| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 
 | //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements some simple delegations needed for call lowering.
///
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "call-lowering"
using namespace llvm;
void CallLowering::anchor() {}
/// Helper function which updates \p Flags when \p AttrFn returns true.
static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
                    const std::function<bool(Attribute::AttrKind)> &AttrFn) {
  // TODO: There are missing flags. Add them here.
  if (AttrFn(Attribute::SExt))
    Flags.setSExt();
  if (AttrFn(Attribute::ZExt))
    Flags.setZExt();
  if (AttrFn(Attribute::InReg))
    Flags.setInReg();
  if (AttrFn(Attribute::StructRet))
    Flags.setSRet();
  if (AttrFn(Attribute::Nest))
    Flags.setNest();
  if (AttrFn(Attribute::ByVal))
    Flags.setByVal();
  if (AttrFn(Attribute::ByRef))
    Flags.setByRef();
  if (AttrFn(Attribute::Preallocated))
    Flags.setPreallocated();
  if (AttrFn(Attribute::InAlloca))
    Flags.setInAlloca();
  if (AttrFn(Attribute::Returned))
    Flags.setReturned();
  if (AttrFn(Attribute::SwiftSelf))
    Flags.setSwiftSelf();
  if (AttrFn(Attribute::SwiftAsync))
    Flags.setSwiftAsync();
  if (AttrFn(Attribute::SwiftError))
    Flags.setSwiftError();
}
ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
                                                     unsigned ArgIdx) const {
  ISD::ArgFlagsTy Flags;
  addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
    return Call.paramHasAttr(ArgIdx, Attr);
  });
  return Flags;
}
ISD::ArgFlagsTy
CallLowering::getAttributesForReturn(const CallBase &Call) const {
  ISD::ArgFlagsTy Flags;
  addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
    return Call.hasRetAttr(Attr);
  });
  return Flags;
}
void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
                                             const AttributeList &Attrs,
                                             unsigned OpIdx) const {
  addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
    return Attrs.hasAttributeAtIndex(OpIdx, Attr);
  });
}
bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
                             ArrayRef<Register> ResRegs,
                             ArrayRef<ArrayRef<Register>> ArgRegs,
                             Register SwiftErrorVReg,
                             std::optional<PtrAuthInfo> PAI,
                             Register ConvergenceCtrlToken,
                             std::function<unsigned()> GetCalleeReg) const {
  CallLoweringInfo Info;
  const DataLayout &DL = MIRBuilder.getDataLayout();
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  bool CanBeTailCalled = CB.isTailCall() &&
                         isInTailCallPosition(CB, MF.getTarget()) &&
                         (MF.getFunction()
                              .getFnAttribute("disable-tail-calls")
                              .getValueAsString() != "true");
  CallingConv::ID CallConv = CB.getCallingConv();
  Type *RetTy = CB.getType();
  bool IsVarArg = CB.getFunctionType()->isVarArg();
  SmallVector<BaseArgInfo, 4> SplitArgs;
  getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
  Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
  Info.IsConvergent = CB.isConvergent();
  if (!Info.CanLowerReturn) {
    // Callee requires sret demotion.
    insertSRetOutgoingArgument(MIRBuilder, CB, Info);
    // The sret demotion isn't compatible with tail-calls, since the sret
    // argument points into the caller's stack frame.
    CanBeTailCalled = false;
  }
  // First step is to marshall all the function's parameters into the correct
  // physregs and memory locations. Gather the sequence of argument types that
  // we'll pass to the assigner function.
  unsigned i = 0;
  unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
  for (const auto &Arg : CB.args()) {
    ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
                    i < NumFixedArgs};
    setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
    // If we have an explicit sret argument that is an Instruction, (i.e., it
    // might point to function-local memory), we can't meaningfully tail-call.
    if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
      CanBeTailCalled = false;
    Info.OrigArgs.push_back(OrigArg);
    ++i;
  }
  // Try looking through a bitcast from one function type to another.
  // Commonly happens with calls to objc_msgSend().
  const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
  // If IRTranslator chose to drop the ptrauth info, we can turn this into
  // a direct call.
  if (!PAI && CB.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
    CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer();
    assert(isa<Function>(CalleeV));
  }
  if (const Function *F = dyn_cast<Function>(CalleeV)) {
    if (F->hasFnAttribute(Attribute::NonLazyBind)) {
      LLT Ty = getLLTForType(*F->getType(), DL);
      Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
      Info.Callee = MachineOperand::CreateReg(Reg, false);
    } else {
      Info.Callee = MachineOperand::CreateGA(F, 0);
    }
  } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
    // IR IFuncs and Aliases can't be forward declared (only defined), so the
    // callee must be in the same TU and therefore we can direct-call it without
    // worrying about it being out of range.
    Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
  } else
    Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
  Register ReturnHintAlignReg;
  Align ReturnHintAlign;
  Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
  if (!Info.OrigRet.Ty->isVoidTy()) {
    setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
    if (MaybeAlign Alignment = CB.getRetAlign()) {
      if (*Alignment > Align(1)) {
        ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
        Info.OrigRet.Regs[0] = ReturnHintAlignReg;
        ReturnHintAlign = *Alignment;
      }
    }
  }
  auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
  if (Bundle && CB.isIndirectCall()) {
    Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
    assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
  }
  Info.CB = &CB;
  Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
  Info.CallConv = CallConv;
  Info.SwiftErrorVReg = SwiftErrorVReg;
  Info.PAI = PAI;
  Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
  Info.IsMustTailCall = CB.isMustTailCall();
  Info.IsTailCall = CanBeTailCalled;
  Info.IsVarArg = IsVarArg;
  if (!lowerCall(MIRBuilder, Info))
    return false;
  if (ReturnHintAlignReg && !Info.LoweredTailCall) {
    MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
                                ReturnHintAlign);
  }
  return true;
}
template <typename FuncInfoTy>
void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                               const DataLayout &DL,
                               const FuncInfoTy &FuncInfo) const {
  auto &Flags = Arg.Flags[0];
  const AttributeList &Attrs = FuncInfo.getAttributes();
  addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
  PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
  if (PtrTy) {
    Flags.setPointer();
    Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
  }
  Align MemAlign = DL.getABITypeAlign(Arg.Ty);
  if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
      Flags.isByRef()) {
    assert(OpIdx >= AttributeList::FirstArgIndex);
    unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
    Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
    if (!ElementTy)
      ElementTy = FuncInfo.getParamByRefType(ParamIdx);
    if (!ElementTy)
      ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
    if (!ElementTy)
      ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
    assert(ElementTy && "Must have byval, inalloca or preallocated type");
    uint64_t MemSize = DL.getTypeAllocSize(ElementTy);
    if (Flags.isByRef())
      Flags.setByRefSize(MemSize);
    else
      Flags.setByValSize(MemSize);
    // For ByVal, alignment should be passed from FE.  BE will guess if
    // this info is not there but there are cases it cannot get right.
    if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
      MemAlign = *ParamAlign;
    else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
      MemAlign = *ParamAlign;
    else
      MemAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
  } else if (OpIdx >= AttributeList::FirstArgIndex) {
    if (auto ParamAlign =
            FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
      MemAlign = *ParamAlign;
  }
  Flags.setMemAlign(MemAlign);
  Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
  // Don't try to use the returned attribute if the argument is marked as
  // swiftself, since it won't be passed in x0.
  if (Flags.isSwiftSelf())
    Flags.setReturned(false);
}
template void
CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                                    const DataLayout &DL,
                                    const Function &FuncInfo) const;
template void
CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                                    const DataLayout &DL,
                                    const CallBase &FuncInfo) const;
void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
                                     SmallVectorImpl<ArgInfo> &SplitArgs,
                                     const DataLayout &DL,
                                     CallingConv::ID CallConv,
                                     SmallVectorImpl<uint64_t> *Offsets) const {
  LLVMContext &Ctx = OrigArg.Ty->getContext();
  SmallVector<EVT, 4> SplitVTs;
  ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
  if (SplitVTs.size() == 0)
    return;
  if (SplitVTs.size() == 1) {
    // No splitting to do, but we want to replace the original type (e.g. [1 x
    // double] -> double).
    SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
                           OrigArg.OrigArgIndex, OrigArg.Flags[0],
                           OrigArg.IsFixed, OrigArg.OrigValue);
    return;
  }
  // Create one ArgInfo for each virtual register in the original ArgInfo.
  assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
  bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
      OrigArg.Ty, CallConv, false, DL);
  for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
    Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
    SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
                           OrigArg.Flags[0], OrigArg.IsFixed);
    if (NeedsRegBlock)
      SplitArgs.back().Flags[0].setInConsecutiveRegs();
  }
  SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
}
/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
                            ArrayRef<Register> SrcRegs) {
  MachineRegisterInfo &MRI = *B.getMRI();
  LLT LLTy = MRI.getType(DstRegs[0]);
  LLT PartLLT = MRI.getType(SrcRegs[0]);
  // Deal with v3s16 split into v2s16
  LLT LCMTy = getCoverTy(LLTy, PartLLT);
  if (LCMTy == LLTy) {
    // Common case where no padding is needed.
    assert(DstRegs.size() == 1);
    return B.buildConcatVectors(DstRegs[0], SrcRegs);
  }
  // We need to create an unmerge to the result registers, which may require
  // widening the original value.
  Register UnmergeSrcReg;
  if (LCMTy != PartLLT) {
    assert(DstRegs.size() == 1);
    return B.buildDeleteTrailingVectorElements(
        DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
  } else {
    // We don't need to widen anything if we're extracting a scalar which was
    // promoted to a vector e.g. s8 -> v4s8 -> s8
    assert(SrcRegs.size() == 1);
    UnmergeSrcReg = SrcRegs[0];
  }
  int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
  SmallVector<Register, 8> PadDstRegs(NumDst);
  std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
  // Create the excess dead defs for the unmerge.
  for (int I = DstRegs.size(); I != NumDst; ++I)
    PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
  if (PadDstRegs.size() == 1)
    return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
  return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
}
/// Create a sequence of instructions to combine pieces split into register
/// typed values to the original IR value. \p OrigRegs contains the destination
/// value registers of type \p LLTy, and \p Regs contains the legalized pieces
/// with type \p PartLLT. This is used for incoming values (physregs to vregs).
