1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
|
//- DXIL.td - Describe DXIL operation -------------------------*- tablegen -*-//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is a target description file for DXIL operations.
///
//===----------------------------------------------------------------------===//
include "llvm/IR/Intrinsics.td"
// Abstract class to represent major and minor version values
class Version<int major, int minor> {
int Major = major;
int Minor = minor;
}
// Valid DXIL Version records
foreach i = 0...8 in {
def DXIL1_ #i : Version<1, i>;
}
class DXILOpParamType {
int isOverload = 0;
}
let isOverload = 1 in {
def OverloadTy : DXILOpParamType;
}
def VoidTy : DXILOpParamType;
def Int1Ty : DXILOpParamType;
def Int8Ty : DXILOpParamType;
def Int16Ty : DXILOpParamType;
def Int32Ty : DXILOpParamType;
def Int64Ty : DXILOpParamType;
def HalfTy : DXILOpParamType;
def FloatTy : DXILOpParamType;
def DoubleTy : DXILOpParamType;
def ResRetHalfTy : DXILOpParamType;
def ResRetFloatTy : DXILOpParamType;
def ResRetDoubleTy : DXILOpParamType;
def ResRetInt16Ty : DXILOpParamType;
def ResRetInt32Ty : DXILOpParamType;
def ResRetInt64Ty : DXILOpParamType;
def HandleTy : DXILOpParamType;
def ResBindTy : DXILOpParamType;
def ResPropsTy : DXILOpParamType;
def SplitDoubleTy : DXILOpParamType;
class DXILOpClass;
defset list<DXILOpClass> OpClasses = {
def acceptHitAndEndSearch : DXILOpClass;
def allocateNodeOutputRecords : DXILOpClass;
def allocateRayQuery : DXILOpClass;
def annotateHandle : DXILOpClass;
def annotateNodeHandle : DXILOpClass;
def annotateNodeRecordHandle : DXILOpClass;
def atomicBinOp : DXILOpClass;
def atomicCompareExchange : DXILOpClass;
def attributeAtVertex : DXILOpClass;
def barrier : DXILOpClass;
def barrierByMemoryHandle : DXILOpClass;
def barrierByMemoryType : DXILOpClass;
def barrierByNodeRecordHandle : DXILOpClass;
def binary : DXILOpClass;
def binaryWithCarryOrBorrow : DXILOpClass;
def binaryWithTwoOuts : DXILOpClass;
def bitcastF16toI16 : DXILOpClass;
def bitcastF32toI32 : DXILOpClass;
def bitcastF64toI64 : DXILOpClass;
def bitcastI16toF16 : DXILOpClass;
def bitcastI32toF32 : DXILOpClass;
def bitcastI64toF64 : DXILOpClass;
def bufferLoad : DXILOpClass;
def bufferStore : DXILOpClass;
def bufferUpdateCounter : DXILOpClass;
def calculateLOD : DXILOpClass;
def callShader : DXILOpClass;
def cbufferLoad : DXILOpClass;
def cbufferLoadLegacy : DXILOpClass;
def checkAccessFullyMapped : DXILOpClass;
def coverage : DXILOpClass;
def createHandle : DXILOpClass;
def createHandleForLib : DXILOpClass;
def createHandleFromBinding : DXILOpClass;
def createHandleFromHeap : DXILOpClass;
def createNodeInputRecordHandle : DXILOpClass;
def createNodeOutputHandle : DXILOpClass;
def cutStream : DXILOpClass;
def cycleCounterLegacy : DXILOpClass;
def discard : DXILOpClass;
def dispatchMesh : DXILOpClass;
def dispatchRaysDimensions : DXILOpClass;
def dispatchRaysIndex : DXILOpClass;
def domainLocation : DXILOpClass;
def dot2 : DXILOpClass;
def dot2AddHalf : DXILOpClass;
def dot3 : DXILOpClass;
def dot4 : DXILOpClass;
def dot4AddPacked : DXILOpClass;
def emitIndices : DXILOpClass;
def emitStream : DXILOpClass;
def emitThenCutStream : DXILOpClass;
def evalCentroid : DXILOpClass;
def evalSampleIndex : DXILOpClass;
def evalSnapped : DXILOpClass;
def finishedCrossGroupSharing : DXILOpClass;
def flattenedThreadIdInGroup : DXILOpClass;
def geometryIndex : DXILOpClass;
def getDimensions : DXILOpClass;
def getInputRecordCount : DXILOpClass;
def getMeshPayload : DXILOpClass;
def getNodeRecordPtr : DXILOpClass;
def getRemainingRecursionLevels : DXILOpClass;
def groupId : DXILOpClass;
def gsInstanceID : DXILOpClass;
