of intrinsics identifies the bit position of the
leading one, returning either it's offset from the most or least significant bit.

Semantics:
""""""""""

The '``llvm.nvvm.flo.u``' family of intrinsics returns the bit position of the
most significant 1. If %shiftamt is true, The result is the shift amount needed
to left-shift the found bit into the most-significant bit position, otherwise
the result is the shift amount needed to right-shift the found bit into the
least-significant bit position. 0xffffffff is returned if no 1 bit is found.

'``llvm.nvvm.flo.s.*``' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

    declare i32 @llvm.nvvm.flo.s.i32(i32 %a, i1 %shiftamt)
    declare i32 @llvm.nvvm.flo.s.i64(i64 %a, i1 %shiftamt)

Overview:
"""""""""

The '``llvm.nvvm.flo.s``' family of intrinsics identifies the bit position of the
leading non-sign bit, returning either it's offset from the most or least
significant bit.

Semantics:
""""""""""

The '``llvm.nvvm.flo.s``' family of intrinsics returns the bit position of the
most significant 0 for negative inputs and the most significant 1 for 
non-negative inputs. If %shiftamt is true, The result is the shift amount needed
to left-shift the found bit into the most-significant bit position, otherwise
the result is the shift amount needed to right-shift the found bit into the
least-significant bit position. 0xffffffff is returned if no 1 bit is found.

TMA family of Intrinsics
------------------------

'``llvm.nvvm.cp.async.bulk.global.to.shared.cluster``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.global.to.shared.cluster(ptr addrspace(3) %dst, ptr addrspace(3) %mbar, ptr addrspace(1) %src, i32 %size, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.global.to.shared.cluster``' intrinsic
corresponds to the ``cp.async.bulk.shared::cluster.global.*`` family
of PTX instructions. These instructions initiate an asynchronous
copy of bulk data from global memory to shared::cluster memory.
The 32-bit operand ``%size`` specifies the amount of memory to be
copied and it must be a multiple of 16.

* The last two arguments to these intrinsics are boolean flags
  indicating support for cache_hint and/or multicast modifiers.
  These flag arguments must be compile-time constants. The backend
  looks through these flags and lowers the intrinsics appropriately.

* The Nth argument (denoted by ``i1 %flag_ch``) when set, indicates
  a valid cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
  variant of the PTX instruction.

* The [N-1]th argument (denoted by ``i1 %flag_mc``) when set, indicates
  the presence of a multicast mask (``i16 %mc``) and generates the PTX
  instruction with the ``.multicast::cluster`` modifier.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk>`_.

'``llvm.nvvm.cp.async.bulk.shared.cta.to.global``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.shared.cta.to.global(ptr addrspace(1) %dst, ptr addrspace(3) %src, i32 %size, i64 %ch, i1 %flag_ch)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.shared.cta.to.global``' intrinsic
corresponds to the ``cp.async.bulk.global.shared::cta.*`` set of PTX
instructions. These instructions initiate an asynchronous copy from
shared::cta to global memory. The 32-bit operand ``%size`` specifies
the amount of memory to be copied and it must be a multiple of 16.

* The last argument to these intrinsics is a boolean flag
  indicating support for cache_hint. This flag argument must
  be a compile-time constant. When set, it indicates a valid
  cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
  variant of the PTX instruction.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk>`_.

'``llvm.nvvm.cp.async.bulk.shared.cta.to.cluster``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.shared.cta.to.cluster(ptr addrspace(3) %dst, ptr addrspace(3) %mbar, ptr addrspace(3) %src, i32 %size)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.shared.cta.to.cluster``' intrinsic
corresponds to the ``cp.async.bulk.shared::cluster.shared::cta.*``
PTX instruction. This instruction initiates an asynchronous copy from
shared::cta to shared::cluster memory. The destination has to be in
the shared memory of a different CTA within the cluster. The 32-bit
operand ``%size`` specifies the amount of memory to be copied and
it must be a multiple of 16.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk>`_.

'``llvm.nvvm.cp.async.bulk.prefetch.L2``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.prefetch.L2(ptr addrspace(1) %src, i32 %size, i64 %ch, i1 %flag_ch)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.prefetch.L2``' intrinsic
corresponds to the ``cp.async.bulk.prefetch.L2.*`` family
of PTX instructions. These instructions initiate an asynchronous
prefetch of bulk data from global memory to the L2 cache.
The 32-bit operand ``%size`` specifies the amount of memory to be
prefetched in terms of bytes and it must be a multiple of 16.

