1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
//===---- GlobalMergeFunctions.cpp - Global merge functions -------*- C++ -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the global merge function pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalMergeFunctions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/CGData/CodeGenData.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/StructuralHash.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#define DEBUG_TYPE "global-merge-func"
using namespace llvm;
using namespace llvm::support;
static cl::opt<bool> DisableCGDataForMerging(
"disable-cgdata-for-merging", cl::Hidden,
cl::desc("Disable codegen data for function merging. Local "
"merging is still enabled within a module."),
cl::init(false));
STATISTIC(NumMergedFunctions,
"Number of functions that are actually merged using function hash");
STATISTIC(NumAnalyzedModues, "Number of modules that are analyzed");
STATISTIC(NumAnalyzedFunctions, "Number of functions that are analyzed");
STATISTIC(NumEligibleFunctions, "Number of functions that are eligible");
/// Returns true if the \OpIdx operand of \p CI is the callee operand.
static bool isCalleeOperand(const CallBase *CI, unsigned OpIdx) {
return &CI->getCalledOperandUse() == &CI->getOperandUse(OpIdx);
}
static bool canParameterizeCallOperand(const CallBase *CI, unsigned OpIdx) {
if (CI->isInlineAsm())
return false;
Function *Callee = CI->getCalledOperand()
? dyn_cast_or_null<Function>(
CI->getCalledOperand()->stripPointerCasts())
: nullptr;
if (Callee) {
if (Callee->isIntrinsic())
return false;
auto Name = Callee->getName();
// objc_msgSend stubs must be called, and can't have their address taken.
if (Name.starts_with("objc_msgSend$"))
return false;
// Calls to dtrace probes must generate unique patchpoints.
if (Name.starts_with("__dtrace"))
return false;
}
if (isCalleeOperand(CI, OpIdx)) {
// The operand is the callee and it has already been signed. Ignore this
// because we cannot add another ptrauth bundle to the call instruction.
if (CI->getOperandBundle(LLVMContext::OB_ptrauth).has_value())
return false;
} else {
// The target of the arc-attached call must be a constant and cannot be
// parameterized.
if (CI->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
OpIdx))
return false;
}
return true;
}
/// Returns true if function \p F is eligible for merging.
bool isEligibleFunction(Function *F) {
if (F->isDeclaration())
return false;
if (F->hasFnAttribute(llvm::Attribute::NoMerge) ||
F->hasFnAttribute(llvm::Attribute::AlwaysInline))
return false;
if (F->hasAvailableExternallyLinkage())
return false;
if (F->getFunctionType()->isVarArg())
return false;
if (F->getCallingConv() == CallingConv::SwiftTail)
return false;
// If function contains callsites with musttail, if we merge
// it, the merged function will have the musttail callsite, but
// the number of parameters can change, thus the parameter count
// of the callsite will mismatch with the function itself.
for (const BasicBlock &BB : *F) {
for (const Instruction &I : BB) {
const auto *CB = dyn_cast<CallBase>(&I);
if (CB && CB->isMustTailCall())
return false;
}
}
return true;
}
static bool isEligibleInstructionForConstantSharing(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
case Instruction::Store:
case Instruction::Call:
case Instruction::Invoke:
return true;
default:
return false;
}
}
// This function takes an instruction, \p I, and an operand index, \p OpIdx.
// It returns true if the operand should be ignored in the hash computation.