def hitKind : DXILOpClass;
def ignoreHit : DXILOpClass;
def incrementOutputCount : DXILOpClass;
def indexNodeHandle : DXILOpClass;
def innerCoverage : DXILOpClass;
def instanceID : DXILOpClass;
def instanceIndex : DXILOpClass;
def isHelperLane : DXILOpClass;
def isSpecialFloat : DXILOpClass;
def legacyDoubleToFloat : DXILOpClass;
def legacyDoubleToSInt32 : DXILOpClass;
def legacyDoubleToUInt32 : DXILOpClass;
def legacyF16ToF32 : DXILOpClass;
def legacyF32ToF16 : DXILOpClass;
def loadInput : DXILOpClass;
def loadOutputControlPoint : DXILOpClass;
def loadPatchConstant : DXILOpClass;
def makeDouble : DXILOpClass;
def minPrecXRegLoad : DXILOpClass;
def minPrecXRegStore : DXILOpClass;
def nodeOutputIsValid : DXILOpClass;
def objectRayDirection : DXILOpClass;
def objectRayOrigin : DXILOpClass;
def objectToWorld : DXILOpClass;
def outputComplete : DXILOpClass;
def outputControlPointID : DXILOpClass;
def pack4x8 : DXILOpClass;
def primitiveID : DXILOpClass;
def primitiveIndex : DXILOpClass;
def quadOp : DXILOpClass;
def quadReadLaneAt : DXILOpClass;
def quadVote : DXILOpClass;
def quaternary : DXILOpClass;
def rawBufferLoad : DXILOpClass;
def rawBufferStore : DXILOpClass;
def rayFlags : DXILOpClass;
def rayQuery_Abort : DXILOpClass;
def rayQuery_CommitNonOpaqueTriangleHit : DXILOpClass;
def rayQuery_CommitProceduralPrimitiveHit : DXILOpClass;
def rayQuery_Proceed : DXILOpClass;
def rayQuery_StateMatrix : DXILOpClass;
def rayQuery_StateScalar : DXILOpClass;
def rayQuery_StateVector : DXILOpClass;
def rayQuery_TraceRayInline : DXILOpClass;
def rayTCurrent : DXILOpClass;
def rayTMin : DXILOpClass;
def renderTargetGetSampleCount : DXILOpClass;
def renderTargetGetSamplePosition : DXILOpClass;
def reportHit : DXILOpClass;
def sample : DXILOpClass;
def sampleBias : DXILOpClass;
def sampleCmp : DXILOpClass;
def sampleCmpBias : DXILOpClass;
def sampleCmpGrad : DXILOpClass;
def sampleCmpLevel : DXILOpClass;
def sampleCmpLevelZero : DXILOpClass;
def sampleGrad : DXILOpClass;
def sampleIndex : DXILOpClass;
def sampleLevel : DXILOpClass;
def setMeshOutputCounts : DXILOpClass;
def splitDouble : DXILOpClass;
def startInstanceLocation : DXILOpClass;
def startVertexLocation : DXILOpClass;
def storeOutput : DXILOpClass;
def storePatchConstant : DXILOpClass;
def storePrimitiveOutput : DXILOpClass;
def storeVertexOutput : DXILOpClass;
def tempRegLoad : DXILOpClass;
def tempRegStore : DXILOpClass;
def tertiary : DXILOpClass;
def texture2DMSGetSamplePosition : DXILOpClass;
def textureGather : DXILOpClass;
def textureGatherCmp : DXILOpClass;
def textureGatherRaw : DXILOpClass;
def textureLoad : DXILOpClass;
def textureStore : DXILOpClass;
def textureStoreSample : DXILOpClass;
def threadId : DXILOpClass;
def threadIdInGroup : DXILOpClass;
def traceRay : DXILOpClass;
def unary : DXILOpClass;
def unaryBits : DXILOpClass;
def unpack4x8 : DXILOpClass;
def viewID : DXILOpClass;
def waveActiveAllEqual : DXILOpClass;
def waveActiveBallot : DXILOpClass;
def waveActiveBit : DXILOpClass;
def waveActiveOp : DXILOpClass;
def waveAllOp : DXILOpClass;
def waveAllTrue : DXILOpClass;
def waveAnyTrue : DXILOpClass;
def waveGetLaneCount : DXILOpClass;
def waveGetLaneIndex : DXILOpClass;
def waveIsFirstLane : DXILOpClass;
def waveMatch : DXILOpClass;
def waveMatrix_Accumulate : DXILOpClass;
def waveMatrix_Annotate : DXILOpClass;
def waveMatrix_Depth : DXILOpClass;
def waveMatrix_Fill : DXILOpClass;
def waveMatrix_LoadGroupShared : DXILOpClass;
def waveMatrix_LoadRawBuf : DXILOpClass;
def waveMatrix_Multiply : DXILOpClass;
def waveMatrix_ScalarOp : DXILOpClass;
def waveMatrix_StoreGroupShared : DXILOpClass;
def waveMatrix_StoreRawBuf : DXILOpClass;