* The last argument to these intrinsics is boolean flag indicating
  support for cache_hint. These flag argument must be compile-time
  constant. When set, it indicates a valid cache_hint (``i64 %ch``)
  and generates the ``.L2::cache_hint`` variant of the PTX instruction.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch>`_.

'``llvm.nvvm.cp.async.bulk.tensor.g2s.tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.1d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.2d(..., i32 %d0, i32 %d1, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.g2s.tile.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
global memory to shared::cluster memory (indicated by the ``g2s`` prefix)
in ``tile`` mode. In tile mode, the multi-dimensional layout of the
source tensor is preserved at the destination. The dimension of the
tensor data ranges from 1d to 5d with the coordinates specified
by the ``i32 %d0 ... i32 %d4`` arguments.

* The last two arguments to these intrinsics are boolean flags
  indicating support for cache_hint and/or multicast modifiers.
  These flag arguments must be compile-time constants. The backend
  looks through these flags and lowers the intrinsics appropriately.

* The Nth argument (denoted by ``i1 flag_ch``) when set, indicates
  a valid cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
  variant of the PTX instruction.

* The [N-1]th argument (denoted by ``i1 flag_mc``) when set, indicates
  the presence of a multicast mask (``i16 %mc``) and generates the PTX
  instruction with the ``.multicast::cluster`` modifier.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.

'``llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.3d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.[3-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
global memory to shared::cluster memory (indicated by the ``g2s`` prefix)
in ``im2col`` mode. In im2col mode, some dimensions of the source tensor
are unrolled into a single dimensional column at the destination. In this
mode, the tensor has to be at least three-dimensional. Along with the tensor
coordinates, im2col offsets are also specified (denoted by
``i16 im2col0...i16 %im2col2``). The number of im2col offsets is two less
than the number of dimensions of the tensor operation. The last two arguments
to these intrinsics are boolean flags, with the same functionality as described
in the ``tile`` mode intrinsics above.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.

'``llvm.nvvm.cp.async.bulk.tensor.s2g.tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.2d(..., i32 %d0, i32 %d1, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.s2g.tile.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
shared::cta to global memory (indicated by the ``s2g`` prefix)
in ``tile`` mode. The dimension of the tensor data ranges from 1d to 5d
with the coordinates specified by the ``i32 %d0 ... i32 %d4`` arguments.

* The last argument to these intrinsics is a boolean flag
  indicating support for cache_hint. This flag argument must
  be a compile-time constant. When set, it indicates a valid
  cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
  variant of the PTX instruction.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.

'``llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.3d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
shared::cta to global memory (indicated by the ``s2g`` prefix)
in ``im2col`` mode. In this mode, the tensor has to be at least
three-dimensional. Unlike the ``g2s`` variants, there are no
im2col_offsets for these intrinsics. The last argument to these
intrinsics is a boolean flag, with the same functionality as
described in the ``s2g.tile`` mode intrinsics above.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.

'``llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.1d(ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.2d(..., i32 %d0, i32 %d1, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.[1-5]d``' intrinsics
correspond to the ``cp.async.bulk.prefetch.tensor.[1-5]d.L2.global*`` set
of PTX instructions. These instructions initiate an asynchronous prefetch
of tensor data from global memory to the L2 cache. In tile mode, the
multi-dimensional layout of the source tensor is preserved at the destination.
The dimension of the tensor data ranges from 1d to 5d with the coordinates
specified by the ``i32 %d0 ... i32 %d4`` arguments.

* The last argument to these intrinsics is a boolean flag
  indicating support for cache_hint. This flag argument must
  be a compile-time constant. When set, it indicates a valid
  cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
  variant of the PTX instruction.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch-tensor>`_.

'``llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.3d(ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.[3-5]d``' intrinsics
correspond to the ``cp.async.bulk.prefetch.tensor.[1-5]d.L2.global*`` set
of PTX instructions. These instructions initiate an asynchronous prefetch
of tensor data from global memory to the L2 cache. In im2col mode, some
dimensions of the source tensor are unrolled into a single dimensional
column at the destination. In this mode, the tensor has to be at least
three-dimensional. Along with the tensor coordinates, im2col offsets are
also specified (denoted by ``i16 im2col0...i16 %im2col2``). The number
of im2col offsets is two less than the number of dimensions of the tensor
operation. The last argument to these intrinsics is a boolean flag, with
the same functionality as described in the ``tile`` mode intrinsics above.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch-tensor>`_.

