1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
//===-- AMDGPURegBankLegalizeRules.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Definitions of RegBankLegalize Rules for all opcodes.
/// Implementation of container for all the Rules and search.
/// Fast search for most common case when Rule.Predicate checks LLT and
/// uniformity of register in operand 0.
//
//===----------------------------------------------------------------------===//
#include "AMDGPURegBankLegalizeRules.h"
#include "AMDGPUInstrInfo.h"
#include "GCNSubtarget.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/MachineUniformityAnalysis.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/Support/AMDGPUAddrSpace.h"
#define DEBUG_TYPE "amdgpu-regbanklegalize"
using namespace llvm;
using namespace AMDGPU;
RegBankLLTMapping::RegBankLLTMapping(
std::initializer_list<RegBankLLTMappingApplyID> DstOpMappingList,
std::initializer_list<RegBankLLTMappingApplyID> SrcOpMappingList,
LoweringMethodID LoweringMethod)
: DstOpMapping(DstOpMappingList), SrcOpMapping(SrcOpMappingList),
LoweringMethod(LoweringMethod) {}
PredicateMapping::PredicateMapping(
std::initializer_list<UniformityLLTOpPredicateID> OpList,
std::function<bool(const MachineInstr &)> TestFunc)
: OpUniformityAndTypes(OpList), TestFunc(TestFunc) {}
bool matchUniformityAndLLT(Register Reg, UniformityLLTOpPredicateID UniID,
const MachineUniformityInfo &MUI,
const MachineRegisterInfo &MRI) {
switch (UniID) {
case S1:
return MRI.getType(Reg) == LLT::scalar(1);
case S16:
return MRI.getType(Reg) == LLT::scalar(16);
case S32:
return MRI.getType(Reg) == LLT::scalar(32);
case S64:
return MRI.getType(Reg) == LLT::scalar(64);
case P1:
return MRI.getType(Reg) == LLT::pointer(1, 64);
case P3:
return MRI.getType(Reg) == LLT::pointer(3, 32);
case P4:
return MRI.getType(Reg) == LLT::pointer(4, 64);
case P5:
return MRI.getType(Reg) == LLT::pointer(5, 32);
case B32:
return MRI.getType(Reg).getSizeInBits() == 32;
case B64:
return MRI.getType(Reg).getSizeInBits() == 64;
case B96:
return MRI.getType(Reg).getSizeInBits() == 96;
case B128:
return MRI.getType(Reg).getSizeInBits() == 128;
case B256:
return MRI.getType(Reg).getSizeInBits() == 256;
case B512:
return MRI.getType(Reg).getSizeInBits() == 512;
case UniS1:
return MRI.getType(Reg) == LLT::scalar(1) && MUI.isUniform(Reg);
case UniS16:
return MRI.getType(Reg) == LLT::scalar(16) && MUI.isUniform(Reg);
case UniS32:
return MRI.getType(Reg) == LLT::scalar(32) && MUI.isUniform(Reg);
case UniS64:
return MRI.getType(Reg) == LLT::scalar(64) && MUI.isUniform(Reg);
case UniP1:
return MRI.getType(Reg) == LLT::pointer(1, 64) && MUI.isUniform(Reg);
case UniP3:
return MRI.getType(Reg) == LLT::pointer(3, 32) && MUI.isUniform(Reg);
case UniP4:
return MRI.getType(Reg) == LLT::pointer(4, 64) && MUI.isUniform(Reg);
case UniP5:
return MRI.getType(Reg) == LLT::pointer(5, 32) && MUI.isUniform(Reg);
case UniB32:
return MRI.getType(Reg).getSizeInBits() == 32 && MUI.isUniform(Reg);
case UniB64:
return MRI.getType(Reg).getSizeInBits() == 64 && MUI.isUniform(Reg);
case UniB96:
return MRI.getType(Reg).getSizeInBits() == 96 && MUI.isUniform(Reg);
case UniB128:
return MRI.getType(Reg).getSizeInBits() == 128 && MUI.isUniform(Reg);
case UniB256:
return MRI.getType(Reg).getSizeInBits() == 256 && MUI.isUniform(Reg);
case UniB512:
return MRI.getType(Reg).getSizeInBits() == 512 && MUI.isUniform(Reg);
case DivS1:
return MRI.getType(Reg) == LLT::scalar(1) && MUI.isDivergent(Reg);
case DivS32:
return MRI.getType(Reg) == LLT::scalar(32) && MUI.isDivergent(Reg);
case DivS64:
return MRI.getType(Reg) == LLT::scalar(64) && MUI.isDivergent(Reg);
case DivP1:
return MRI.getType(Reg) == LLT::pointer(1, 64) && MUI.isDivergent(Reg);
case DivP3:
return MRI.getType(Reg) == LLT::pointer(3, 32) && MUI.isDivergent(Reg);
case DivP4:
return MRI.getType(Reg) == LLT::pointer(4, 64) && MUI.isDivergent(Reg);
case DivP5:
return MRI.getType(Reg) == LLT::pointer(5, 32) && MUI.isDivergent(Reg);
case DivB32:
return MRI.getType(Reg).getSizeInBits() == 32 && MUI.isDivergent(Reg);
case DivB64:
return MRI.getType(Reg).getSizeInBits() == 64 && MUI.isDivergent(Reg);
case DivB96:
return MRI.getType(Reg).getSizeInBits() == 96 && MUI.isDivergent(Reg);
case DivB128:
return MRI.getType(Reg).getSizeInBits() == 128 && MUI.isDivergent(Reg);
case DivB256:
return MRI.getType(Reg).getSizeInBits() == 256 && MUI.isDivergent(Reg);
case DivB512:
return MRI.getType(Reg).getSizeInBits() == 512 && MUI.isDivergent(Reg);
case _:
return true;
default:
llvm_unreachable("missing matchUniformityAndLLT");
}
}
bool PredicateMapping::match(const MachineInstr &MI,
const MachineUniformityInfo &MUI,
const MachineRegisterInfo &MRI) const {
// Check LLT signature.
for (unsigned i = 0; i < OpUniformityAndTypes.size(); ++i) {
if (OpUniformityAndTypes[i] == _) {
if (MI.getOperand(i).isReg())
return false;
continue;
}
// Remaining IDs check registers.
if (!MI.getOperand(i).isReg())
return false;
if (!matchUniformityAndLLT(MI.getOperand(i).getReg(),
OpUniformityAndTypes[i], MUI, MRI))
return false;
}
// More complex check.
if (TestFunc)
return TestFunc(MI);
return true;
}
SetOfRulesForOpcode::SetOfRulesForOpcode() {}
SetOfRulesForOpcode::SetOfRulesForOpcode(FastRulesTypes FastTypes)
: FastTypes(FastTypes) {}
UniformityLLTOpPredicateID LLTToId(LLT Ty) {
if (Ty == LLT::scalar(16))
return S16;
if (Ty == LLT::scalar(32))
return S32;
if (Ty == LLT::scalar(64))
return S64;
if (Ty == LLT::fixed_vector(2, 16))
return V2S16;
if (Ty == LLT::fixed_vector(2, 32))
return V2S32;
if (Ty == LLT::fixed_vector(3, 32))
return V3S32;
if (Ty == LLT::fixed_vector(4, 32))
return V4S32;
return _;
}
UniformityLLTOpPredicateID LLTToBId(LLT Ty) {
if (Ty == LLT::scalar(32) || Ty == LLT::fixed_vector(2, 16) ||
Ty == LLT::pointer(3, 32) || Ty == LLT::pointer(5, 32) ||
Ty == LLT::pointer(6, 32))
return B32;
if (Ty == LLT::scalar(64) || Ty == LLT::fixed_vector(2, 32) ||
Ty == LLT::fixed_vector(4, 16) || Ty == LLT::pointer(1, 64) ||
Ty == LLT::pointer(4, 64))
return B64;
if (Ty == LLT::fixed_vector(3, 32))
return B96;
if (Ty == LLT::fixed_vector(4, 32))
return B128;
return _;
}
const RegBankLLTMapping &
SetOfRulesForOpcode::findMappingForMI(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
const MachineUniformityInfo &MUI) const {
// Search in "Fast Rules".