def waveMultiPrefixBitCount : DXILOpClass;
def waveMultiPrefixOp : DXILOpClass;
def wavePrefixOp : DXILOpClass;
def waveReadLaneAt : DXILOpClass;
def waveReadLaneFirst : DXILOpClass;
def worldRayDirection : DXILOpClass;
def worldRayOrigin : DXILOpClass;
def worldToObject : DXILOpClass;
def writeSamplerFeedback : DXILOpClass;
def writeSamplerFeedbackBias : DXILOpClass;
def writeSamplerFeedbackGrad : DXILOpClass;
def writeSamplerFeedbackLevel : DXILOpClass;
// This is a sentinel definition. Hence placed at the end here and
// not as part of the above alphabetically sorted valid definitions.
// It is never used to construct the name of DXIL Op call name.
// Additionally it is capitalized unlike all the others.
def UnknownOpClass : DXILOpClass;
}
class DXILShaderStage;
def compute : DXILShaderStage;
def domain : DXILShaderStage;
def hull : DXILShaderStage;
def pixel : DXILShaderStage;
def vertex : DXILShaderStage;
def geometry : DXILShaderStage;
def library : DXILShaderStage;
def amplification : DXILShaderStage;
def mesh : DXILShaderStage;
def node : DXILShaderStage;
def raygeneration : DXILShaderStage;
def intersection : DXILShaderStage;
def anyhit : DXILShaderStage;
def closesthit : DXILShaderStage;
def callable : DXILShaderStage;
def miss : DXILShaderStage;
// Pseudo-stages
// Denote DXIL Op to be supported in all stages
def all_stages : DXILShaderStage;
// Denote support for DXIL Op to have been removed
def removed : DXILShaderStage;
// DXIL Op attributes
// A function attribute denotes that there is a corresponding LLVM function
// attribute that will be set when building the DXIL op. The mapping is defined
// by setDXILAttributes in DXILOpBuilder.cpp
class DXILAttribute;
def ReadNone : DXILAttribute;
def ReadOnly : DXILAttribute;
def NoDuplicate : DXILAttribute;
def NoReturn : DXILAttribute;
// A property is simply used to mark that a DXIL op belongs to a sub-group of
// DXIL ops, and it is used to query if a particular op holds this property.
// This is used for the static analysis of DXIL ops.
class DXILProperty;
def IsBarrier : DXILProperty;
def IsGradient : DXILProperty;
def IsFeedback : DXILProperty;
def IsWave : DXILProperty;
def RequiresUniformInputs : DXILProperty;
class Overloads<Version ver, list<DXILOpParamType> ols> {
Version dxil_version = ver;
list<DXILOpParamType> overload_types = ols;
}
class Stages<Version ver, list<DXILShaderStage> st> {
Version dxil_version = ver;
list<DXILShaderStage> shader_stages = st;
}
class Attributes<Version ver = DXIL1_0, list<DXILAttribute> attrs> {
Version dxil_version = ver;
list<DXILAttribute> fn_attrs = attrs;
}
defvar BarrierMode_DeviceMemoryBarrier = 2;
defvar BarrierMode_DeviceMemoryBarrierWithGroupSync = 3;
defvar BarrierMode_GroupMemoryBarrier = 8;
defvar BarrierMode_GroupMemoryBarrierWithGroupSync = 9;
defvar BarrierMode_AllMemoryBarrier = 10;
defvar BarrierMode_AllMemoryBarrierWithGroupSync = 11;
defvar WaveOpKind_Sum = 0;
defvar WaveOpKind_Product = 1;
defvar WaveOpKind_Min = 2;
defvar WaveOpKind_Max = 3;
defvar SignedOpKind_Signed = 0;
defvar SignedOpKind_Unsigned = 1;
// Intrinsic arg selection
class IntrinArgSelectType;
def IntrinArgSelect_Index : IntrinArgSelectType;
def IntrinArgSelect_I8 : IntrinArgSelectType;
def IntrinArgSelect_I32 : IntrinArgSelectType;
class IntrinArgSelect<IntrinArgSelectType type_, int value_> {
IntrinArgSelectType type = type_;
int value = value_;
}
class IntrinArgIndex<int index> : IntrinArgSelect<IntrinArgSelect_Index, index>;
class IntrinArgI8<int value> : IntrinArgSelect<IntrinArgSelect_I8, value>;
class IntrinArgI32<int value> : IntrinArgSelect<IntrinArgSelect_I32, value>;
// Select which intrinsic to lower from for a DXILOp.
