1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
|
//===-- RISCVLegalizerInfo.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for RISC-V.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "RISCVLegalizerInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutor.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace LegalityPredicates;
using namespace LegalizeMutations;
static LegalityPredicate
typeIsLegalIntOrFPVec(unsigned TypeIdx,
std::initializer_list<LLT> IntOrFPVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getScalarSizeInBits() != 64 ||
ST.hasVInstructionsI64()) &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64);
};
return all(typeInSet(TypeIdx, IntOrFPVecTys), P);
}
static LegalityPredicate
typeIsLegalBoolVec(unsigned TypeIdx, std::initializer_list<LLT> BoolVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64);
};
return all(typeInSet(TypeIdx, BoolVecTys), P);
}
static LegalityPredicate typeIsLegalPtrVec(unsigned TypeIdx,
std::initializer_list<LLT> PtrVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64) &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 16 ||
Query.Types[TypeIdx].getScalarSizeInBits() == 32);
};
return all(typeInSet(TypeIdx, PtrVecTys), P);
}
RISCVLegalizerInfo::RISCVLegalizerInfo(const RISCVSubtarget &ST)
: STI(ST), XLen(STI.getXLen()), sXLen(LLT::scalar(XLen)) {
const LLT sDoubleXLen = LLT::scalar(2 * XLen);
const LLT p0 = LLT::pointer(0, XLen);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
const LLT nxv1s1 = LLT::scalable_vector(1, s1);
const LLT nxv2s1 = LLT::scalable_vector(2, s1);
const LLT nxv4s1 = LLT::scalable_vector(4, s1);
const LLT nxv8s1 = LLT::scalable_vector(8, s1);
const LLT nxv16s1 = LLT::scalable_vector(16, s1);
const LLT nxv32s1 = LLT::scalable_vector(32, s1);
const LLT nxv64s1 = LLT::scalable_vector(64, s1);
const LLT nxv1s8 = LLT::scalable_vector(1, s8);
const LLT nxv2s8 = LLT::scalable_vector(2, s8);
const LLT nxv4s8 = LLT::scalable_vector(4, s8);
const LLT nxv8s8 = LLT::scalable_vector(8, s8);
const LLT nxv16s8 = LLT::scalable_vector(16, s8);
const LLT nxv32s8 = LLT::scalable_vector(32, s8);
const LLT nxv64s8 = LLT::scalable_vector(64, s8);
const LLT nxv1s16 = LLT::scalable_vector(1, s16);
const LLT nxv2s16 = LLT::scalable_vector(2, s16);
const LLT nxv4s16 = LLT::scalable_vector(4, s16);
const LLT nxv8s16 = LLT::scalable_vector(8, s16);
const LLT nxv16s16 = LLT::scalable_vector(16, s16);
const LLT nxv32s16 = LLT::scalable_vector(32, s16);
const LLT nxv1s32 = LLT::scalable_vector(1, s32);
const LLT nxv2s32 = LLT::scalable_vector(2, s32);
const LLT nxv4s32 = LLT::scalable_vector(4, s32);
const LLT nxv8s32 = LLT::scalable_vector(8, s32);
const LLT nxv16s32 = LLT::scalable_vector(16, s32);
const LLT nxv1s64 = LLT::scalable_vector(1, s64);
const LLT nxv2s64 = LLT::scalable_vector(2, s64);
const LLT nxv4s64 = LLT::scalable_vector(4, s64);
const LLT nxv8s64 = LLT::scalable_vector(8, s64);
const LLT nxv1p0 = LLT::scalable_vector(1, p0);
const LLT nxv2p0 = LLT::scalable_vector(2, p0);
const LLT nxv4p0 = LLT::scalable_vector(4, p0);
const LLT nxv8p0 = LLT::scalable_vector(8, p0);
const LLT nxv16p0 = LLT::scalable_vector(16, p0);
using namespace TargetOpcode;
auto BoolVecTys = {nxv1s1, nxv2s1, nxv4s1, nxv8s1, nxv16s1, nxv32s1, nxv64s1};
auto IntOrFPVecTys = {nxv1s8, nxv2s8, nxv4s8, nxv8s8, nxv16s8, nxv32s8,
nxv64s8, nxv1s16, nxv2s16, nxv4s16, nxv8s16, nxv16s16,
nxv32s16, nxv1s32, nxv2s32, nxv4s32, nxv8s32, nxv16s32,
nxv1s64, nxv2s64, nxv4s64, nxv8s64};
auto PtrVecTys = {nxv1p0, nxv2p0, nxv4p0, nxv8p0, nxv16p0};
getActionDefinitionsBuilder({G_ADD, G_SUB})
.legalFor({sXLen})
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.customFor(ST.is64Bit(), {s32})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({sXLen})
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder(
{G_UADDE, G_UADDO, G_USUBE, G_USUBO}).lower();
getActionDefinitionsBuilder({G_SADDO, G_SSUBO}).minScalar(0, sXLen).lower();
// TODO: Use Vector Single-Width Saturating Instructions for vector types.