// Note: if fast rules are enabled, RegBankLLTMapping must be added in each
// slot that could "match fast Predicate". If not, InvalidMapping is
// returned which results in failure, does not search "Slow Rules".
if (FastTypes != NoFastRules) {
Register Reg = MI.getOperand(0).getReg();
int Slot;
if (FastTypes == StandardB)
Slot = getFastPredicateSlot(LLTToBId(MRI.getType(Reg)));
else
Slot = getFastPredicateSlot(LLTToId(MRI.getType(Reg)));
if (Slot != -1)
return MUI.isUniform(Reg) ? Uni[Slot] : Div[Slot];
}
// Slow search for more complex rules.
for (const RegBankLegalizeRule &Rule : Rules) {
if (Rule.Predicate.match(MI, MUI, MRI))
return Rule.OperandMapping;
}
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
llvm_unreachable("None of the rules defined for MI's opcode matched MI");
}
void SetOfRulesForOpcode::addRule(RegBankLegalizeRule Rule) {
Rules.push_back(Rule);
}
void SetOfRulesForOpcode::addFastRuleDivergent(UniformityLLTOpPredicateID Ty,
RegBankLLTMapping RuleApplyIDs) {
int Slot = getFastPredicateSlot(Ty);
assert(Slot != -1 && "Ty unsupported in this FastRulesTypes");
Div[Slot] = RuleApplyIDs;
}
void SetOfRulesForOpcode::addFastRuleUniform(UniformityLLTOpPredicateID Ty,
RegBankLLTMapping RuleApplyIDs) {
int Slot = getFastPredicateSlot(Ty);
assert(Slot != -1 && "Ty unsupported in this FastRulesTypes");
Uni[Slot] = RuleApplyIDs;
}
int SetOfRulesForOpcode::getFastPredicateSlot(
UniformityLLTOpPredicateID Ty) const {
switch (FastTypes) {
case Standard: {
switch (Ty) {
case S32:
return 0;
case S16:
return 1;
case S64:
return 2;
case V2S16:
return 3;
default:
return -1;
}
}
case StandardB: {
switch (Ty) {
case B32:
return 0;
case B64:
return 1;
case B96:
return 2;
case B128:
return 3;
default:
return -1;
}
}
case Vector: {
switch (Ty) {
case S32:
return 0;
case V2S32:
return 1;
case V3S32:
return 2;
case V4S32:
return 3;
default:
return -1;
}
}
default:
return -1;
}
}
RegBankLegalizeRules::RuleSetInitializer
RegBankLegalizeRules::addRulesForGOpcs(std::initializer_list<unsigned> OpcList,
FastRulesTypes FastTypes) {
return RuleSetInitializer(OpcList, GRulesAlias, GRules, FastTypes);
}
RegBankLegalizeRules::RuleSetInitializer
RegBankLegalizeRules::addRulesForIOpcs(std::initializer_list<unsigned> OpcList,
FastRulesTypes FastTypes) {
return RuleSetInitializer(OpcList, IRulesAlias, IRules, FastTypes);
}
const SetOfRulesForOpcode &
RegBankLegalizeRules::getRulesForOpc(MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
if (Opc == AMDGPU::G_INTRINSIC || Opc == AMDGPU::G_INTRINSIC_CONVERGENT ||
Opc == AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS ||
Opc == AMDGPU::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS) {
unsigned IntrID = cast<GIntrinsic>(MI).getIntrinsicID();
if (!IRulesAlias.contains(IntrID)) {
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
llvm_unreachable("No rules defined for intrinsic opcode");
}
return IRules.at(IRulesAlias.at(IntrID));
}
if (!GRulesAlias.contains(Opc)) {
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
llvm_unreachable("No rules defined for generic opcode");
}
return GRules.at(GRulesAlias.at(Opc));
}
// Syntactic sugar wrapper for predicate lambda that enables '&&', '||' and '!'.
class Predicate {
private:
struct Elt {
// Save formula composed of Pred, '&&', '||' and '!' as a jump table.