// If the intrinsic is the only argument given to IntrinSelect, then the
// arguments of the intrinsic will be copied in the same order. Example:
// let intrinsics = [
// IntrinSelect<int_dx_my_intrinsic>,
// IntrinSelect<int_dx_my_intrinsic2>,
// ]
//=========================================================================================
// Using IntrinArgIndex<>, arguments of the intrinsic can be copied to the DXIL
// OP in specific order:
// let intrinsics = [
// IntrinSelect<int_dx_my_intrinsic,
// [IntrinArgIndex<2>, IntrinArgIndex<1>, IntrinArgIndex<0>> ]
// >,
// ]
//=========================================================================================
// Using IntrinArgI8<> and IntrinArgI32<>, integer constants can be added
// directly to the dxil op. This can be used in conjunction with
// IntrinArgIndex:
// let intrinsics = [
// IntrinSelect<int_dx_wave_active_usum,
// [ IntrinArgIndex<0>, IntrinArgI8<0>, IntrinArgI8<1> ]
// >,
// IntrinSelect<int_dx_wave_reduce_sum,
// [ IntrinArgIndex<0>, IntrinArgI8<0>, IntrinArgI8<0> ]
// >,
// ]
//
class IntrinSelect<Intrinsic intrinsic_,
list<IntrinArgSelect> arg_selects_ = []> {
Intrinsic intrinsic = intrinsic_;
list<IntrinArgSelect> arg_selects = arg_selects_;
}
// Abstraction DXIL Operation
class DXILOp<int opcode, DXILOpClass opclass> {
// A short description of the operation
string Doc = "";
// Opcode of DXIL Operation
int OpCode = opcode;
// Class of DXIL Operation.
DXILOpClass OpClass = opclass;
// LLVM Intrinsics DXIL Operation maps from
list<IntrinSelect> intrinsics = [];
// Result type of the op
DXILOpParamType result;
// List of argument types of the op. Default to 0 arguments.
list<DXILOpParamType> arguments = [];
// List of valid overload types predicated by DXIL version
list<Overloads> overloads = [];
// List of valid shader stages predicated by DXIL version
list<Stages> stages;
// Versioned attributes of operation
list<Attributes> attributes = [];
// List of properties. Default to no properties.
list<DXILProperty> properties = [];
}
// Concrete definitions of DXIL Operations
//
// This are sorted by ascending value of the DXIL Opcodes
def Abs : DXILOp<6, unary> {
let Doc = "Returns the absolute value of the input.";
let intrinsics = [IntrinSelect<int_fabs>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy, DoubleTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Saturate : DXILOp<7, unary> {
let Doc = "Clamps a single or double precision floating point value to "
"[0.0f...1.0f].";
let intrinsics = [IntrinSelect<int_dx_saturate>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy, DoubleTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def IsInf : DXILOp<9, isSpecialFloat> {
let Doc = "Determines if the specified value is infinite.";
let intrinsics = [IntrinSelect<int_dx_isinf>];
let arguments = [OverloadTy];
let result = Int1Ty;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Cos : DXILOp<12, unary> {
let Doc = "Returns cosine(theta) for theta in radians.";
let intrinsics = [IntrinSelect<int_cos>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Sin : DXILOp<13, unary> {
let Doc = "Returns sine(theta) for theta in radians.";
let intrinsics = [IntrinSelect<int_sin>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Tan : DXILOp<14, unary> {
let Doc = "Returns tangent(theta) for theta in radians.";
let intrinsics = [IntrinSelect<int_tan>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def ACos : DXILOp<15, unary> {
let Doc = "Returns the arccosine of the specified value.";
let intrinsics = [IntrinSelect<int_acos>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def ASin : DXILOp<16, unary> {
let Doc = "Returns the arcsine of the specified value.";
let intrinsics = [IntrinSelect<int_asin>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def ATan : DXILOp<17, unary> {
let Doc = "Returns the arctangent of the specified value.";
let intrinsics = [IntrinSelect<int_atan>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def HCos : DXILOp<18, unary> {
let Doc = "Returns the hyperbolic cosine of the specified value.";