getActionDefinitionsBuilder({G_UADDSAT, G_SADDSAT, G_USUBSAT, G_SSUBSAT})
.lower();
getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
.legalFor({{sXLen, sXLen}})
.customFor(ST.is64Bit(), {{s32, s32}})
.widenScalarToNextPow2(0)
.clampScalar(1, sXLen, sXLen)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
.legalFor({{s32, s16}})
.legalFor(ST.is64Bit(), {{s64, s16}, {s64, s32}})
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)))
.customIf(typeIsLegalBoolVec(1, BoolVecTys, ST))
.maxScalar(0, sXLen);
getActionDefinitionsBuilder(G_SEXT_INREG)
.customFor({sXLen})
.clampScalar(0, sXLen, sXLen)
.lower();
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
auto &MergeUnmergeActions = getActionDefinitionsBuilder(Op);
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
if (XLen == 32 && ST.hasStdExtD()) {
MergeUnmergeActions.legalIf(
all(typeIs(BigTyIdx, s64), typeIs(LitTyIdx, s32)));
}
MergeUnmergeActions.widenScalarToNextPow2(LitTyIdx, XLen)
.widenScalarToNextPow2(BigTyIdx, XLen)
.clampScalar(LitTyIdx, sXLen, sXLen)
.clampScalar(BigTyIdx, sXLen, sXLen);
}
getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
getActionDefinitionsBuilder({G_ROTR, G_ROTL})
.legalFor(ST.hasStdExtZbb() || ST.hasStdExtZbkb(), {{sXLen, sXLen}})
.customFor(ST.is64Bit() && (ST.hasStdExtZbb() || ST.hasStdExtZbkb()),
{{s32, s32}})
.lower();
getActionDefinitionsBuilder(G_BITREVERSE).maxScalar(0, sXLen).lower();
getActionDefinitionsBuilder(G_BITCAST).legalIf(
all(LegalityPredicates::any(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalBoolVec(0, BoolVecTys, ST)),
LegalityPredicates::any(typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST))));
auto &BSWAPActions = getActionDefinitionsBuilder(G_BSWAP);
if (ST.hasStdExtZbb() || ST.hasStdExtZbkb())
BSWAPActions.legalFor({sXLen}).clampScalar(0, sXLen, sXLen);
else
BSWAPActions.maxScalar(0, sXLen).lower();
auto &CountZerosActions = getActionDefinitionsBuilder({G_CTLZ, G_CTTZ});
auto &CountZerosUndefActions =
getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF});
if (ST.hasStdExtZbb()) {
CountZerosActions.legalFor({{sXLen, sXLen}})
.customFor({{s32, s32}})
.clampScalar(0, s32, sXLen)
.widenScalarToNextPow2(0)
.scalarSameSizeAs(1, 0);
} else {
CountZerosActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
CountZerosUndefActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0);
}
CountZerosUndefActions.lower();
auto &CTPOPActions = getActionDefinitionsBuilder(G_CTPOP);
if (ST.hasStdExtZbb()) {
CTPOPActions.legalFor({{sXLen, sXLen}})
.clampScalar(0, sXLen, sXLen)
.scalarSameSizeAs(1, 0);
} else {
CTPOPActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
}
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({p0})
.legalFor(!ST.is64Bit(), {s32})
.customFor(ST.is64Bit(), {s64})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sXLen);
// TODO: transform illegal vector types into legal vector type
getActionDefinitionsBuilder(G_FREEZE)
.legalFor({s16, s32, p0})
.legalFor(ST.is64Bit(), {s64})
.legalIf(typeIsLegalBoolVec(0, BoolVecTys, ST))
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.widenScalarToNextPow2(0)
.clampScalar(0, s16, sXLen);
// TODO: transform illegal vector types into legal vector type
// TODO: Merge with G_FREEZE?