// If \p OpIdx is out of range based on the other instruction context, it cannot
// be ignored.
static bool ignoreOp(const Instruction *I, unsigned OpIdx) {
if (OpIdx >= I->getNumOperands())
return false;
if (!isEligibleInstructionForConstantSharing(I))
return false;
if (!isa<Constant>(I->getOperand(OpIdx)))
return false;
if (const auto *CI = dyn_cast<CallBase>(I))
return canParameterizeCallOperand(CI, OpIdx);
return true;
}
static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) {
Type *SrcTy = V->getType();
if (SrcTy->isStructTy()) {
assert(DestTy->isStructTy());
assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
Value *Result = PoisonValue::get(DestTy);
for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
Value *Element =
createCast(Builder, Builder.CreateExtractValue(V, ArrayRef(I)),
DestTy->getStructElementType(I));
Result = Builder.CreateInsertValue(Result, Element, ArrayRef(I));
}
return Result;
}
assert(!DestTy->isStructTy());
if (auto *SrcAT = dyn_cast<ArrayType>(SrcTy)) {
auto *DestAT = dyn_cast<ArrayType>(DestTy);
assert(DestAT);
assert(SrcAT->getNumElements() == DestAT->getNumElements());
Value *Result = PoisonValue::get(DestTy);
for (unsigned int I = 0, E = SrcAT->getNumElements(); I < E; ++I) {
Value *Element =
createCast(Builder, Builder.CreateExtractValue(V, ArrayRef(I)),
DestAT->getElementType());
Result = Builder.CreateInsertValue(Result, Element, ArrayRef(I));
}
return Result;
}
assert(!DestTy->isArrayTy());
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
return Builder.CreateIntToPtr(V, DestTy);
if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
return Builder.CreatePtrToInt(V, DestTy);
return Builder.CreateBitCast(V, DestTy);
}
void GlobalMergeFunc::analyze(Module &M) {
++NumAnalyzedModues;
for (Function &Func : M) {
++NumAnalyzedFunctions;
if (isEligibleFunction(&Func)) {
++NumEligibleFunctions;
auto FI = llvm::StructuralHashWithDifferences(Func, ignoreOp);
// Convert the operand map to a vector for a serialization-friendly
// format.
IndexOperandHashVecType IndexOperandHashes;
for (auto &Pair : *FI.IndexOperandHashMap)
IndexOperandHashes.emplace_back(Pair);
StableFunction SF(FI.FunctionHash, get_stable_name(Func.getName()).str(),
M.getModuleIdentifier(), FI.IndexInstruction->size(),
std::move(IndexOperandHashes));
LocalFunctionMap->insert(SF);
}
}
}
/// Tuple to hold function info to process merging.
struct FuncMergeInfo {
StableFunctionMap::StableFunctionEntry *SF;
Function *F;
IndexInstrMap *IndexInstruction;
FuncMergeInfo(StableFunctionMap::StableFunctionEntry *SF, Function *F,
IndexInstrMap *IndexInstruction)
: SF(SF), F(F), IndexInstruction(std::move(IndexInstruction)) {}
};
// Given the func info, and the parameterized locations, create and return
// a new merged function by replacing the original constants with the new
// parameters.
static Function *createMergedFunction(FuncMergeInfo &FI,
ArrayRef<Type *> ConstParamTypes,
const ParamLocsVecTy &ParamLocsVec) {
// Synthesize a new merged function name by appending ".Tgm" to the root
// function's name.
auto *MergedFunc = FI.F;
std::string NewFunctionName =
MergedFunc->getName().str() + GlobalMergeFunc::MergingInstanceSuffix;
auto *M = MergedFunc->getParent();
assert(!M->getFunction(NewFunctionName));
FunctionType *OrigTy = MergedFunc->getFunctionType();
// Get the original params' types.
SmallVector<Type *> ParamTypes(OrigTy->param_begin(), OrigTy->param_end());
// Append const parameter types that are passed in.
ParamTypes.append(ConstParamTypes.begin(), ConstParamTypes.end());
FunctionType *FuncType = FunctionType::get(OrigTy->getReturnType(),
ParamTypes, /*isVarArg=*/false);
// Declare a new function
Function *NewFunction =
Function::Create(FuncType, MergedFunc->getLinkage(), NewFunctionName);
if (auto *SP = MergedFunc->getSubprogram())
NewFunction->setSubprogram(SP);
NewFunction->copyAttributesFrom(MergedFunc);
NewFunction->setDLLStorageClass(GlobalValue::DefaultStorageClass);
NewFunction->setLinkage(GlobalValue::InternalLinkage);
NewFunction->addFnAttr(Attribute::NoInline);
// Add the new function before the root function.