let intrinsics = [IntrinSelect<int_cosh>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def HSin : DXILOp<19, unary> {
let Doc = "Returns the hyperbolic sine of the specified value.";
let intrinsics = [IntrinSelect<int_sinh>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def HTan : DXILOp<20, unary> {
let Doc = "Returns the hyperbolic tan of the specified value.";
let intrinsics = [IntrinSelect<int_tanh>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Exp2 : DXILOp<21, unary> {
let Doc = "Returns the base 2 exponential, or 2**x, of the specified value. "
"exp2(x) = 2**x.";
let intrinsics = [IntrinSelect<int_exp2>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Frac : DXILOp<22, unary> {
let Doc = "Returns a fraction from 0 to 1 that represents the decimal part "
"of the input.";
let intrinsics = [IntrinSelect<int_dx_frac>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Log2 : DXILOp<23, unary> {
let Doc = "Returns the base-2 logarithm of the specified value.";
let intrinsics = [IntrinSelect<int_log2>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Sqrt : DXILOp<24, unary> {
let Doc = "Returns the square root of the specified floating-point value, "
"per component.";
let intrinsics = [IntrinSelect<int_sqrt>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def RSqrt : DXILOp<25, unary> {
let Doc = "Returns the reciprocal of the square root of the specified value. "
"rsqrt(x) = 1 / sqrt(x).";
let intrinsics = [IntrinSelect<int_dx_rsqrt>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Round : DXILOp<26, unary> {
let Doc = "Returns the input rounded to the nearest integer within a "
"floating-point type.";
let intrinsics = [IntrinSelect<int_roundeven>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Floor : DXILOp<27, unary> {
let Doc =
"Returns the largest integer that is less than or equal to the input.";
let intrinsics = [IntrinSelect<int_floor>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Ceil : DXILOp<28, unary> {
let Doc = "Returns the smallest integer that is greater than or equal to the "
"input.";
let intrinsics = [IntrinSelect<int_ceil>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Trunc : DXILOp<29, unary> {
let Doc = "Returns the specified value truncated to the integer component.";
let intrinsics = [IntrinSelect<int_trunc>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Rbits : DXILOp<30, unary> {
let Doc = "Returns the specified value with its bits reversed.";
let intrinsics = [IntrinSelect<int_bitreverse>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def CountBits : DXILOp<31, unaryBits> {
let Doc = "Returns the number of 1 bits in the specified value.";
let arguments = [OverloadTy];
let result = Int32Ty;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FirstbitLo : DXILOp<32, unaryBits> {
let Doc = "Returns the location of the first set bit starting from "
"the lowest order bit and working upward.";
let intrinsics = [IntrinSelect<int_dx_firstbitlow>];
let arguments = [OverloadTy];
let result = Int32Ty;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FirstbitHi : DXILOp<33, unaryBits> {
let Doc = "Returns the location of the first set bit starting from "
"the highest order bit and working downward.";
let intrinsics = [IntrinSelect<int_dx_firstbituhigh>];
let arguments = [OverloadTy];
let result = Int32Ty;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FirstbitSHi : DXILOp<34, unaryBits> {
let Doc = "Returns the location of the first set bit from "
"the highest order bit based on the sign.";
let intrinsics = [IntrinSelect<int_dx_firstbitshigh>];
let arguments = [OverloadTy];
let result = Int32Ty;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FMax : DXILOp<35, binary> {
let Doc = "Float maximum. FMax(a,b) = a > b ? a : b";
let intrinsics = [IntrinSelect<int_maxnum>];
let arguments = [OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy, DoubleTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FMin : DXILOp<36, binary> {
let Doc = "Float minimum. FMin(a,b) = a < b ? a : b";
