| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 
 | //===- InterferenceCache.cpp - Caching per-block interference -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// InterferenceCache remembers per-block interference in LiveIntervalUnions.
//
//===----------------------------------------------------------------------===//
#include "InterferenceCache.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
// Static member used for null interference cursors.
const InterferenceCache::BlockInterference
    InterferenceCache::Cursor::NoInterference;
// Initializes PhysRegEntries (instead of a SmallVector, PhysRegEntries is a
// buffer of size NumPhysRegs to speed up alloc/clear for targets with large
// reg files). Calloced memory is used for good form, and quites tools like
// Valgrind too, but zero initialized memory is not required by the algorithm:
// this is because PhysRegEntries works like a SparseSet and its entries are
// only valid when there is a corresponding CacheEntries assignment. There is
// also support for when pass managers are reused for targets with different
// numbers of PhysRegs: in this case PhysRegEntries is freed and reinitialized.
void InterferenceCache::reinitPhysRegEntries() {
  if (PhysRegEntriesCount == TRI->getNumRegs()) return;
  free(PhysRegEntries);
  PhysRegEntriesCount = TRI->getNumRegs();
  PhysRegEntries = static_cast<unsigned char*>(
      safe_calloc(PhysRegEntriesCount, sizeof(unsigned char)));
}
void InterferenceCache::init(MachineFunction *mf,
                             LiveIntervalUnion *liuarray,
                             SlotIndexes *indexes,
                             LiveIntervals *lis,
                             const TargetRegisterInfo *tri) {
  MF = mf;
  LIUArray = liuarray;
  TRI = tri;
  reinitPhysRegEntries();
  for (Entry &E : Entries)
    E.clear(mf, indexes, lis);
}
InterferenceCache::Entry *InterferenceCache::get(MCRegister PhysReg) {
  unsigned char E = PhysRegEntries[PhysReg.id()];
  if (E < CacheEntries && Entries[E].getPhysReg() == PhysReg) {
    if (!Entries[E].valid(LIUArray, TRI))
      Entries[E].revalidate(LIUArray, TRI);
    return &Entries[E];
  }
  // No valid entry exists, pick the next round-robin entry.
  E = RoundRobin;
  if (++RoundRobin == CacheEntries)
    RoundRobin = 0;
  for (unsigned i = 0; i != CacheEntries; ++i) {
    // Skip entries that are in use.
    if (Entries[E].hasRefs()) {
      if (++E == CacheEntries)
        E = 0;
      continue;
    }
    Entries[E].reset(PhysReg, LIUArray, TRI, MF);
    PhysRegEntries[PhysReg.id()] = E;
    return &Entries[E];
  }
  llvm_unreachable("Ran out of interference cache entries.");
}
/// revalidate - LIU contents have changed, update tags.
void InterferenceCache::Entry::revalidate(LiveIntervalUnion *LIUArray,
                                          const TargetRegisterInfo *TRI) {
  // Invalidate all block entries.
  ++Tag;
  // Invalidate all iterators.
  PrevPos = SlotIndex();
  unsigned i = 0;
  for (MCRegUnit Unit : TRI->regunits(PhysReg))
    RegUnits[i++].VirtTag = LIUArray[Unit].getTag();
}
void InterferenceCache::Entry::reset(MCRegister physReg,
                                     LiveIntervalUnion *LIUArray,
                                     const TargetRegisterInfo *TRI,
                                     const MachineFunction *MF) {
  assert(!hasRefs() && "Cannot reset cache entry with references");
  // LIU's changed, invalidate cache.
  ++Tag;
  PhysReg = physReg;
  Blocks.resize(MF->getNumBlockIDs());
  // Reset iterators.