'``llvm.nvvm.cp.async.bulk.tensor.reduce.[red_op].tile.[1-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.add.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.min.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.max.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.inc.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.dec.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.and.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.or.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.xor.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)

  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.2d(..., i32 %d0, i32 %d1, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.[1-5]d``' intrinsics
correspond to the ``cp.reduce.async.bulk.tensor.[1-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous reduction operation of tensor data
in global memory with the tensor data in shared{::cta} memory, using ``tile`` mode.
The dimension of the tensor data ranges from 1d to 5d with the coordinates
specified by the ``i32 %d0 ... i32 %d4`` arguments. The supported reduction
operations are {add, min, max, inc, dec, and, or, xor} as described in the
``tile.1d`` intrinsics.

* The last argument to these intrinsics is a boolean flag
  indicating support for cache_hint. This flag argument must
  be a compile-time constant. When set, it indicates a valid
  cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
  variant of the PTX instruction.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-reduce-async-bulk-tensor>`_.

'``llvm.nvvm.cp.async.bulk.tensor.reduce.[red_op].im2col.[3-5]d``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.3d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i64 %ch, i1 %flag_ch)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
  declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)

Overview:
"""""""""

The '``@llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.[3-5]d``' intrinsics
correspond to the ``cp.reduce.async.bulk.tensor.[3-5]d.*`` set of PTX instructions.
These instructions initiate an asynchronous reduction operation of tensor data
in global memory with the tensor data in shared{::cta} memory, using ``im2col`` mode.
In this mode, the tensor has to be at least three-dimensional. The supported reduction
operations supported are the same as the ones in the tile mode. The last argument to
these intrinsics is a boolean flag, with the same functionality as described in the
``tile`` mode intrinsics above.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-reduce-async-bulk-tensor>`_.

Warp Group Intrinsics
---------------------

'``llvm.nvvm.wgmma.fence.sync.aligned``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.wgmma.fence.sync.aligned()

Overview:
"""""""""

The '``@llvm.nvvm.wgmma.fence.sync.aligned``' intrinsic generates the
``wgmma.fence.sync.aligned`` PTX instruction, which establishes an ordering
between prior accesses to any warpgroup registers and subsequent accesses to
the same registers by a ``wgmma.mma_async`` instruction.

The ``wgmma.fence`` instruction must be issued by all warps of the warpgroup in
the following locations:

* Before the first ``wgmma.mma_async`` operation in a warpgroup.
* Between a register access by a thread in the warpgroup and any
  ``wgmma.mma_async`` instruction that accesses the same registers, except when
  these are accumulator register accesses across multiple ``wgmma.mma_async``
  instructions of the same shape in which case an ordering guarantee is
  provided by default.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-fence>`_.

'``llvm.nvvm.wgmma.commit_group.sync.aligned``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.wgmma.commit_group.sync.aligned()

Overview:
"""""""""

The '``@llvm.nvvm.wgmma.commit_group.sync.aligned``' intrinsic generates the
``wgmma.commit_group.sync.aligned`` PTX instruction, which creates a new
wgmma-group per warpgroup and batches all prior ``wgmma.mma_async``
instructions initiated by the executing warp but not committed to any
wgmma-group into the new wgmma-group. If there are no uncommitted ``wgmma
mma_async`` instructions then, ``wgmma.commit_group`` results in an empty
wgmma-group.

An executing thread can wait for the completion of all ``wgmma.mma_async``
operations in a wgmma-group by using ``wgmma.wait_group``.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-commit-group>`_.

'``llvm.nvvm.wgmma.wait_group.sync.aligned``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.wgmma.wait_group.sync.aligned(i64 immarg N)

Overview:
"""""""""

The '``@llvm.nvvm.wgmma.wait_group.sync.aligned``' intrinsic generates the
``wgmma.commit_group.sync.aligned N`` PTX instruction, which will cause the
executing thread to wait until only ``N`` or fewer of the most recent
wgmma-groups are pending and all the prior wgmma-groups committed by the
executing threads are complete. For example, when ``N`` is 0, the executing
thread waits on all the prior wgmma-groups to complete. Operand ``N`` is an
integer constant.