let intrinsics = [IntrinSelect<int_minnum>];
let arguments = [OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy, DoubleTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def SMax : DXILOp<37, binary> {
let Doc = "Signed integer maximum. SMax(a,b) = a > b ? a : b";
let intrinsics = [IntrinSelect<int_smax>];
let arguments = [OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def SMin : DXILOp<38, binary> {
let Doc = "Signed integer minimum. SMin(a,b) = a < b ? a : b";
let intrinsics = [IntrinSelect<int_smin>];
let arguments = [OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def UMax : DXILOp<39, binary> {
let Doc = "Unsigned integer maximum. UMax(a,b) = a > b ? a : b";
let intrinsics = [IntrinSelect<int_umax>];
let arguments = [OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def UMin : DXILOp<40, binary> {
let Doc = "Unsigned integer minimum. UMin(a,b) = a < b ? a : b";
let intrinsics = [IntrinSelect<int_umin>];
let arguments = [OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FMad : DXILOp<46, tertiary> {
let Doc = "Floating point arithmetic multiply/add operation. fmad(m,a,b) = m "
"* a + b.";
let intrinsics = [IntrinSelect<int_fmuladd>];
let arguments = [OverloadTy, OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy, DoubleTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def IMad : DXILOp<48, tertiary> {
let Doc = "Signed integer arithmetic multiply/add operation. imad(m,a,b) = m "
"* a + b.";
let intrinsics = [IntrinSelect<int_dx_imad>];
let arguments = [OverloadTy, OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def UMad : DXILOp<49, tertiary> {
let Doc = "Unsigned integer arithmetic multiply/add operation. umad(m,a, = m "
"* a + b.";
let intrinsics = [IntrinSelect<int_dx_umad>];
let arguments = [OverloadTy, OverloadTy, OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Dot2 : DXILOp<54, dot2> {
let Doc = "dot product of two float vectors Dot(a,b) = a[0]*b[0] + ... + "
"a[n]*b[n] where n is 0 to 1 inclusive";
let intrinsics = [IntrinSelect<int_dx_dot2>];
let arguments = !listsplat(OverloadTy, 4);
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Dot3 : DXILOp<55, dot3> {
let Doc = "dot product of two float vectors Dot(a,b) = a[0]*b[0] + ... + "
"a[n]*b[n] where n is 0 to 2 inclusive";
let intrinsics = [IntrinSelect<int_dx_dot3>];
let arguments = !listsplat(OverloadTy, 6);
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Dot4 : DXILOp<56, dot4> {
let Doc = "dot product of two float vectors Dot(a,b) = a[0]*b[0] + ... + "
"a[n]*b[n] where n is 0 to 3 inclusive";
let intrinsics = [IntrinSelect<int_dx_dot4>];
let arguments = !listsplat(OverloadTy, 8);
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def CreateHandle : DXILOp<57, createHandle> {
let Doc = "creates the handle to a resource";
// ResourceClass, RangeID, Index, NonUniform
let arguments = [Int8Ty, Int32Ty, Int32Ty, Int1Ty];
let result = HandleTy;
let stages = [Stages<DXIL1_0, [all_stages]>, Stages<DXIL1_6, [removed]>];
// NOTE: The ReadOnly attribute was set for consistency with DXC. However, it
// seems like ReadNone may more appropiately describe it. So noted to
// consider a change in the future
let attributes = [Attributes<DXIL1_0, [ReadOnly]>];
}
def BufferLoad : DXILOp<68, bufferLoad> {
let Doc = "reads from a TypedBuffer";
// Handle, Coord0, Coord1
let arguments = [HandleTy, Int32Ty, Int32Ty];
let result = OverloadTy;
let overloads =
[Overloads<DXIL1_0,
[ResRetHalfTy, ResRetFloatTy, ResRetInt16Ty, ResRetInt32Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadOnly]>];
}
def BufferStore : DXILOp<69, bufferStore> {
let Doc = "writes to an RWTypedBuffer";
// Handle, Coord0, Coord1, Val0, Val1, Val2, Val3, Mask
let arguments = [
HandleTy, Int32Ty, Int32Ty, OverloadTy, OverloadTy, OverloadTy, OverloadTy,
Int8Ty
];
let result = VoidTy;
let overloads = [Overloads<DXIL1_0, [HalfTy, FloatTy, Int16Ty, Int32Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
}
def UpdateCounter : DXILOp<70, bufferUpdateCounter> {
let Doc = "increments/decrements a buffer counter";