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
                              ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
                              const ISD::ArgFlagsTy Flags) {
  MachineRegisterInfo &MRI = *B.getMRI();
  if (PartLLT == LLTy) {
    // We should have avoided introducing a new virtual register, and just
    // directly assigned here.
    assert(OrigRegs[0] == Regs[0]);
    return;
  }
  if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
      Regs.size() == 1) {
    B.buildBitcast(OrigRegs[0], Regs[0]);
    return;
  }
  // A vector PartLLT needs extending to LLTy's element size.
  // E.g. <2 x s64> = G_SEXT <2 x s32>.
  if (PartLLT.isVector() == LLTy.isVector() &&
      PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
      (!PartLLT.isVector() ||
       PartLLT.getElementCount() == LLTy.getElementCount()) &&
      OrigRegs.size() == 1 && Regs.size() == 1) {
    Register SrcReg = Regs[0];
    LLT LocTy = MRI.getType(SrcReg);
    if (Flags.isSExt()) {
      SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
                   .getReg(0);
    } else if (Flags.isZExt()) {
      SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
                   .getReg(0);
    }
    // Sometimes pointers are passed zero extended.
    LLT OrigTy = MRI.getType(OrigRegs[0]);
    if (OrigTy.isPointer()) {
      LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
      B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
      return;
    }
    B.buildTrunc(OrigRegs[0], SrcReg);
    return;
  }
  if (!LLTy.isVector() && !PartLLT.isVector()) {
    assert(OrigRegs.size() == 1);
    LLT OrigTy = MRI.getType(OrigRegs[0]);
    unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
    if (SrcSize == OrigTy.getSizeInBits())
      B.buildMergeValues(OrigRegs[0], Regs);
    else {
      auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
      B.buildTrunc(OrigRegs[0], Widened);
    }
    return;
  }
  if (PartLLT.isVector()) {
    assert(OrigRegs.size() == 1);
    SmallVector<Register> CastRegs(Regs);
    // If PartLLT is a mismatched vector in both number of elements and element
    // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
    // have the same elt type, i.e. v4s32.
    // TODO: Extend this coersion to element multiples other than just 2.
    if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
        PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
        Regs.size() == 1) {
      LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
                      .changeElementCount(PartLLT.getElementCount() * 2);
      CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
      PartLLT = NewTy;
    }
    if (LLTy.getScalarType() == PartLLT.getElementType()) {
      mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
    } else {
      unsigned I = 0;
      LLT GCDTy = getGCDType(LLTy, PartLLT);
      // We are both splitting a vector, and bitcasting its element types. Cast
      // the source pieces into the appropriate number of pieces with the result
      // element type.
      for (Register SrcReg : CastRegs)
        CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
      mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
    }
    return;
  }
  assert(LLTy.isVector() && !PartLLT.isVector());
  LLT DstEltTy = LLTy.getElementType();
  // Pointer information was discarded. We'll need to coerce some register types
  // to avoid violating type constraints.
  LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
  assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
  if (DstEltTy == PartLLT) {
    // Vector was trivially scalarized.
    if (RealDstEltTy.isPointer()) {
      for (Register Reg : Regs)
        MRI.setType(Reg, RealDstEltTy);
    }
    B.buildBuildVector(OrigRegs[0], Regs);
  } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
    // Deal with vector with 64-bit elements decomposed to 32-bit
    // registers. Need to create intermediate 64-bit elements.
    SmallVector<Register, 8> EltMerges;
    int PartsPerElt =
        divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits());
    LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt);
    for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
      auto Merge =
          B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt));
      if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits())
        Merge = B.buildTrunc(RealDstEltTy, Merge);
      // Fix the type in case this is really a vector of pointers.
      MRI.setType(Merge.getReg(0), RealDstEltTy);
      EltMerges.push_back(Merge.getReg(0));
      Regs = Regs.drop_front(PartsPerElt);
    }
    B.buildBuildVector(OrigRegs[0], EltMerges);
  } else {
    // Vector was split, and elements promoted to a wider type.
    // FIXME: Should handle floating point promotions.
    unsigned NumElts = LLTy.getNumElements();
    LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
    Register BuildVec;
    if (NumElts == Regs.size())
      BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
    else {
      // Vector elements are packed in the inputs.
      // e.g. we have a <4 x s16> but 2 x s32 in regs.
      assert(NumElts > Regs.size());
      LLT SrcEltTy = MRI.getType(Regs[0]);
      LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
      // Input registers contain packed elements.