Accessing the accumulator register or the input register containing the
fragments of matrix A of a ``wgmma.mma_async`` instruction without first
performing a ``wgmma.wait_group`` instruction that waits on a wgmma-group
including that ``wgmma.mma_async`` instruction is undefined behavior.

For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-wait-group>`_.

'``llvm.nvvm.griddepcontrol.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

.. code-block:: llvm

  declare void @llvm.nvvm.griddepcontrol.launch_dependents()
  declare void @llvm.nvvm.griddepcontrol.wait()

Overview:
"""""""""

The ``griddepcontrol`` intrinsics allows the dependent grids and prerequisite grids as defined by the runtime, to control execution in the following way:

``griddepcontrol.launch_dependents`` intrinsic signals that the dependents can be scheduled, before the current grid completes. The intrinsic can be invoked by multiple threads in the current CTA and repeated invocations of the intrinsic will have no additional side effects past that of the first invocation.

``griddepcontrol.wait`` intrinsic causes the executing thread to wait until all prerequisite grids in flight have completed and all the memory operations from the prerequisite grids are performed and made visible to the current grid.

For more information, refer 
`PTX ISA <https://docs.nvidia.com/cuda/parallel-thread-execution/#parallel-synchronization-and-communication-instructions-griddepcontrol>`__.

Other Intrinsics
----------------

For the full set of NVPTX intrinsics, please see the
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.


.. _libdevice:

Linking with Libdevice
======================

The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
implements many common mathematical functions. This library can be used as a
high-performance math library for any compilers using the LLVM NVPTX target.
The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
there is a separate version for each compute architecture.

For a list of all math functions implemented in libdevice, see
`libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.

To accommodate various math-related compiler flags that can affect code
generation of libdevice code, the library code depends on a special LLVM IR
pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
with constants based on the defined reflection parameters. Such conditional
code often follows a pattern:

.. code-block:: c++

  float my_function(float a) {
    if (__nvvm_reflect("FASTMATH"))
      return my_function_fast(a);
    else
      return my_function_precise(a);
  }

The default value for all unspecified reflection parameters is zero.

The ``NVVMReflect`` pass should be executed early in the optimization
pipeline, immediately after the link stage. The ``internalize`` pass is also
recommended to remove unused math functions from the resulting PTX. For an
input IR module ``module.bc``, the following compilation flow is recommended:

The ``NVVMReflect`` pass will attempt to remove dead code even without
optimizations. This allows potentially incompatible instructions to be avoided
at all optimizations levels by using the ``__CUDA_ARCH`` argument.

1. Save list of external functions in ``module.bc``
2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
3. Internalize all functions not in list from (1)
4. Eliminate all unused internal functions
5. Run ``NVVMReflect`` pass
6. Run standard optimization pipeline

.. note::

  ``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
  libdevice functions. It is possible to link two IR modules that have been
  linked against libdevice using different reflection variables.

Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
often leave behind dead code of the form:

.. code-block:: llvm

  entry:
    ..
    br i1 true, label %foo, label %bar
  foo:
    ..
  bar:
    ; Dead code
    ..

Therefore, it is recommended that ``NVVMReflect`` is executed early in the
optimization pipeline before dead-code elimination.

The NVPTX TargetMachine knows how to schedule ``NVVMReflect`` at the beginning
of your pass manager; just use the following code when setting up your pass
manager and the PassBuilder will use ``registerPassBuilderCallbacks`` to let
NVPTXTargetMachine::registerPassBuilderCallbacks add the pass to the
pass manager:

.. code-block:: c++

    std::unique_ptr<TargetMachine> TM = ...;
    PassBuilder PB(TM);
    ModulePassManager MPM;
    PB.parsePassPipeline(MPM, ...);

Reflection Parameters
---------------------

The libdevice library currently uses the following reflection parameters to
control code generation:

==================== ======================================================
Flag                 Description
==================== ======================================================
``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
==================== ======================================================

The value of this flag is determined by the "nvvm-reflect-ftz" module flag.
The following sets the ftz flag to 1.

.. code-block:: llvm

    !llvm.module.flags = !{!0}
    !0 = !{i32 4, !"nvvm-reflect-ftz", i32 1}

(``i32 4`` indicates that the value set here overrides the value in another
module we link with.  See the `LangRef <LangRef.html#module-flags-metadata>`
for details.)