let arguments = [HandleTy, Int8Ty];
let result = Int32Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
}
def CheckAccessFullyMapped : DXILOp<71, checkAccessFullyMapped> {
let Doc = "checks whether a Sample, Gather, or Load operation "
"accessed mapped tiles in a tiled resource";
let arguments = [OverloadTy];
let result = Int1Ty;
let overloads = [Overloads<DXIL1_0, [Int32Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadOnly]>];
}
def Barrier : DXILOp<80, barrier> {
let Doc = "inserts a memory barrier in the shader";
let intrinsics = [
IntrinSelect<int_dx_group_memory_barrier_with_group_sync,
[IntrinArgI32<BarrierMode_GroupMemoryBarrierWithGroupSync>]>,
];
let arguments = [Int32Ty];
let result = VoidTy;
let stages = [Stages<DXIL1_0, [compute, library]>];
let attributes = [Attributes<DXIL1_0, []>];
let properties = [IsBarrier];
}
def Discard : DXILOp<82, discard> {
let Doc = "discard the current pixel";
let intrinsics = [IntrinSelect<int_dx_discard>];
let arguments = [Int1Ty];
let result = VoidTy;
let stages = [Stages<DXIL1_0, [pixel]>];
}
def ThreadId : DXILOp<93, threadId> {
let Doc = "Reads the thread ID";
let intrinsics = [IntrinSelect<int_dx_thread_id>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int32Ty]>];
let stages = [Stages<DXIL1_0, [compute, mesh, amplification, node]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def GroupId : DXILOp<94, groupId> {
let Doc = "Reads the group ID (SV_GroupID)";
let intrinsics = [IntrinSelect<int_dx_group_id>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int32Ty]>];
let stages = [Stages<DXIL1_0, [compute, mesh, amplification, node]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def ThreadIdInGroup : DXILOp<95, threadIdInGroup> {
let Doc = "Reads the thread ID within the group (SV_GroupThreadID)";
let intrinsics = [IntrinSelect<int_dx_thread_id_in_group>];
let arguments = [OverloadTy];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int32Ty]>];
let stages = [Stages<DXIL1_0, [compute, mesh, amplification, node]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def FlattenedThreadIdInGroup : DXILOp<96, flattenedThreadIdInGroup> {
let Doc = "Provides a flattened index for a given thread within a given "
"group (SV_GroupIndex)";
let intrinsics = [IntrinSelect<int_dx_flattened_thread_id_in_group>];
let result = OverloadTy;
let overloads = [Overloads<DXIL1_0, [Int32Ty]>];
let stages = [Stages<DXIL1_0, [compute, mesh, amplification, node]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def MakeDouble : DXILOp<101, makeDouble> {
let Doc = "creates a double value";
let intrinsics = [IntrinSelect<int_dx_asdouble>];
let arguments = [Int32Ty, Int32Ty];
let result = DoubleTy;
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def SplitDouble : DXILOp<102, splitDouble> {
let Doc = "Splits a double into 2 uints";
let arguments = [OverloadTy];
let result = SplitDoubleTy;
let overloads = [Overloads<DXIL1_0, [DoubleTy]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def WaveIsFirstLane : DXILOp<110, waveIsFirstLane> {
let Doc = "returns 1 for the first lane in the wave";
let intrinsics = [IntrinSelect<int_dx_wave_is_first_lane>];
let arguments = [];
let result = Int1Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
let properties = [IsWave];
}
def WaveGetLaneIndex : DXILOp<111, waveGetLaneIndex> {
let Doc = "returns the index of the current lane in the wave";
let intrinsics = [IntrinSelect<int_dx_wave_getlaneindex>];
let arguments = [];
let result = Int32Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadOnly]>];
let properties = [IsWave];
}
def WaveActiveAnyTrue : DXILOp<113, waveAnyTrue> {
let Doc = "returns true if the expression is true in any of the active lanes "
"in the current wave";
let intrinsics = [IntrinSelect<int_dx_wave_any>];
let arguments = [Int1Ty];
let result = Int1Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
let properties = [IsWave];
}
def WaveActiveAllTrue : DXILOp<114, waveAllTrue> {
let Doc = "returns true if the expression is true in all of the active lanes "