      // Determine how many elements per reg.
      assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
      unsigned EltPerReg =
          (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
      SmallVector<Register, 0> BVRegs;
      BVRegs.reserve(Regs.size() * EltPerReg);
      for (Register R : Regs) {
        auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
        for (unsigned K = 0; K < EltPerReg; ++K)
          BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
      }
      // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
      // for a <3 x s16> vector. We should have less than EltPerReg extra items.
      if (BVRegs.size() > NumElts) {
        assert((BVRegs.size() - NumElts) < EltPerReg);
        BVRegs.truncate(NumElts);
      }
      BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
    }
    B.buildTrunc(OrigRegs[0], BuildVec);
  }
}
/// Create a sequence of instructions to expand the value in \p SrcReg (of type
/// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
/// contain the type of scalar value extension if necessary.
///
/// This is used for outgoing values (vregs to physregs)
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
                            Register SrcReg, LLT SrcTy, LLT PartTy,
                            unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
  // We could just insert a regular copy, but this is unreachable at the moment.
  assert(SrcTy != PartTy && "identical part types shouldn't reach here");
  const TypeSize PartSize = PartTy.getSizeInBits();
  if (PartTy.isVector() == SrcTy.isVector() &&
      PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
    assert(DstRegs.size() == 1);
    B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
    return;
  }
  if (SrcTy.isVector() && !PartTy.isVector() &&
      TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
    // Vector was scalarized, and the elements extended.
    auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
    for (int i = 0, e = DstRegs.size(); i != e; ++i)
      B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
    return;
  }
  if (SrcTy.isVector() && PartTy.isVector() &&
      PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
      ElementCount::isKnownLT(SrcTy.getElementCount(),
                              PartTy.getElementCount())) {
    // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
    Register DstReg = DstRegs.front();
    B.buildPadVectorWithUndefElements(DstReg, SrcReg);
    return;
  }
  LLT GCDTy = getGCDType(SrcTy, PartTy);
  if (GCDTy == PartTy) {
    // If this already evenly divisible, we can create a simple unmerge.
    B.buildUnmerge(DstRegs, SrcReg);
    return;
  }
  if (SrcTy.isVector() && !PartTy.isVector() &&
      SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) {
    LLT ExtTy =
        LLT::vector(SrcTy.getElementCount(),
                    LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() /
                                SrcTy.getNumElements()));
    auto Ext = B.buildAnyExt(ExtTy, SrcReg);
    B.buildUnmerge(DstRegs, Ext);
    return;
  }
  MachineRegisterInfo &MRI = *B.getMRI();
  LLT DstTy = MRI.getType(DstRegs[0]);
  LLT LCMTy = getCoverTy(SrcTy, PartTy);
  if (PartTy.isVector() && LCMTy == PartTy) {
    assert(DstRegs.size() == 1);
    B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
    return;
  }
  const unsigned DstSize = DstTy.getSizeInBits();
  const unsigned SrcSize = SrcTy.getSizeInBits();
  unsigned CoveringSize = LCMTy.getSizeInBits();
  Register UnmergeSrc = SrcReg;
  if (!LCMTy.isVector() && CoveringSize != SrcSize) {
    // For scalars, it's common to be able to use a simple extension.
    if (SrcTy.isScalar() && DstTy.isScalar()) {
      CoveringSize = alignTo(SrcSize, DstSize);
      LLT CoverTy = LLT::scalar(CoveringSize);
      UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
    } else {
      // Widen to the common type.
      // FIXME: This should respect the extend type
      Register Undef = B.buildUndef(SrcTy).getReg(0);
      SmallVector<Register, 8> MergeParts(1, SrcReg);
      for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
        MergeParts.push_back(Undef);
      UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
    }
  }
  if (LCMTy.isVector() && CoveringSize != SrcSize)
    UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
  B.buildUnmerge(DstRegs, UnmergeSrc);
}
bool CallLowering::determineAndHandleAssignments(
    ValueHandler &Handler, ValueAssigner &Assigner,
    SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
    CallingConv::ID CallConv, bool IsVarArg,
    ArrayRef<Register> ThisReturnRegs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
  if (!determineAssignments(Assigner, Args, CCInfo))
    return false;
  return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
                           ThisReturnRegs);
}
static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
  if (Flags.isSExt())
    return TargetOpcode::G_SEXT;
  if (Flags.isZExt())
    return TargetOpcode::G_ZEXT;
  return TargetOpcode::G_ANYEXT;
}
bool CallLowering::determineAssignments(ValueAssigner &Assigner,
                                        SmallVectorImpl<ArgInfo> &Args,
                                        CCState &CCInfo) const {
  LLVMContext &Ctx = CCInfo.getContext();
  const CallingConv::ID CallConv = CCInfo.getCallingConv();
  unsigned NumArgs = Args.size();
  for (unsigned i = 0; i != NumArgs; ++i) {
    EVT CurVT = EVT::getEVT(Args[i].Ty);
    MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
    // If we need to split the type over multiple regs, check it's a scenario
    // we currently support.
    unsigned NumParts =
        TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
    if (NumParts == 1) {
      // Try to use the register type if we couldn't assign the VT.
      if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
                             Args[i].Flags[0], CCInfo))
        return false;
      continue;
    }
    // For incoming arguments (physregs to vregs), we could have values in
    // physregs (or memlocs) which we want to extract and copy to vregs.