Executing PTX
=============

The most common way to execute PTX assembly on a GPU device is to use the CUDA
Driver API. This API is a low-level interface to the GPU driver and allows for
JIT compilation of PTX code to native GPU machine code.

Initializing the Driver API:

.. code-block:: c++

    CUdevice device;
    CUcontext context;

    // Initialize the driver API
    cuInit(0);
    // Get a handle to the first compute device
    cuDeviceGet(&device, 0);
    // Create a compute device context
    cuCtxCreate(&context, 0, device);

JIT compiling a PTX string to a device binary:

.. code-block:: c++

    CUmodule module;
    CUfunction function;

    // JIT compile a null-terminated PTX string
    cuModuleLoadData(&module, (void*)PTXString);

    // Get a handle to the "myfunction" kernel function
    cuModuleGetFunction(&function, module, "myfunction");

For full examples of executing PTX assembly, please see the `CUDA Samples
<https://developer.nvidia.com/cuda-downloads>`_ distribution.


Common Issues
=============

ptxas complains of undefined function: __nvvm_reflect
-----------------------------------------------------

When linking with libdevice, the ``NVVMReflect`` pass must be used. See
:ref:`libdevice` for more information.


Tutorial: A Simple Compute Kernel
=================================

To start, let us take a look at a simple compute kernel written directly in
LLVM IR. The kernel implements vector addition, where each thread computes one
element of the output vector C from the input vectors A and B.  To make this
easier, we also assume that only a single CTA (thread block) will be launched,
and that it will be one dimensional.


The Kernel
----------

.. code-block:: llvm

  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
  target triple = "nvptx64-nvidia-cuda"

  ; Intrinsic to read X component of thread ID
  declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

  define void @kernel(ptr addrspace(1) %A,
                      ptr addrspace(1) %B,
                      ptr addrspace(1) %C) {
  entry:
    ; What is my ID?
    %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

    ; Compute pointers into A, B, and C
    %ptrA = getelementptr float, ptr addrspace(1) %A, i32 %id
    %ptrB = getelementptr float, ptr addrspace(1) %B, i32 %id
    %ptrC = getelementptr float, ptr addrspace(1) %C, i32 %id

    ; Read A, B
    %valA = load float, ptr addrspace(1) %ptrA, align 4
    %valB = load float, ptr addrspace(1) %ptrB, align 4

    ; Compute C = A + B
    %valC = fadd float %valA, %valB

    ; Store back to C
    store float %valC, ptr addrspace(1) %ptrC, align 4

    ret void
  }

  !nvvm.annotations = !{!0}
  !0 = !{ptr @kernel, !"kernel", i32 1}


We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:

.. code-block:: text

  # llc -mcpu=sm_20 kernel.ll -o kernel.ptx


.. note::

  If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
  in the module data layout string and use ``nvptx-nvidia-cuda`` as the
  target triple.


The output we get from ``llc`` (as of LLVM 3.4):

.. code-block:: text

  //
  // Generated by LLVM NVPTX Back-End
  //

  .version 3.1
  .target sm_20
  .address_size 64

    // .globl kernel
                                          // @kernel
  .visible .entry kernel(
    .param .u64 kernel_param_0,
    .param .u64 kernel_param_1,
    .param .u64 kernel_param_2
  )
  {
    .reg .f32   %f<4>;
    .reg .s32   %r<2>;
    .reg .s64   %rl<8>;

  // %bb.0:                                // %entry
    ld.param.u64    %rl1, [kernel_param_0];
    mov.u32         %r1, %tid.x;
    mul.wide.s32    %rl2, %r1, 4;
    add.s64         %rl3, %rl1, %rl2;
    ld.param.u64    %rl4, [kernel_param_1];
    add.s64         %rl5, %rl4, %rl2;
    ld.param.u64    %rl6, [kernel_param_2];
    add.s64         %rl7, %rl6, %rl2;
    ld.global.f32   %f1, [%rl3];
    ld.global.f32   %f2, [%rl5];
    add.f32         %f3, %f1, %f2;
    st.global.f32   [%rl7], %f3;
    ret;
  }


Dissecting the Kernel
---------------------

Now let us dissect the LLVM IR that makes up this kernel.