getActionDefinitionsBuilder(
{G_IMPLICIT_DEF, G_CONSTANT_FOLD_BARRIER})
.legalFor({s32, sXLen, p0})
.legalIf(typeIsLegalBoolVec(0, BoolVecTys, ST))
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder(G_ICMP)
.legalFor({{sXLen, sXLen}, {sXLen, p0}})
.legalIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)))
.widenScalarOrEltToNextPow2OrMinSize(1, 8)
.clampScalar(1, sXLen, sXLen)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s32, sXLen}, {p0, sXLen}})
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST)))
.legalFor(XLen == 64 || ST.hasStdExtD(), {{s64, sXLen}})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, (XLen == 64 || ST.hasStdExtD()) ? s64 : s32)
.clampScalar(1, sXLen, sXLen);
auto &LoadActions = getActionDefinitionsBuilder(G_LOAD);
auto &StoreActions = getActionDefinitionsBuilder(G_STORE);
auto &ExtLoadActions = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD});
// Return the alignment needed for scalar memory ops. If unaligned scalar mem
// is supported, we only require byte alignment. Otherwise, we need the memory
// op to be natively aligned.
auto getScalarMemAlign = [&ST](unsigned Size) {
return ST.enableUnalignedScalarMem() ? 8 : Size;
};
LoadActions.legalForTypesWithMemDesc(
{{s16, p0, s8, getScalarMemAlign(8)},
{s32, p0, s8, getScalarMemAlign(8)},
{s16, p0, s16, getScalarMemAlign(16)},
{s32, p0, s16, getScalarMemAlign(16)},
{s32, p0, s32, getScalarMemAlign(32)},
{p0, p0, sXLen, getScalarMemAlign(XLen)}});
StoreActions.legalForTypesWithMemDesc(
{{s16, p0, s8, getScalarMemAlign(8)},
{s32, p0, s8, getScalarMemAlign(8)},
{s16, p0, s16, getScalarMemAlign(16)},
{s32, p0, s16, getScalarMemAlign(16)},
{s32, p0, s32, getScalarMemAlign(32)},
{p0, p0, sXLen, getScalarMemAlign(XLen)}});
ExtLoadActions.legalForTypesWithMemDesc(
{{sXLen, p0, s8, getScalarMemAlign(8)},
{sXLen, p0, s16, getScalarMemAlign(16)}});
if (XLen == 64) {
LoadActions.legalForTypesWithMemDesc(
{{s64, p0, s8, getScalarMemAlign(8)},
{s64, p0, s16, getScalarMemAlign(16)},
{s64, p0, s32, getScalarMemAlign(32)},
{s64, p0, s64, getScalarMemAlign(64)}});
StoreActions.legalForTypesWithMemDesc(
{{s64, p0, s8, getScalarMemAlign(8)},
{s64, p0, s16, getScalarMemAlign(16)},
{s64, p0, s32, getScalarMemAlign(32)},
{s64, p0, s64, getScalarMemAlign(64)}});
ExtLoadActions.legalForTypesWithMemDesc(
{{s64, p0, s32, getScalarMemAlign(32)}});
} else if (ST.hasStdExtD()) {
LoadActions.legalForTypesWithMemDesc(
{{s64, p0, s64, getScalarMemAlign(64)}});
StoreActions.legalForTypesWithMemDesc(
{{s64, p0, s64, getScalarMemAlign(64)}});
}
// Vector loads/stores.