M->getFunctionList().insert(MergedFunc->getIterator(), NewFunction);
// Move the body of MergedFunc into the NewFunction.
NewFunction->splice(NewFunction->begin(), MergedFunc);
// Update the original args by the new args.
auto NewArgIter = NewFunction->arg_begin();
for (Argument &OrigArg : MergedFunc->args()) {
Argument &NewArg = *NewArgIter++;
OrigArg.replaceAllUsesWith(&NewArg);
}
// Replace the original Constants by the new args.
unsigned NumOrigArgs = MergedFunc->arg_size();
for (unsigned ParamIdx = 0; ParamIdx < ParamLocsVec.size(); ++ParamIdx) {
Argument *NewArg = NewFunction->getArg(NumOrigArgs + ParamIdx);
for (auto [InstIndex, OpndIndex] : ParamLocsVec[ParamIdx]) {
auto *Inst = FI.IndexInstruction->lookup(InstIndex);
auto *OrigC = Inst->getOperand(OpndIndex);
if (OrigC->getType() != NewArg->getType()) {
IRBuilder<> Builder(Inst->getParent(), Inst->getIterator());
Inst->setOperand(OpndIndex,
createCast(Builder, NewArg, OrigC->getType()));
} else {
Inst->setOperand(OpndIndex, NewArg);
}
}
}
return NewFunction;
}
// Given the original function (Thunk) and the merged function (ToFunc), create
// a thunk to the merged function.
static void createThunk(FuncMergeInfo &FI, ArrayRef<Constant *> Params,
Function *ToFunc) {
auto *Thunk = FI.F;
assert(Thunk->arg_size() + Params.size() ==
ToFunc->getFunctionType()->getNumParams());
Thunk->dropAllReferences();
BasicBlock *BB = BasicBlock::Create(Thunk->getContext(), "", Thunk);
IRBuilder<> Builder(BB);
SmallVector<Value *> Args;
unsigned ParamIdx = 0;
FunctionType *ToFuncTy = ToFunc->getFunctionType();
// Add arguments which are passed through Thunk.
for (Argument &AI : Thunk->args()) {
Args.push_back(createCast(Builder, &AI, ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
// Add new arguments defined by Params.
for (auto *Param : Params) {
assert(ParamIdx < ToFuncTy->getNumParams());
Args.push_back(
createCast(Builder, Param, ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
CallInst *CI = Builder.CreateCall(ToFunc, Args);
bool isSwiftTailCall = ToFunc->getCallingConv() == CallingConv::SwiftTail &&
Thunk->getCallingConv() == CallingConv::SwiftTail;
CI->setTailCallKind(isSwiftTailCall ? llvm::CallInst::TCK_MustTail
: llvm::CallInst::TCK_Tail);
CI->setCallingConv(ToFunc->getCallingConv());
CI->setAttributes(ToFunc->getAttributes());
if (Thunk->getReturnType()->isVoidTy())
Builder.CreateRetVoid();
else
Builder.CreateRet(createCast(Builder, CI, Thunk->getReturnType()));
}
// Check if the old merged/optimized IndexOperandHashMap is compatible with
// the current IndexOperandHashMap. An operand hash may not be stable across
// different builds due to varying modules combined. To address this, we relax
// the hash check condition by comparing Const hash patterns instead of absolute
// hash values. For example, let's assume we have three Consts located at idx1,
// idx3, and idx6, where their corresponding hashes are hash1, hash2, and hash1
// in the old merged map below:
// Old (Merged): [(idx1, hash1), (idx3, hash2), (idx6, hash1)]
// Current: [(idx1, hash1'), (idx3, hash2'), (idx6, hash1')]
// If the current function also has three Consts in the same locations,
// with hash sequences hash1', hash2', and hash1' where the first and third
// are the same as the old hash sequences, we consider them matched.