// Sink ! to Pred. For example !((A && !B) || C) -> (!A || B) && !C
// Sequences of && and || will be represented by jumps, for example:
// (A && B && ... X) or (A && B && ... X) || Y
// A == true jump to B
// A == false jump to end or Y, result is A(false) or Y
// (A || B || ... X) or (A || B || ... X) && Y
// A == true jump to end or Y, result is A(true) or Y
// A == false jump to B
// Notice that when negating expression, we simply flip Neg on each Pred
// and swap TJumpOffset and FJumpOffset (&& becomes ||, || becomes &&).
std::function<bool(const MachineInstr &)> Pred;
bool Neg; // Neg of Pred is calculated before jump
unsigned TJumpOffset;
unsigned FJumpOffset;
};
SmallVector<Elt, 8> Expression;
Predicate(SmallVectorImpl<Elt> &&Expr) { Expression.swap(Expr); };
public:
Predicate(std::function<bool(const MachineInstr &)> Pred) {
Expression.push_back({Pred, false, 1, 1});
};
bool operator()(const MachineInstr &MI) const {
unsigned Idx = 0;
unsigned ResultIdx = Expression.size();
bool Result;
do {
Result = Expression[Idx].Pred(MI);
Result = Expression[Idx].Neg ? !Result : Result;
if (Result) {
Idx += Expression[Idx].TJumpOffset;
} else {
Idx += Expression[Idx].FJumpOffset;
}
} while ((Idx != ResultIdx));
return Result;
};
Predicate operator!() const {
SmallVector<Elt, 8> NegExpression;
for (const Elt &ExprElt : Expression) {
NegExpression.push_back({ExprElt.Pred, !ExprElt.Neg, ExprElt.FJumpOffset,
ExprElt.TJumpOffset});
}
return Predicate(std::move(NegExpression));
};
Predicate operator&&(const Predicate &RHS) const {
SmallVector<Elt, 8> AndExpression = Expression;
unsigned RHSSize = RHS.Expression.size();
unsigned ResultIdx = Expression.size();
for (unsigned i = 0; i < ResultIdx; ++i) {
// LHS results in false, whole expression results in false.
if (i + AndExpression[i].FJumpOffset == ResultIdx)
AndExpression[i].FJumpOffset += RHSSize;
}
AndExpression.append(RHS.Expression);
return Predicate(std::move(AndExpression));
}
Predicate operator||(const Predicate &RHS) const {
SmallVector<Elt, 8> OrExpression = Expression;
unsigned RHSSize = RHS.Expression.size();
unsigned ResultIdx = Expression.size();
for (unsigned i = 0; i < ResultIdx; ++i) {
// LHS results in true, whole expression results in true.
if (i + OrExpression[i].TJumpOffset == ResultIdx)
OrExpression[i].TJumpOffset += RHSSize;
}
OrExpression.append(RHS.Expression);
return Predicate(std::move(OrExpression));
}
};
// Initialize rules
RegBankLegalizeRules::RegBankLegalizeRules(const GCNSubtarget &_ST,
MachineRegisterInfo &_MRI)
: ST(&_ST), MRI(&_MRI) {
addRulesForGOpcs({G_ADD}, Standard)
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32}})
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}});
addRulesForGOpcs({G_MUL}, Standard).Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}});
addRulesForGOpcs({G_XOR, G_OR, G_AND}, StandardB)
.Any({{UniS1}, {{Sgpr32Trunc}, {Sgpr32AExt, Sgpr32AExt}}})
.Any({{DivS1}, {{Vcc}, {Vcc, Vcc}}})
.Div(B64, {{VgprB64}, {VgprB64, VgprB64}, SplitTo32});
addRulesForGOpcs({G_SHL}, Standard)
.Uni(S64, {{Sgpr64}, {Sgpr64, Sgpr32}})
.Div(S64, {{Vgpr64}, {Vgpr64, Vgpr32}});
// Note: we only write S1 rules for G_IMPLICIT_DEF, G_CONSTANT, G_FCONSTANT
// and G_FREEZE here, rest is trivially regbankselected earlier
addRulesForGOpcs({G_CONSTANT})
.Any({{UniS1, _}, {{Sgpr32Trunc}, {None}, UniCstExt}});
addRulesForGOpcs({G_ICMP})
.Any({{UniS1, _, S32}, {{Sgpr32Trunc}, {None, Sgpr32, Sgpr32}}})
.Any({{DivS1, _, S32}, {{Vcc}, {None, Vgpr32, Vgpr32}}});
addRulesForGOpcs({G_FCMP})
.Any({{UniS1, _, S32}, {{UniInVcc}, {None, Vgpr32, Vgpr32}}})
.Any({{DivS1, _, S32}, {{Vcc}, {None, Vgpr32, Vgpr32}}});
addRulesForGOpcs({G_BRCOND})
.Any({{UniS1}, {{}, {Sgpr32AExtBoolInReg}}})
.Any({{DivS1}, {{}, {Vcc}}});
addRulesForGOpcs({G_BR}).Any({{_}, {{}, {None}}});
addRulesForGOpcs({G_SELECT}, StandardB)
.Div(B32, {{VgprB32}, {Vcc, VgprB32, VgprB32}})
.Uni(B32, {{SgprB32}, {Sgpr32AExtBoolInReg, SgprB32, SgprB32}});
addRulesForGOpcs({G_ANYEXT}).Any({{UniS32, S16}, {{Sgpr32}, {Sgpr16}}});
// In global-isel G_TRUNC in-reg is treated as no-op, inst selected into COPY.