if (ST.hasVInstructions()) {
LoadActions.legalForTypesWithMemDesc({{nxv2s8, p0, nxv2s8, 8},
{nxv4s8, p0, nxv4s8, 8},
{nxv8s8, p0, nxv8s8, 8},
{nxv16s8, p0, nxv16s8, 8},
{nxv32s8, p0, nxv32s8, 8},
{nxv64s8, p0, nxv64s8, 8},
{nxv2s16, p0, nxv2s16, 16},
{nxv4s16, p0, nxv4s16, 16},
{nxv8s16, p0, nxv8s16, 16},
{nxv16s16, p0, nxv16s16, 16},
{nxv32s16, p0, nxv32s16, 16},
{nxv2s32, p0, nxv2s32, 32},
{nxv4s32, p0, nxv4s32, 32},
{nxv8s32, p0, nxv8s32, 32},
{nxv16s32, p0, nxv16s32, 32}});
StoreActions.legalForTypesWithMemDesc({{nxv2s8, p0, nxv2s8, 8},
{nxv4s8, p0, nxv4s8, 8},
{nxv8s8, p0, nxv8s8, 8},
{nxv16s8, p0, nxv16s8, 8},
{nxv32s8, p0, nxv32s8, 8},
{nxv64s8, p0, nxv64s8, 8},
{nxv2s16, p0, nxv2s16, 16},
{nxv4s16, p0, nxv4s16, 16},
{nxv8s16, p0, nxv8s16, 16},
{nxv16s16, p0, nxv16s16, 16},
{nxv32s16, p0, nxv32s16, 16},
{nxv2s32, p0, nxv2s32, 32},
{nxv4s32, p0, nxv4s32, 32},
{nxv8s32, p0, nxv8s32, 32},
{nxv16s32, p0, nxv16s32, 32}});
if (ST.getELen() == 64) {
LoadActions.legalForTypesWithMemDesc({{nxv1s8, p0, nxv1s8, 8},
{nxv1s16, p0, nxv1s16, 16},
{nxv1s32, p0, nxv1s32, 32}});
StoreActions.legalForTypesWithMemDesc({{nxv1s8, p0, nxv1s8, 8},
{nxv1s16, p0, nxv1s16, 16},
{nxv1s32, p0, nxv1s32, 32}});
}
if (ST.hasVInstructionsI64()) {
LoadActions.legalForTypesWithMemDesc({{nxv1s64, p0, nxv1s64, 64},
{nxv2s64, p0, nxv2s64, 64},
{nxv4s64, p0, nxv4s64, 64},
{nxv8s64, p0, nxv8s64, 64}});
StoreActions.legalForTypesWithMemDesc({{nxv1s64, p0, nxv1s64, 64},
{nxv2s64, p0, nxv2s64, 64},
{nxv4s64, p0, nxv4s64, 64},
{nxv8s64, p0, nxv8s64, 64}});
}
// we will take the custom lowering logic if we have scalable vector types
// with non-standard alignments
LoadActions.customIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST));
StoreActions.customIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST));
// Pointers require that XLen sized elements are legal.
if (XLen <= ST.getELen()) {
LoadActions.customIf(typeIsLegalPtrVec(0, PtrVecTys, ST));
StoreActions.customIf(typeIsLegalPtrVec(0, PtrVecTys, ST));
}
}
LoadActions.widenScalarToNextPow2(0, /* MinSize = */ 8)
.lowerIfMemSizeNotByteSizePow2()
.clampScalar(0, s16, sXLen)
.lower();
StoreActions
.clampScalar(0, s16, sXLen)
.lowerIfMemSizeNotByteSizePow2()
.lower();
ExtLoadActions.widenScalarToNextPow2(0).clampScalar(0, sXLen, sXLen).lower();
getActionDefinitionsBuilder({G_PTR_ADD, G_PTRMASK}).legalFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalFor({{sXLen, p0}})
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder(G_INTTOPTR)
.legalFor({{p0, sXLen}})
.clampScalar(1, sXLen, sXLen);
getActionDefinitionsBuilder(G_BRCOND).legalFor({sXLen}).minScalar(0, sXLen);
getActionDefinitionsBuilder(G_BRJT).customFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
getActionDefinitionsBuilder(G_PHI)
.legalFor({p0, s32, sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE, G_CONSTANT_POOL})
.legalFor({p0});
if (ST.hasStdExtZmmul()) {
getActionDefinitionsBuilder(G_MUL)
.legalFor({sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sXLen);
// clang-format off
getActionDefinitionsBuilder({G_SMULH, G_UMULH})
.legalFor({sXLen})
.lower();
// clang-format on
getActionDefinitionsBuilder({G_SMULO, G_UMULO}).minScalar(0, sXLen).lower();
} else {
getActionDefinitionsBuilder(G_MUL)
.libcallFor({sXLen, sDoubleXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sDoubleXLen);
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).lowerFor({sXLen});
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
.minScalar(0, sXLen)
// Widen sXLen to sDoubleXLen so we can use a single libcall to get
// the low bits for the mul result and high bits to do the overflow
// check.