Data Layout
^^^^^^^^^^^

The data layout string determines the size in bits of common data types, their
ABI alignment, and their storage size.  For NVPTX, you should use one of the
following:

32-bit PTX:

.. code-block:: llvm

  target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"

64-bit PTX:

.. code-block:: llvm

  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"


Target Intrinsics
^^^^^^^^^^^^^^^^^

In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
read the X component of the current thread's ID, which corresponds to a read
of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
intrinsics.  A short list is shown below; please see
``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.


================================================ ====================
Intrinsic                                        CUDA Equivalent
================================================ ====================
``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}``     threadIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}``   blockIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}``    blockDim.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}``  gridDim.{x,y,z}
``void @llvm.nvvm.barrier0()``                   __syncthreads()
================================================ ====================


Address Spaces
^^^^^^^^^^^^^^

You may have noticed that all of the pointer types in the LLVM IR example had
an explicit address space specifier. What is address space 1? NVIDIA GPU
devices (generally) have four types of memory:

- Global: Large, off-chip memory
- Shared: Small, on-chip memory shared among all threads in a CTA
- Local: Per-thread, private memory
- Constant: Read-only memory shared across all threads

These different types of memory are represented in LLVM IR as address spaces.
There is also a fifth address space used by the NVPTX code generator that
corresponds to the "generic" address space.  This address space can represent
addresses in any other address space (with a few exceptions).  This allows
users to write IR functions that can load/store memory using the same
instructions. Intrinsics are provided to convert pointers between the generic
and non-generic address spaces.

See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.


Kernel Metadata
^^^^^^^^^^^^^^^

In PTX, a function can be either a `kernel` function (callable from the host
program), or a `device` function (callable only from GPU code). You can think
of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
function as a `kernel` function, we make use of special LLVM metadata. The
NVPTX back-end will look for a named metadata node called
``nvvm.annotations``. This named metadata must contain a list of metadata that
describe the IR. For our purposes, we need to declare a metadata node that
assigns the "kernel" attribute to the LLVM IR function that should be emitted
as a PTX `kernel` function. These metadata nodes take the form:

.. code-block:: text

  !{<function ref>, metadata !"kernel", i32 1}

For the previous example, we have:

.. code-block:: llvm

  !nvvm.annotations = !{!0}
  !0 = !{ptr @kernel, !"kernel", i32 1}

Here, we have a single metadata declaration in ``nvvm.annotations``. This
metadata annotates our ``@kernel`` function with the ``kernel`` attribute.


Running the Kernel
------------------

Generating PTX from LLVM IR is all well and good, but how do we execute it on
a real GPU device? The CUDA Driver API provides a convenient mechanism for
loading and JIT compiling PTX to a native GPU device, and launching a kernel.
The API is similar to OpenCL.  A simple example showing how to load and
execute our vector addition code is shown below. Note that for brevity this
code does not perform much error checking!

.. note::

  You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
  compile PTX to machine code (SASS) for a specific GPU architecture. Such
  binaries can be loaded by the CUDA Driver API in the same way as PTX. This
  can be useful for reducing startup time by precompiling the PTX kernels.


.. code-block:: c++

  #include <iostream>
  #include <fstream>
  #include <cassert>
  #include "cuda.h"


  void checkCudaErrors(CUresult err) {
    assert(err == CUDA_SUCCESS);
  }

  /// main - Program entry point
  int main(int argc, char **argv) {
    CUdevice    device;
    CUmodule    cudaModule;
    CUcontext   context;
    CUfunction  function;
    CUlinkState linker;
    int         devCount;

    // CUDA initialization
    checkCudaErrors(cuInit(0));
    checkCudaErrors(cuDeviceGetCount(&devCount));
    checkCudaErrors(cuDeviceGet(&device, 0));

    char name[128];
    checkCudaErrors(cuDeviceGetName(name, 128, device));
    std::cout << "Using CUDA Device [0]: " << name << "\n";

    int devMajor, devMinor;
    checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
    std::cout << "Device Compute Capability: "
              << devMajor << "." << devMinor << "\n";
    if (devMajor < 2) {
      std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
      return 1;
    }

    std::ifstream t("kernel.ptx");
    if (!t.is_open()) {
      std::cerr << "kernel.ptx not found\n";
      return 1;
    }
    std::string str((std::istreambuf_iterator<char>(t)),
                      std::istreambuf_iterator<char>());