// It is up to user to deal with truncated bits.
addRulesForGOpcs({G_TRUNC})
.Any({{UniS16, S32}, {{Sgpr16}, {Sgpr32}}})
// This is non-trivial. VgprToVccCopy is done using compare instruction.
.Any({{DivS1, DivS32}, {{Vcc}, {Vgpr32}, VgprToVccCopy}});
addRulesForGOpcs({G_ZEXT, G_SEXT})
.Any({{UniS32, S1}, {{Sgpr32}, {Sgpr32AExtBoolInReg}, UniExtToSel}})
.Any({{UniS64, S32}, {{Sgpr64}, {Sgpr32}, Ext32To64}})
.Any({{DivS64, S32}, {{Vgpr64}, {Vgpr32}, Ext32To64}});
bool hasUnalignedLoads = ST->getGeneration() >= AMDGPUSubtarget::GFX12;
bool hasSMRDSmall = ST->hasScalarSubwordLoads();
Predicate isAlign16([](const MachineInstr &MI) -> bool {
return (*MI.memoperands_begin())->getAlign() >= Align(16);
});
Predicate isAlign4([](const MachineInstr &MI) -> bool {
return (*MI.memoperands_begin())->getAlign() >= Align(4);
});
Predicate isAtomicMMO([](const MachineInstr &MI) -> bool {
return (*MI.memoperands_begin())->isAtomic();
});
Predicate isUniMMO([](const MachineInstr &MI) -> bool {
return AMDGPUInstrInfo::isUniformMMO(*MI.memoperands_begin());
});
Predicate isConst([](const MachineInstr &MI) -> bool {
// Address space in MMO be different then address space on pointer.
const MachineMemOperand *MMO = *MI.memoperands_begin();
const unsigned AS = MMO->getAddrSpace();
return AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
});
Predicate isVolatileMMO([](const MachineInstr &MI) -> bool {
return (*MI.memoperands_begin())->isVolatile();
});
Predicate isInvMMO([](const MachineInstr &MI) -> bool {
return (*MI.memoperands_begin())->isInvariant();
});
Predicate isNoClobberMMO([](const MachineInstr &MI) -> bool {
return (*MI.memoperands_begin())->getFlags() & MONoClobber;
});
Predicate isNaturalAlignedSmall([](const MachineInstr &MI) -> bool {
const MachineMemOperand *MMO = *MI.memoperands_begin();
const unsigned MemSize = 8 * MMO->getSize().getValue();
return (MemSize == 16 && MMO->getAlign() >= Align(2)) ||
(MemSize == 8 && MMO->getAlign() >= Align(1));
});
auto isUL = !isAtomicMMO && isUniMMO && (isConst || !isVolatileMMO) &&
(isConst || isInvMMO || isNoClobberMMO);
// clang-format off
addRulesForGOpcs({G_LOAD})
.Any({{DivB32, DivP1}, {{VgprB32}, {VgprP1}}})
.Any({{{UniB256, UniP1}, isAlign4 && isUL}, {{SgprB256}, {SgprP1}}})
.Any({{{UniB512, UniP1}, isAlign4 && isUL}, {{SgprB512}, {SgprP1}}})
.Any({{{UniB256, UniP1}, !isAlign4 || !isUL}, {{UniInVgprB256}, {VgprP1}, SplitLoad}})
.Any({{{UniB512, UniP1}, !isAlign4 || !isUL}, {{UniInVgprB512}, {VgprP1}, SplitLoad}})
.Any({{DivB32, UniP3}, {{VgprB32}, {VgprP3}}})
.Any({{{UniB32, UniP3}, isAlign4 && isUL}, {{SgprB32}, {SgprP3}}})
.Any({{{UniB32, UniP3}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP3}}})