"in the current wave";
let intrinsics = [IntrinSelect<int_dx_wave_all>];
let arguments = [Int1Ty];
let result = Int1Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
let properties = [IsWave];
}
def WaveReadLaneAt : DXILOp<117, waveReadLaneAt> {
let Doc = "returns the value from the specified lane";
let intrinsics = [IntrinSelect<int_dx_wave_readlane>];
let arguments = [OverloadTy, Int32Ty];
let result = OverloadTy;
let overloads = [Overloads<
DXIL1_0, [HalfTy, FloatTy, DoubleTy, Int1Ty, Int16Ty, Int32Ty, Int64Ty]>];
let stages = [Stages<DXIL1_0, [all_stages]>];
let properties = [IsWave];
}
def WaveActiveOp : DXILOp<119, waveActiveOp> {
let Doc = "returns the result of the operation across waves";
let intrinsics = [
IntrinSelect<int_dx_wave_reduce_sum,
[
IntrinArgIndex<0>, IntrinArgI8<WaveOpKind_Sum>,
IntrinArgI8<SignedOpKind_Signed>
]>,
IntrinSelect<int_dx_wave_reduce_usum,
[
IntrinArgIndex<0>, IntrinArgI8<WaveOpKind_Sum>,
IntrinArgI8<SignedOpKind_Unsigned>
]>,
IntrinSelect<int_dx_wave_reduce_max,
[
IntrinArgIndex<0>, IntrinArgI8<WaveOpKind_Max>,
IntrinArgI8<SignedOpKind_Signed>
]>,
IntrinSelect<int_dx_wave_reduce_umax,
[
IntrinArgIndex<0>, IntrinArgI8<WaveOpKind_Max>,
IntrinArgI8<SignedOpKind_Unsigned>
]>,
];
let arguments = [OverloadTy, Int8Ty, Int8Ty];
let result = OverloadTy;
let overloads = [
Overloads<DXIL1_0, [HalfTy, FloatTy, DoubleTy, Int16Ty, Int32Ty, Int64Ty]>
];
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, []>];
}
def WaveAllBitCount : DXILOp<135, waveAllOp> {
let Doc = "returns the count of bits set to 1 across the wave";
let intrinsics = [IntrinSelect<int_dx_wave_active_countbits>];
let arguments = [Int1Ty];
let result = Int32Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
let properties = [IsWave];
}
def RawBufferLoad : DXILOp<139, rawBufferLoad> {
let Doc = "reads from a raw buffer and structured buffer";
// Handle, Coord0, Coord1, Mask, Alignment
let arguments = [HandleTy, Int32Ty, Int32Ty, Int8Ty, Int32Ty];
let result = OverloadTy;
let overloads = [
Overloads<DXIL1_2,
[ResRetHalfTy, ResRetFloatTy, ResRetInt16Ty, ResRetInt32Ty]>,
Overloads<DXIL1_3,
[
ResRetHalfTy, ResRetFloatTy, ResRetDoubleTy, ResRetInt16Ty,
ResRetInt32Ty, ResRetInt64Ty
]>
];
let stages = [Stages<DXIL1_2, [all_stages]>];
}
def RawBufferStore : DXILOp<140, rawBufferStore> {
let Doc = "writes to a RWByteAddressBuffer or RWStructuredBuffer";
// Handle, Coord0, Coord1, Val0, Val1, Val2, Val3, Mask, Alignment
let arguments = [
HandleTy, Int32Ty, Int32Ty, OverloadTy, OverloadTy, OverloadTy, OverloadTy,
Int8Ty, Int32Ty
];
let result = VoidTy;
let overloads = [
Overloads<DXIL1_2,
[ResRetHalfTy, ResRetFloatTy, ResRetInt16Ty, ResRetInt32Ty]>,
Overloads<DXIL1_3,
[
ResRetHalfTy, ResRetFloatTy, ResRetDoubleTy, ResRetInt16Ty,
ResRetInt32Ty, ResRetInt64Ty
]>
];
let stages = [Stages<DXIL1_2, [all_stages]>];
}
def Dot4AddI8Packed : DXILOp<163, dot4AddPacked> {
let Doc = "signed dot product of 4 x i8 vectors packed into i32, with "
"accumulate to i32";
let intrinsics = [IntrinSelect<int_dx_dot4add_i8packed>];
let arguments = [Int32Ty, Int32Ty, Int32Ty];
let result = Int32Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def Dot4AddU8Packed : DXILOp<164, dot4AddPacked> {
let Doc = "unsigned dot product of 4 x i8 vectors packed into i32, with "
"accumulate to i32";
let intrinsics = [IntrinSelect<int_dx_dot4add_u8packed>];
let arguments = [Int32Ty, Int32Ty, Int32Ty];
let result = Int32Ty;
let stages = [Stages<DXIL1_0, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def AnnotateHandle : DXILOp<216, annotateHandle> {
let Doc = "annotate handle with resource properties";
let arguments = [HandleTy, ResPropsTy];
let result = HandleTy;
let stages = [Stages<DXIL1_6, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
def CreateHandleFromBinding : DXILOp<217, createHandleFromBinding> {
let Doc = "create resource handle from binding";
let arguments = [ResBindTy, Int32Ty, Int1Ty];
let result = HandleTy;
let stages = [Stages<DXIL1_6, [all_stages]>];
let attributes = [Attributes<DXIL1_0, [ReadNone]>];
}
|