    // Create driver context
    checkCudaErrors(cuCtxCreate(&context, 0, device));

    // Create module for object
    checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));

    // Get kernel function
    checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));

    // Device data
    CUdeviceptr devBufferA;
    CUdeviceptr devBufferB;
    CUdeviceptr devBufferC;

    checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
    checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
    checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));

    float* hostA = new float[16];
    float* hostB = new float[16];
    float* hostC = new float[16];

    // Populate input
    for (unsigned i = 0; i != 16; ++i) {
      hostA[i] = (float)i;
      hostB[i] = (float)(2*i);
      hostC[i] = 0.0f;
    }

    checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
    checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));


    unsigned blockSizeX = 16;
    unsigned blockSizeY = 1;
    unsigned blockSizeZ = 1;
    unsigned gridSizeX  = 1;
    unsigned gridSizeY  = 1;
    unsigned gridSizeZ  = 1;

    // Kernel parameters
    void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };

    std::cout << "Launching kernel\n";

    // Kernel launch
    checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
                                   blockSizeX, blockSizeY, blockSizeZ,
                                   0, NULL, KernelParams, NULL));

    // Retrieve device data
    checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));


    std::cout << "Results:\n";
    for (unsigned i = 0; i != 16; ++i) {
      std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
    }


    // Clean up after ourselves
    delete [] hostA;
    delete [] hostB;
    delete [] hostC;

    // Clean-up
    checkCudaErrors(cuMemFree(devBufferA));
    checkCudaErrors(cuMemFree(devBufferB));
    checkCudaErrors(cuMemFree(devBufferC));
    checkCudaErrors(cuModuleUnload(cudaModule));
    checkCudaErrors(cuCtxDestroy(context));

    return 0;
  }


You will need to link with the CUDA driver and specify the path to cuda.h.

.. code-block:: text

  # clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda

We don't need to specify a path to ``libcuda.so`` since this is installed in a
system location by the driver, not the CUDA toolkit.

If everything goes as planned, you should see the following output when
running the compiled program:

.. code-block:: text

  Using CUDA Device [0]: GeForce GTX 680
  Device Compute Capability: 3.0
  Launching kernel
  Results:
  0 + 0 = 0
  1 + 2 = 3
  2 + 4 = 6
  3 + 6 = 9
  4 + 8 = 12
  5 + 10 = 15
  6 + 12 = 18
  7 + 14 = 21
  8 + 16 = 24
  9 + 18 = 27
  10 + 20 = 30
  11 + 22 = 33
  12 + 24 = 36
  13 + 26 = 39
  14 + 28 = 42
  15 + 30 = 45

.. note::

  You will likely see a different device identifier based on your hardware


Tutorial: Linking with Libdevice
================================

In this tutorial, we show a simple example of linking LLVM IR with the
libdevice library. We will use the same kernel as the previous tutorial,
except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
Libdevice provides an ``__nv_powf`` function that we will use.

.. code-block:: llvm

  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
  target triple = "nvptx64-nvidia-cuda"

  ; Intrinsic to read X component of thread ID
  declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
  ; libdevice function
  declare float @__nv_powf(float, float)

  define void @kernel(ptr addrspace(1) %A,
                      ptr addrspace(1) %B,
                      ptr addrspace(1) %C) {
  entry:
    ; What is my ID?
    %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind

    ; Compute pointers into A, B, and C
    %ptrA = getelementptr float, ptr addrspace(1) %A, i32 %id
    %ptrB = getelementptr float, ptr addrspace(1) %B, i32 %id
    %ptrC = getelementptr float, ptr addrspace(1) %C, i32 %id

    ; Read A, B
    %valA = load float, ptr addrspace(1) %ptrA, align 4
    %valB = load float, ptr addrspace(1) %ptrB, align 4

    ; Compute C = pow(A, B)
    %valC = call float @__nv_powf(float %valA, float %valB)

    ; Store back to C
    store float %valC, ptr addrspace(1) %ptrC, align 4

    ret void
  }

  !nvvm.annotations = !{!0}
  !0 = !{ptr @kernel, !"kernel", i32 1}


To compile this kernel, we perform the following steps:

1. Link with libdevice
2. Internalize all but the public kernel function
3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
4. Optimize the linked module
5. Codegen the module


These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
tools. In a complete compiler, these steps can also be performed entirely
programmatically by setting up an appropriate pass configuration (see
:ref:`libdevice`).