static bool checkConstHashCompatible(
const DenseMap<IndexPair, stable_hash> &OldInstOpndIndexToConstHash,
const DenseMap<IndexPair, stable_hash> &CurrInstOpndIndexToConstHash) {
DenseMap<stable_hash, stable_hash> OldHashToCurrHash;
for (const auto &[Index, OldHash] : OldInstOpndIndexToConstHash) {
auto It = CurrInstOpndIndexToConstHash.find(Index);
if (It == CurrInstOpndIndexToConstHash.end())
return false;
auto CurrHash = It->second;
auto J = OldHashToCurrHash.find(OldHash);
if (J == OldHashToCurrHash.end())
OldHashToCurrHash.insert({OldHash, CurrHash});
else if (J->second != CurrHash)
return false;
}
return true;
}
// Validate the locations pointed by a param has the same hash and Constant.
static bool
checkConstLocationCompatible(const StableFunctionMap::StableFunctionEntry &SF,
const IndexInstrMap &IndexInstruction,
const ParamLocsVecTy &ParamLocsVec) {
for (auto &ParamLocs : ParamLocsVec) {
std::optional<stable_hash> OldHash;
std::optional<Constant *> OldConst;
for (auto &Loc : ParamLocs) {
assert(SF.IndexOperandHashMap->count(Loc));
auto CurrHash = SF.IndexOperandHashMap.get()->at(Loc);
auto [InstIndex, OpndIndex] = Loc;
assert(InstIndex < IndexInstruction.size());
const auto *Inst = IndexInstruction.lookup(InstIndex);
auto *CurrConst = cast<Constant>(Inst->getOperand(OpndIndex));
if (!OldHash) {
OldHash = CurrHash;
OldConst = CurrConst;
} else if (CurrConst != *OldConst || CurrHash != *OldHash) {
return false;
}
}
}
return true;
}
static ParamLocsVecTy computeParamInfo(
const SmallVector<std::unique_ptr<StableFunctionMap::StableFunctionEntry>>
&SFS) {
std::map<std::vector<stable_hash>, ParamLocs> HashSeqToLocs;
auto &RSF = *SFS[0];
unsigned StableFunctionCount = SFS.size();
for (auto &[IndexPair, Hash] : *RSF.IndexOperandHashMap) {
// Const hash sequence across stable functions.
// We will allocate a parameter per unique hash squence.
// can't use SmallVector as key
std::vector<stable_hash> ConstHashSeq;
ConstHashSeq.push_back(Hash);
bool Identical = true;
for (unsigned J = 1; J < StableFunctionCount; ++J) {
auto &SF = SFS[J];
auto SHash = SF->IndexOperandHashMap->at(IndexPair);
if (Hash != SHash)
Identical = false;
ConstHashSeq.push_back(SHash);
}
if (Identical)
continue;
// For each unique Const hash sequence (parameter), add the locations.
HashSeqToLocs[ConstHashSeq].push_back(IndexPair);
}
ParamLocsVecTy ParamLocsVec;
for (auto &[HashSeq, Locs] : HashSeqToLocs)
ParamLocsVec.push_back(std::move(Locs));
llvm::sort(ParamLocsVec, [&](const ParamLocs &L, const ParamLocs &R) {
return L[0] < R[0];
});
return ParamLocsVec;
}
bool GlobalMergeFunc::merge(Module &M, const StableFunctionMap *FunctionMap) {
bool Changed = false;
// Collect stable functions related to the current module.