  PrevPos = SlotIndex();
  RegUnits.clear();
  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
    RegUnits.push_back(LIUArray[Unit]);
    RegUnits.back().Fixed = &LIS->getRegUnit(Unit);
  }
}
bool InterferenceCache::Entry::valid(LiveIntervalUnion *LIUArray,
                                     const TargetRegisterInfo *TRI) {
  unsigned i = 0, e = RegUnits.size();
  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
    if (i == e)
      return false;
    if (LIUArray[Unit].changedSince(RegUnits[i].VirtTag))
      return false;
    ++i;
  }
  return i == e;
}
void InterferenceCache::Entry::update(unsigned MBBNum) {
  SlotIndex Start, Stop;
  std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
  // Use advanceTo only when possible.
  if (PrevPos != Start) {
    if (!PrevPos.isValid() || Start < PrevPos) {
      for (RegUnitInfo &RUI : RegUnits) {
        RUI.VirtI.find(Start);
        RUI.FixedI = RUI.Fixed->find(Start);
      }
    } else {
      for (RegUnitInfo &RUI : RegUnits) {
        RUI.VirtI.advanceTo(Start);
        if (RUI.FixedI != RUI.Fixed->end())
          RUI.FixedI = RUI.Fixed->advanceTo(RUI.FixedI, Start);
      }
    }
    PrevPos = Start;
  }
  MachineFunction::const_iterator MFI =
      MF->getBlockNumbered(MBBNum)->getIterator();
  BlockInterference *BI = &Blocks[MBBNum];
  ArrayRef<SlotIndex> RegMaskSlots;
  ArrayRef<const uint32_t*> RegMaskBits;
  while (true) {
    BI->Tag = Tag;
    BI->First = BI->Last = SlotIndex();
    // Check for first interference from virtregs.
    for (RegUnitInfo &RUI : RegUnits) {
      LiveIntervalUnion::SegmentIter &I = RUI.VirtI;
      if (!I.valid())
        continue;
      SlotIndex StartI = I.start();
      if (StartI >= Stop)
        continue;
      if (!BI->First.isValid() || StartI < BI->First)
        BI->First = StartI;
    }
    // Same thing for fixed interference.
    for (RegUnitInfo &RUI : RegUnits) {
      LiveInterval::const_iterator I = RUI.FixedI;
      LiveInterval::const_iterator E = RUI.Fixed->end();
      if (I == E)
        continue;
      SlotIndex StartI = I->start;
      if (StartI >= Stop)
        continue;
      if (!BI->First.isValid() || StartI < BI->First)
        BI->First = StartI;
    }
    // Also check for register mask interference.
    RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum);
    RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum);
    SlotIndex Limit = BI->First.isValid() ? BI->First : Stop;
    for (unsigned i = 0, e = RegMaskSlots.size();
         i != e && RegMaskSlots[i] < Limit; ++i)
      if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) {
        // Register mask i clobbers PhysReg before the LIU interference.
        BI->First = RegMaskSlots[i];
        break;
      }
    PrevPos = Stop;
    if (BI->First.isValid())
      break;
    // No interference in this block? Go ahead and precompute the next block.
    if (++MFI == MF->end())
      return;
    MBBNum = MFI->getNumber();
    BI = &Blocks[MBBNum];
    if (BI->Tag == Tag)
      return;
    std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
  }
  // Check for last interference in block.
  for (RegUnitInfo &RUI : RegUnits) {
    LiveIntervalUnion::SegmentIter &I = RUI.VirtI;
    if (!I.valid() || I.start() >= Stop)
      continue;
    I.advanceTo(Stop);
    bool Backup = !I.valid() || I.start() >= Stop;
    if (Backup)
      --I;
    SlotIndex StopI = I.stop();
    if (!BI->Last.isValid() || StopI > BI->Last)
      BI->Last = StopI;
    if (Backup)
      ++I;
  }
  // Fixed interference.
  for (RegUnitInfo &RUI : RegUnits) {
    LiveInterval::iterator &I = RUI.FixedI;
    LiveRange *LR = RUI.Fixed;
    if (I == LR->end() || I->start >= Stop)
      continue;
    I = LR->advanceTo(I, Stop);
    bool Backup = I == LR->end() || I->start >= Stop;
    if (Backup)
      --I;
    SlotIndex StopI = I->end;
    if (!BI->Last.isValid() || StopI > BI->Last)
      BI->Last = StopI;
    if (Backup)
      ++I;
  }
  // Also check for register mask interference.
  SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start;
  for (unsigned i = RegMaskSlots.size();
       i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i)
    if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) {
      // Register mask i-1 clobbers PhysReg after the LIU interference.
      // Model the regmask clobber as a dead def.
      BI->Last = RegMaskSlots[i-1].getDeadSlot();
      break;
    }
}
 |