.. code-block:: text

  # llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
  # opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
  # llc -mcpu=sm_20 t2.opt.bc -o t2.ptx

.. note::

  The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
  undefined variables will default to zero. It is shown here for evaluation
  purposes.


This gives us the following PTX (excerpt):

.. code-block:: text

  //
  // Generated by LLVM NVPTX Back-End
  //

  .version 3.1
  .target sm_20
  .address_size 64

    // .globl kernel
                                          // @kernel
  .visible .entry kernel(
    .param .u64 kernel_param_0,
    .param .u64 kernel_param_1,
    .param .u64 kernel_param_2
  )
  {
    .reg .pred  %p<30>;
    .reg .f32   %f<111>;
    .reg .s32   %r<21>;
    .reg .s64   %rl<8>;

  // %bb.0:                                // %entry
    ld.param.u64  %rl2, [kernel_param_0];
    mov.u32   %r3, %tid.x;
    ld.param.u64  %rl3, [kernel_param_1];
    mul.wide.s32  %rl4, %r3, 4;
    add.s64   %rl5, %rl2, %rl4;
    ld.param.u64  %rl6, [kernel_param_2];
    add.s64   %rl7, %rl3, %rl4;
    add.s64   %rl1, %rl6, %rl4;
    ld.global.f32   %f1, [%rl5];
    ld.global.f32   %f2, [%rl7];
    setp.eq.f32 %p1, %f1, 0f3F800000;
    setp.eq.f32 %p2, %f2, 0f00000000;
    or.pred   %p3, %p1, %p2;
    @%p3 bra  BB0_1;
    bra.uni   BB0_2;
  BB0_1:
    mov.f32   %f110, 0f3F800000;
    st.global.f32   [%rl1], %f110;
    ret;
  BB0_2:                                  // %__nv_isnanf.exit.i
    abs.f32   %f4, %f1;
    setp.gtu.f32  %p4, %f4, 0f7F800000;
    @%p4 bra  BB0_4;
  // %bb.3:                                // %__nv_isnanf.exit5.i
    abs.f32   %f5, %f2;
    setp.le.f32 %p5, %f5, 0f7F800000;
    @%p5 bra  BB0_5;
  BB0_4:                                  // %.critedge1.i
    add.f32   %f110, %f1, %f2;
    st.global.f32   [%rl1], %f110;
    ret;
  BB0_5:                                  // %__nv_isinff.exit.i

    ...

  BB0_26:                                 // %__nv_truncf.exit.i.i.i.i.i
    mul.f32   %f90, %f107, 0f3FB8AA3B;
    cvt.rzi.f32.f32 %f91, %f90;
    mov.f32   %f92, 0fBF317200;
    fma.rn.f32  %f93, %f91, %f92, %f107;
    mov.f32   %f94, 0fB5BFBE8E;
    fma.rn.f32  %f95, %f91, %f94, %f93;
    mul.f32   %f89, %f95, 0f3FB8AA3B;
    // inline asm
    ex2.approx.ftz.f32 %f88,%f89;
    // inline asm
    add.f32   %f96, %f91, 0f00000000;
    ex2.approx.f32  %f97, %f96;
    mul.f32   %f98, %f88, %f97;
    setp.lt.f32 %p15, %f107, 0fC2D20000;
    selp.f32  %f99, 0f00000000, %f98, %p15;
    setp.gt.f32 %p16, %f107, 0f42D20000;
    selp.f32  %f110, 0f7F800000, %f99, %p16;
    setp.eq.f32 %p17, %f110, 0f7F800000;
    @%p17 bra   BB0_28;
  // %bb.27:
    fma.rn.f32  %f110, %f110, %f108, %f110;
  BB0_28:                                 // %__internal_accurate_powf.exit.i
    setp.lt.f32 %p18, %f1, 0f00000000;
    setp.eq.f32 %p19, %f3, 0f3F800000;
    and.pred    %p20, %p18, %p19;
    @!%p20 bra  BB0_30;
    bra.uni   BB0_29;
  BB0_29:
    mov.b32    %r9, %f110;
    xor.b32   %r10, %r9, -2147483648;
    mov.b32    %f110, %r10;
  BB0_30:                                 // %__nv_powf.exit
    st.global.f32   [%rl1], %f110;
    ret;
  }