    // During this, we might have to deal with the LLT being split across
    // multiple regs, so we have to record this information for later.
    //
    // If we have outgoing args, then we have the opposite case. We have a
    // vreg with an LLT which we want to assign to a physical location, and
    // we might have to record that the value has to be split later.
    // We're handling an incoming arg which is split over multiple regs.
    // E.g. passing an s128 on AArch64.
    ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
    Args[i].Flags.clear();
    for (unsigned Part = 0; Part < NumParts; ++Part) {
      ISD::ArgFlagsTy Flags = OrigFlags;
      if (Part == 0) {
        Flags.setSplit();
      } else {
        Flags.setOrigAlign(Align(1));
        if (Part == NumParts - 1)
          Flags.setSplitEnd();
      }
      Args[i].Flags.push_back(Flags);
      if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
                             Args[i].Flags[Part], CCInfo)) {
        // Still couldn't assign this smaller part type for some reason.
        return false;
      }
    }
  }
  return true;
}
bool CallLowering::handleAssignments(ValueHandler &Handler,
                                     SmallVectorImpl<ArgInfo> &Args,
                                     CCState &CCInfo,
                                     SmallVectorImpl<CCValAssign> &ArgLocs,
                                     MachineIRBuilder &MIRBuilder,
                                     ArrayRef<Register> ThisReturnRegs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getDataLayout();
  const unsigned NumArgs = Args.size();
  // Stores thunks for outgoing register assignments. This is used so we delay
  // generating register copies until mem loc assignments are done. We do this
  // so that if the target is using the delayed stack protector feature, we can
  // find the split point of the block accurately. E.g. if we have:
  // G_STORE %val, %memloc
  // $x0 = COPY %foo
  // $x1 = COPY %bar
  // CALL func
  // ... then the split point for the block will correctly be at, and including,
  // the copy to $x0. If instead the G_STORE instruction immediately precedes
  // the CALL, then we'd prematurely choose the CALL as the split point, thus
  // generating a split block with a CALL that uses undefined physregs.
  SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
  for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
    assert(j < ArgLocs.size() && "Skipped too many arg locs");
    CCValAssign &VA = ArgLocs[j];
    assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
    if (VA.needsCustom()) {
      std::function<void()> Thunk;
      unsigned NumArgRegs = Handler.assignCustomValue(
          Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
      if (Thunk)
        DelayedOutgoingRegAssignments.emplace_back(Thunk);
      if (!NumArgRegs)
        return false;
      j += (NumArgRegs - 1);
      continue;
    }
    auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace();
    const MVT ValVT = VA.getValVT();
    const MVT LocVT = VA.getLocVT();
    const LLT LocTy(LocVT);
    const LLT ValTy(ValVT);
    const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
    const EVT OrigVT = EVT::getEVT(Args[i].Ty);
    const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
    const LLT PointerTy = LLT::pointer(
        AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace));
    // Expected to be multiple regs for a single incoming arg.
    // There should be Regs.size() ArgLocs per argument.
    // This should be the same as getNumRegistersForCallingConv
    const unsigned NumParts = Args[i].Flags.size();
    // Now split the registers into the assigned types.
    Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
    if (NumParts != 1 || NewLLT != OrigTy) {
      // If we can't directly assign the register, we need one or more
      // intermediate values.
      Args[i].Regs.resize(NumParts);
      // When we have indirect parameter passing we are receiving a pointer,
      // that points to the actual value, so we need one "temporary" pointer.
      if (VA.getLocInfo() == CCValAssign::Indirect) {
        if (Handler.isIncomingArgumentHandler())
          Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy);
      } else {
        // For each split register, create and assign a vreg that will store
        // the incoming component of the larger value. These will later be
        // merged to form the final vreg.
        for (unsigned Part = 0; Part < NumParts; ++Part)
          Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
      }
    }
    assert((j + (NumParts - 1)) < ArgLocs.size() &&
           "Too many regs for number of args");
    // Coerce into outgoing value types before register assignment.
    if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy &&
        VA.getLocInfo() != CCValAssign::Indirect) {
      assert(Args[i].OrigRegs.size() == 1);
      buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
                      ValTy, extendOpFromFlags(Args[i].Flags[0]));
    }
    bool IndirectParameterPassingHandled = false;
    bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
    for (unsigned Part = 0; Part < NumParts; ++Part) {
      assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) &&
             "Only the first parameter should be processed when "
             "handling indirect passing!");
      Register ArgReg = Args[i].Regs[Part];
      // There should be Regs.size() ArgLocs per argument.
      unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
      CCValAssign &VA = ArgLocs[j + Idx];
      const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
      // We found an indirect parameter passing, and we have an
      // OutgoingValueHandler as our handler (so we are at the call site or the
      // return value). In this case, start the construction of the following
      // GMIR, that is responsible for the preparation of indirect parameter
      // passing:
      //
      // %1(indirectly passed type) = The value to pass
      // %3(pointer) = G_FRAME_INDEX %stack.0
      // G_STORE %1, %3 :: (store (s128), align 8)
      //
      // After this GMIR, the remaining part of the loop body will decide how
      // to get the value to the caller and we break out of the loop.
      if (VA.getLocInfo() == CCValAssign::Indirect &&
          !Handler.isIncomingArgumentHandler()) {
        Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty);
        MachineFrameInfo &MFI = MF.getFrameInfo();
        // Get some space on the stack for the value, so later we can pass it
        // as a reference.
        int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(),
                                             AlignmentForStored, false);
        Register PointerToStackReg =
            MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0);
        MachinePointerInfo StackPointerMPO =
            MachinePointerInfo::getFixedStack(MF, FrameIdx);
        // Store the value in the previously created stack space.
        MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
                              StackPointerMPO,
                              inferAlignFromPtrInfo(MF, StackPointerMPO));
        ArgReg = PointerToStackReg;
        IndirectParameterPassingHandled = true;
      }
      if (VA.isMemLoc() && !Flags.isByVal()) {
        // Individual pieces may have been spilled to the stack and others
        // passed in registers.
        // TODO: The memory size may be larger than the value we need to
        // store. We may need to adjust the offset for big endian targets.
        LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
        MachinePointerInfo MPO;
        Register StackAddr =
            Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect
                                        ? PointerTy.getSizeInBytes()
                                        : MemTy.getSizeInBytes(),
                                    VA.getLocMemOffset(), MPO, Flags);
        // Finish the handling of indirect passing from the passers
        // (OutgoingParameterHandler) side.
        // This branch is needed, so the pointer to the value is loaded onto the
        // stack.
        if (VA.getLocInfo() == CCValAssign::Indirect)
          Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA);
        else
          Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO,
                                       VA);
      } else if (VA.isMemLoc() && Flags.isByVal()) {
        assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer");
        if (Handler.isIncomingArgumentHandler()) {
          // We just need to copy the frame index value to the pointer.
          MachinePointerInfo MPO;
          Register StackAddr = Handler.getStackAddress(
              Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
          MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
        } else {
          // For outgoing byval arguments, insert the implicit copy byval
          // implies, such that writes in the callee do not modify the caller's
          // value.
          uint64_t MemSize = Flags.getByValSize();
          int64_t Offset = VA.getLocMemOffset();
          MachinePointerInfo DstMPO;
          Register StackAddr =
              Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
          MachinePointerInfo SrcMPO(Args[i].OrigValue);
          if (!Args[i].OrigValue) {
            // We still need to accurately track the stack address space if we
            // don't know the underlying value.
            const LLT PtrTy = MRI.getType(StackAddr);
            SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
          }
          Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
                                    inferAlignFromPtrInfo(MF, DstMPO));
          Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
                                    inferAlignFromPtrInfo(MF, SrcMPO));
          Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
                                     DstMPO, DstAlign, SrcMPO, SrcAlign,
                                     MemSize, VA);
        }
      } else if (i == 0 && !ThisReturnRegs.empty() &&
                 Handler.isIncomingArgumentHandler() &&
                 isTypeIsValidForThisReturn(ValVT)) {
        Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
      } else if (Handler.isIncomingArgumentHandler()) {
        Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
      } else {
        DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
          Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
        });
      }
      // Finish the handling of indirect parameter passing when receiving
      // the value (we are in the called function or the caller when receiving
      // the return value).
      if (VA.getLocInfo() == CCValAssign::Indirect &&
          Handler.isIncomingArgumentHandler()) {
        Align Alignment = DL.getABITypeAlign(Args[i].Ty);
        MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF);
        // Since we are doing indirect parameter passing, we know that the value
        // in the temporary register is not the value passed to the function,
        // but rather a pointer to that value. Let's load that value into the
        // virtual register where the parameter should go.
        MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
                             Alignment);
        IndirectParameterPassingHandled = true;
      }
      if (IndirectParameterPassingHandled)
        break;
    }
    // Now that all pieces have been assigned, re-pack the register typed values
    // into the original value typed registers. This is only necessary, when
    // the value was passed in multiple registers, not indirectly.
    if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT &&
        !IndirectParameterPassingHandled) {
      // Merge the split registers into the expected larger result vregs of
      // the original call.
      buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
                        LocTy, Args[i].Flags[0]);
    }
    j += NumParts - 1;
  }
  for (auto &Fn : DelayedOutgoingRegAssignments)
    Fn();
  return true;
}
void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
                                   ArrayRef<Register> VRegs, Register DemoteReg,
                                   int FI) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const DataLayout &DL = MF.getDataLayout();
  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
  assert(VRegs.size() == SplitVTs.size());
  unsigned NumValues = SplitVTs.size();
  Align BaseAlign = DL.getPrefTypeAlign(RetTy);
  Type *RetPtrTy =
      PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
  LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
  for (unsigned I = 0; I < NumValues; ++I) {
    Register Addr;
    MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
    auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
                                        MRI.getType(VRegs[I]),
                                        commonAlignment(BaseAlign, Offsets[I]));
    MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
  }
}
void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
                                    ArrayRef<Register> VRegs,
                                    Register DemoteReg) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const DataLayout &DL = MF.getDataLayout();
  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
  assert(VRegs.size() == SplitVTs.size());
  unsigned NumValues = SplitVTs.size();
  Align BaseAlign = DL.getPrefTypeAlign(RetTy);
  unsigned AS = DL.getAllocaAddrSpace();
  LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getContext(), AS), DL);
  MachinePointerInfo PtrInfo(AS);
  for (unsigned I = 0; I < NumValues; ++I) {
    Register Addr;
    MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
    auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
                                        MRI.getType(VRegs[I]),
                                        commonAlignment(BaseAlign, Offsets[I]));
    MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
  }
}
void CallLowering::insertSRetIncomingArgument(
    const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
    MachineRegisterInfo &MRI, const DataLayout &DL) const {
  unsigned AS = DL.getAllocaAddrSpace();
  DemoteReg = MRI.createGenericVirtualRegister(
      LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
  Type *PtrTy = PointerType::get(F.getContext(), AS);
  SmallVector<EVT, 1> ValueVTs;
  ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
  // NOTE: Assume that a pointer won't get split into more than one VT.
  assert(ValueVTs.size() == 1);
  ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
                    ArgInfo::NoArgIndex);
  setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
  DemoteArg.Flags[0].setSRet();
  SplitArgs.insert(SplitArgs.begin(), DemoteArg);
}
void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
                                              const CallBase &CB,
                                              CallLoweringInfo &Info) const {
  const DataLayout &DL = MIRBuilder.getDataLayout();
  Type *RetTy = CB.getType();
  unsigned AS = DL.getAllocaAddrSpace();
  LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
  int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
      DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
  Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
  ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy->getContext(), AS),
                    ArgInfo::NoArgIndex);
  setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
  DemoteArg.Flags[0].setSRet();
  Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
  Info.DemoteStackIndex = FI;
  Info.DemoteRegister = DemoteReg;
}
bool CallLowering::checkReturn(CCState &CCInfo,
                               SmallVectorImpl<BaseArgInfo> &Outs,
                               CCAssignFn *Fn) const {
  for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
    MVT VT = MVT::getVT(Outs[I].Ty);
    if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
      return false;
  }
  return true;
}
void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
                                 AttributeList Attrs,
                                 SmallVectorImpl<BaseArgInfo> &Outs,
                                 const DataLayout &DL) const {
  LLVMContext &Context = RetTy->getContext();
  ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
  SmallVector<EVT, 4> SplitVTs;
  ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
  addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
  for (EVT VT : SplitVTs) {
    unsigned NumParts =
        TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
    MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
    Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
    for (unsigned I = 0; I < NumParts; ++I) {
      Outs.emplace_back(PartTy, Flags);
    }
  }
}
bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
  const auto &F = MF.getFunction();
  Type *ReturnType = F.getReturnType();
  CallingConv::ID CallConv = F.getCallingConv();
  SmallVector<BaseArgInfo, 4> SplitArgs;
  getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
                MF.getDataLayout());
  return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
}
bool CallLowering::parametersInCSRMatch(
    const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
    const SmallVectorImpl<CCValAssign> &OutLocs,
    const SmallVectorImpl<ArgInfo> &OutArgs) const {
  for (unsigned i = 0; i < OutLocs.size(); ++i) {
    const auto &ArgLoc = OutLocs[i];
    // If it's not a register, it's fine.
    if (!ArgLoc.isRegLoc())
      continue;
    MCRegister PhysReg = ArgLoc.getLocReg();
    // Only look at callee-saved registers.
    if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
      continue;
    LLVM_DEBUG(
        dbgs()
        << "... Call has an argument passed in a callee-saved register.\n");
    // Check if it was copied from.
    const ArgInfo &OutInfo = OutArgs[i];
    if (OutInfo.Regs.size() > 1) {
      LLVM_DEBUG(
          dbgs() << "... Cannot handle arguments in multiple registers.\n");
      return false;
    }
    // Check if we copy the register, walking through copies from virtual
    // registers. Note that getDefIgnoringCopies does not ignore copies from
    // physical registers.
    MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
    if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
      LLVM_DEBUG(
          dbgs()
          << "... Parameter was not copied into a VReg, cannot tail call.\n");
      return false;
    }
    // Got a copy. Verify that it's the same as the register we want.
    Register CopyRHS = RegDef->getOperand(1).getReg();
    if (CopyRHS != PhysReg) {
      LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
                           "VReg, cannot tail call.\n");
      return false;
    }
  }
  return true;
}
bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
                                     MachineFunction &MF,
                                     SmallVectorImpl<ArgInfo> &InArgs,
                                     ValueAssigner &CalleeAssigner,
                                     ValueAssigner &CallerAssigner) const {
  const Function &F = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = F.getCallingConv();
  if (CallerCC == CalleeCC)
    return true;
  SmallVector<CCValAssign, 16> ArgLocs1;
  CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
  if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
    return false;
  SmallVector<CCValAssign, 16> ArgLocs2;
  CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
  if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
    return false;
  // We need the argument locations to match up exactly. If there's more in
  // one than the other, then we are done.