DenseMap<stable_hash, SmallVector<std::pair<Function *, FunctionHashInfo>>>
HashToFuncs;
auto &Maps = FunctionMap->getFunctionMap();
for (auto &F : M) {
if (!isEligibleFunction(&F))
continue;
auto FI = llvm::StructuralHashWithDifferences(F, ignoreOp);
if (Maps.contains(FI.FunctionHash))
HashToFuncs[FI.FunctionHash].emplace_back(&F, std::move(FI));
}
for (auto &[Hash, Funcs] : HashToFuncs) {
std::optional<ParamLocsVecTy> ParamLocsVec;
SmallVector<FuncMergeInfo> FuncMergeInfos;
auto &SFS = Maps.at(Hash);
assert(!SFS.empty());
auto &RFS = SFS[0];
// Iterate functions with the same hash.
for (auto &[F, FI] : Funcs) {
// Check if the function is compatible with any stable function
// in terms of the number of instructions and ignored operands.
if (RFS->InstCount != FI.IndexInstruction->size())
continue;
auto hasValidSharedConst = [&](StableFunctionMap::StableFunctionEntry *SF,
FunctionHashInfo &FHI) {
for (auto &[Index, Hash] : *SF->IndexOperandHashMap) {
auto [InstIndex, OpndIndex] = Index;
assert(InstIndex < FHI.IndexInstruction->size());
auto *Inst = FHI.IndexInstruction->lookup(InstIndex);
if (!ignoreOp(Inst, OpndIndex))
return false;
}
return true;
};
if (!hasValidSharedConst(RFS.get(), FI))
continue;
for (auto &SF : SFS) {
assert(SF->InstCount == FI.IndexInstruction->size());
assert(hasValidSharedConst(SF.get(), FI));
// Check if there is any stable function that is compatiable with the
// current one.
if (!checkConstHashCompatible(*SF->IndexOperandHashMap,
*FI.IndexOperandHashMap))
continue;
if (!ParamLocsVec.has_value()) {
ParamLocsVec = computeParamInfo(SFS);
LLVM_DEBUG(dbgs() << "[GlobalMergeFunc] Merging hash: " << Hash
<< " with Params " << ParamLocsVec->size() << "\n");
}
if (!checkConstLocationCompatible(*SF, *FI.IndexInstruction,
*ParamLocsVec))
continue;
// If a stable function matching the current one is found,
// create a candidate for merging and proceed to the next function.
FuncMergeInfos.emplace_back(SF.get(), F, FI.IndexInstruction.get());
break;
}
}
unsigned FuncMergeInfoSize = FuncMergeInfos.size();
if (FuncMergeInfoSize == 0)
continue;
LLVM_DEBUG(dbgs() << "[GlobalMergeFunc] Merging function count "
<< FuncMergeInfoSize << " for hash: " << Hash << "\n");
for (auto &FMI : FuncMergeInfos) {
Changed = true;
// We've already validated all locations of constant operands pointed by
// the parameters. Populate parameters pointing to the original constants.
SmallVector<Constant *> Params;
SmallVector<Type *> ParamTypes;
for (auto &ParamLocs : *ParamLocsVec) {
assert(!ParamLocs.empty());
auto &[InstIndex, OpndIndex] = ParamLocs[0];
auto *Inst = FMI.IndexInstruction->lookup(InstIndex);
auto *Opnd = cast<Constant>(Inst->getOperand(OpndIndex));
Params.push_back(Opnd);
ParamTypes.push_back(Opnd->getType());
}
// Create a merged function derived from the current function.
Function *MergedFunc =
createMergedFunction(FMI, ParamTypes, *ParamLocsVec);
LLVM_DEBUG({
dbgs() << "[GlobalMergeFunc] Merged function (hash:" << FMI.SF->Hash
<< ") " << MergedFunc->getName() << " generated from "
<< FMI.F->getName() << ":\n";
MergedFunc->dump();
});
// Transform the current function into a thunk that calls the merged
// function.
createThunk(FMI, Params, MergedFunc);
LLVM_DEBUG({
dbgs() << "[GlobalMergeFunc] Thunk generated: \n";
FMI.F->dump();
});
++NumMergedFunctions;
}
}
return Changed;
}
void GlobalMergeFunc::initializeMergerMode(const Module &M) {
// Initialize the local function map regardless of the merger mode.