.Any({{{DivB256, DivP4}}, {{VgprB256}, {VgprP4}, SplitLoad}})
.Any({{{UniB32, UniP4}, isNaturalAlignedSmall && isUL}, {{SgprB32}, {SgprP4}}}, hasSMRDSmall) // i8 and i16 load
.Any({{{UniB32, UniP4}, isAlign4 && isUL}, {{SgprB32}, {SgprP4}}})
.Any({{{UniB96, UniP4}, isAlign16 && isUL}, {{SgprB96}, {SgprP4}, WidenLoad}}, !hasUnalignedLoads)
.Any({{{UniB96, UniP4}, isAlign4 && !isAlign16 && isUL}, {{SgprB96}, {SgprP4}, SplitLoad}}, !hasUnalignedLoads)
.Any({{{UniB96, UniP4}, isAlign4 && isUL}, {{SgprB96}, {SgprP4}}}, hasUnalignedLoads)
.Any({{{UniB256, UniP4}, isAlign4 && isUL}, {{SgprB256}, {SgprP4}}})
.Any({{{UniB512, UniP4}, isAlign4 && isUL}, {{SgprB512}, {SgprP4}}})
.Any({{{UniB32, UniP4}, !isNaturalAlignedSmall || !isUL}, {{UniInVgprB32}, {VgprP4}}}, hasSMRDSmall) // i8 and i16 load
.Any({{{UniB32, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP4}}})
.Any({{{UniB256, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB256}, {VgprP4}, SplitLoad}})
.Any({{{UniB512, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB512}, {VgprP4}, SplitLoad}})
.Any({{DivB32, P5}, {{VgprB32}, {VgprP5}}});
addRulesForGOpcs({G_ZEXTLOAD}) // i8 and i16 zero-extending loads
.Any({{{UniB32, UniP3}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP3}}})
.Any({{{UniB32, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP4}}});
// clang-format on
addRulesForGOpcs({G_AMDGPU_BUFFER_LOAD}, Vector)
.Div(V4S32, {{VgprV4S32}, {SgprV4S32, Vgpr32, Vgpr32, Sgpr32}})
.Uni(V4S32, {{UniInVgprV4S32}, {SgprV4S32, Vgpr32, Vgpr32, Sgpr32}});
addRulesForGOpcs({G_STORE})
.Any({{S32, P1}, {{}, {Vgpr32, VgprP1}}})
.Any({{S64, P1}, {{}, {Vgpr64, VgprP1}}})
.Any({{V4S32, P1}, {{}, {VgprV4S32, VgprP1}}});
addRulesForGOpcs({G_PTR_ADD}).Any({{DivP1}, {{VgprP1}, {VgprP1, Vgpr64}}});
addRulesForGOpcs({G_ABS}, Standard).Uni(S16, {{Sgpr32Trunc}, {Sgpr32SExt}});
bool hasSALUFloat = ST->hasSALUFloatInsts();
addRulesForGOpcs({G_FADD}, Standard)
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32}}, hasSALUFloat)
.Uni(S32, {{UniInVgprS32}, {Vgpr32, Vgpr32}}, !hasSALUFloat)
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}});
addRulesForGOpcs({G_FPTOUI})
.Any({{UniS32, S32}, {{Sgpr32}, {Sgpr32}}}, hasSALUFloat)
.Any({{UniS32, S32}, {{UniInVgprS32}, {Vgpr32}}}, !hasSALUFloat);
addRulesForGOpcs({G_UITOFP})
.Any({{UniS32, S32}, {{Sgpr32}, {Sgpr32}}}, hasSALUFloat)
.Any({{UniS32, S32}, {{UniInVgprS32}, {Vgpr32}}}, !hasSALUFloat);
using namespace Intrinsic;
// This is "intrinsic lane mask" it was set to i32/i64 in llvm-ir.
addRulesForIOpcs({amdgcn_end_cf}).Any({{_, S32}, {{}, {None, Sgpr32}}});
addRulesForIOpcs({amdgcn_if_break}, Standard)
.Uni(S32, {{Sgpr32}, {IntrId, Vcc, Sgpr32}});
} // end initialize rules
|