  if (ArgLocs1.size() != ArgLocs2.size())
    return false;
  // Make sure that each location is passed in exactly the same way.
  for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
    const CCValAssign &Loc1 = ArgLocs1[i];
    const CCValAssign &Loc2 = ArgLocs2[i];
    // We need both of them to be the same. So if one is a register and one
    // isn't, we're done.
    if (Loc1.isRegLoc() != Loc2.isRegLoc())
      return false;
    if (Loc1.isRegLoc()) {
      // If they don't have the same register location, we're done.
      if (Loc1.getLocReg() != Loc2.getLocReg())
        return false;
      // They matched, so we can move to the next ArgLoc.
      continue;
    }
    // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
    if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
      return false;
  }
  return true;
}
LLT CallLowering::ValueHandler::getStackValueStoreType(
    const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
  const MVT ValVT = VA.getValVT();
  if (ValVT != MVT::iPTR) {
    LLT ValTy(ValVT);
    // We lost the pointeriness going through CCValAssign, so try to restore it
    // based on the flags.
    if (Flags.isPointer()) {
      LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
                               ValTy.getScalarSizeInBits());
      if (ValVT.isVector())
        return LLT::vector(ValTy.getElementCount(), PtrTy);
      return PtrTy;
    }
    return ValTy;
  }
  unsigned AddrSpace = Flags.getPointerAddrSpace();
  return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
}
void CallLowering::ValueHandler::copyArgumentMemory(
    const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
    const MachinePointerInfo &DstPtrInfo, Align DstAlign,
    const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
    CCValAssign &VA) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
      SrcPtrInfo,
      MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
      SrcAlign);
  MachineMemOperand *DstMMO = MF.getMachineMemOperand(
      DstPtrInfo,
      MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
      MemSize, DstAlign);
  const LLT PtrTy = MRI.getType(DstPtr);
  const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
  auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
  MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
}
Register CallLowering::ValueHandler::extendRegister(Register ValReg,
                                                    const CCValAssign &VA,
                                                    unsigned MaxSizeBits) {
  LLT LocTy{VA.getLocVT()};
  LLT ValTy{VA.getValVT()};
  if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
    return ValReg;
  if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
    if (MaxSizeBits <= ValTy.getSizeInBits())
      return ValReg;
    LocTy = LLT::scalar(MaxSizeBits);
  }
  const LLT ValRegTy = MRI.getType(ValReg);
  if (ValRegTy.isPointer()) {
    // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
    // we have to cast to do the extension.
    LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
    ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
  }
  switch (VA.getLocInfo()) {
  default:
    break;
  case CCValAssign::Full:
  case CCValAssign::BCvt:
    // FIXME: bitconverting between vector types may or may not be a
    // nop in big-endian situations.
    return ValReg;
  case CCValAssign::AExt: {
    auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
    return MIB.getReg(0);
  }
  case CCValAssign::SExt: {
    Register NewReg = MRI.createGenericVirtualRegister(LocTy);
    MIRBuilder.buildSExt(NewReg, ValReg);
    return NewReg;
  }
  case CCValAssign::ZExt: {
    Register NewReg = MRI.createGenericVirtualRegister(LocTy);
    MIRBuilder.buildZExt(NewReg, ValReg);
    return NewReg;
  }
  }
  llvm_unreachable("unable to extend register");
}
void CallLowering::ValueAssigner::anchor() {}
Register CallLowering::IncomingValueHandler::buildExtensionHint(
    const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
  switch (VA.getLocInfo()) {
  case CCValAssign::LocInfo::ZExt: {
    return MIRBuilder
        .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
                         NarrowTy.getScalarSizeInBits())
        .getReg(0);
  }
  case CCValAssign::LocInfo::SExt: {
    return MIRBuilder
        .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
                         NarrowTy.getScalarSizeInBits())
        .getReg(0);
    break;
  }
  default:
    return SrcReg;
  }
}
/// Check if we can use a basic COPY instruction between the two types.
///
/// We're currently building on top of the infrastructure using MVT, which loses
/// pointer information in the CCValAssign. We accept copies from physical
/// registers that have been reported as integers if it's to an equivalent sized
/// pointer LLT.
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
  if (SrcTy == DstTy)
    return true;
  if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
    return false;
  SrcTy = SrcTy.getScalarType();
  DstTy = DstTy.getScalarType();
  return (SrcTy.isPointer() && DstTy.isScalar()) ||
         (DstTy.isPointer() && SrcTy.isScalar());
}
void CallLowering::IncomingValueHandler::assignValueToReg(
    Register ValVReg, Register PhysReg, const CCValAssign &VA) {
  const MVT LocVT = VA.getLocVT();
  const LLT LocTy(LocVT);
  const LLT RegTy = MRI.getType(ValVReg);
  if (isCopyCompatibleType(RegTy, LocTy)) {
    MIRBuilder.buildCopy(ValVReg, PhysReg);
    return;
  }
  auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
  auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
  MIRBuilder.buildTrunc(ValVReg, Hint);
}
 |