LocalFunctionMap = std::make_unique<StableFunctionMap>();
// Disable codegen data for merging. The local merge is still enabled.
if (DisableCGDataForMerging)
return;
// (Full)LTO module does not have functions added to the index.
// In this case, we run a local merger without using codegen data.
if (Index && !Index->hasExportedFunctions(M))
return;
if (cgdata::emitCGData())
MergerMode = HashFunctionMode::BuildingHashFuncion;
else if (cgdata::hasStableFunctionMap())
MergerMode = HashFunctionMode::UsingHashFunction;
}
void GlobalMergeFunc::emitFunctionMap(Module &M) {
LLVM_DEBUG(dbgs() << "Emit function map. Size: " << LocalFunctionMap->size()
<< "\n");
// No need to emit the function map if it is empty.
if (LocalFunctionMap->empty())
return;
SmallVector<char> Buf;
raw_svector_ostream OS(Buf);
StableFunctionMapRecord::serialize(OS, LocalFunctionMap.get());
std::unique_ptr<MemoryBuffer> Buffer = MemoryBuffer::getMemBuffer(
OS.str(), "in-memory stable function map", false);
Triple TT(M.getTargetTriple());
embedBufferInModule(M, *Buffer.get(),
getCodeGenDataSectionName(CG_merge, TT.getObjectFormat()),
Align(4));
}
bool GlobalMergeFunc::run(Module &M) {
initializeMergerMode(M);
const StableFunctionMap *FuncMap;
if (MergerMode == HashFunctionMode::UsingHashFunction) {
// Use the prior CG data to optimistically create global merge candidates.
FuncMap = cgdata::getStableFunctionMap();
} else {
analyze(M);
// Emit the local function map to the custom section, __llvm_merge before
// finalizing it.
if (MergerMode == HashFunctionMode::BuildingHashFuncion)
emitFunctionMap(M);
LocalFunctionMap->finalize();
FuncMap = LocalFunctionMap.get();
}
return merge(M, FuncMap);
}
namespace {
class GlobalMergeFuncPassWrapper : public ModulePass {
public:
static char ID;
GlobalMergeFuncPassWrapper();
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addUsedIfAvailable<ImmutableModuleSummaryIndexWrapperPass>();
AU.setPreservesAll();
ModulePass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Global Merge Functions"; }
bool runOnModule(Module &M) override;
};
} // namespace
char GlobalMergeFuncPassWrapper::ID = 0;
INITIALIZE_PASS_BEGIN(GlobalMergeFuncPassWrapper, "global-merge-func",
"Global merge function pass", false, false)
INITIALIZE_PASS_END(GlobalMergeFuncPassWrapper, "global-merge-func",
"Global merge function pass", false, false)
namespace llvm {
ModulePass *createGlobalMergeFuncPass() {
return new GlobalMergeFuncPassWrapper();
}
} // namespace llvm
GlobalMergeFuncPassWrapper::GlobalMergeFuncPassWrapper() : ModulePass(ID) {
initializeGlobalMergeFuncPassWrapperPass(
*llvm::PassRegistry::getPassRegistry());
}
bool GlobalMergeFuncPassWrapper::runOnModule(Module &M) {
const ModuleSummaryIndex *Index = nullptr;
if (auto *IndexWrapperPass =
getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>())
Index = IndexWrapperPass->getIndex();
return GlobalMergeFunc(Index).run(M);
}
PreservedAnalyses GlobalMergeFuncPass::run(Module &M,
AnalysisManager<Module> &AM) {
bool Changed = GlobalMergeFunc(ImportSummary).run(M);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
|