.widenScalarIf(typeIs(0, sXLen),
LegalizeMutations::changeTo(0, sDoubleXLen))
.lower();
}
if (ST.hasStdExtM()) {
getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_UREM})
.legalFor({sXLen})
.customFor({s32})
.libcallFor({sDoubleXLen})
.clampScalar(0, s32, sDoubleXLen)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_SREM)
.legalFor({sXLen})
.libcallFor({sDoubleXLen})
.clampScalar(0, sXLen, sDoubleXLen)
.widenScalarToNextPow2(0);
} else {
getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
.libcallFor({sXLen, sDoubleXLen})
.clampScalar(0, sXLen, sDoubleXLen)
.widenScalarToNextPow2(0);
}
// TODO: Use libcall for sDoubleXLen.
getActionDefinitionsBuilder({G_SDIVREM, G_UDIVREM}).lower();
getActionDefinitionsBuilder(G_ABS)
.customFor(ST.hasStdExtZbb(), {sXLen})
.minScalar(ST.hasStdExtZbb(), 0, sXLen)
.lower();
getActionDefinitionsBuilder({G_UMAX, G_UMIN, G_SMAX, G_SMIN})
.legalFor(ST.hasStdExtZbb(), {sXLen})
.minScalar(ST.hasStdExtZbb(), 0, sXLen)
.lower();
getActionDefinitionsBuilder({G_SCMP, G_UCMP}).lower();
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
getActionDefinitionsBuilder({G_DYN_STACKALLOC, G_STACKSAVE, G_STACKRESTORE})
.lower();
// FP Operations
// FIXME: Support s128 for rv32 when libcall handling is able to use sret.
getActionDefinitionsBuilder(
{G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FSQRT, G_FMAXNUM, G_FMINNUM})
.legalFor(ST.hasStdExtF(), {s32})
.legalFor(ST.hasStdExtD(), {s64})
.legalFor(ST.hasStdExtZfh(), {s16})
.libcallFor({s32, s64})
.libcallFor(ST.is64Bit(), {s128});
getActionDefinitionsBuilder({G_FNEG, G_FABS})
.legalFor(ST.hasStdExtF(), {s32})
.legalFor(ST.hasStdExtD(), {s64})
.legalFor(ST.hasStdExtZfh(), {s16})
.lowerFor({s32, s64, s128});
getActionDefinitionsBuilder(G_FREM)
.libcallFor({s32, s64})
.libcallFor(ST.is64Bit(), {s128})
.minScalar(0, s32)
.scalarize(0);
getActionDefinitionsBuilder(G_FCOPYSIGN)
.legalFor(ST.hasStdExtF(), {{s32, s32}})
.legalFor(ST.hasStdExtD(), {{s64, s64}, {s32, s64}, {s64, s32}})
.legalFor(ST.hasStdExtZfh(), {{s16, s16}, {s16, s32}, {s32, s16}})
.legalFor(ST.hasStdExtZfh() && ST.hasStdExtD(), {{s16, s64}, {s64, s16}})
.lower();
// FIXME: Use Zfhmin.
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor(ST.hasStdExtD(), {{s32, s64}})
.legalFor(ST.hasStdExtZfh(), {{s16, s32}})
.legalFor(ST.hasStdExtZfh() && ST.hasStdExtD(), {{s16, s64}})
.libcallFor({{s32, s64}})
.libcallFor(ST.is64Bit(), {{s32, s128}, {s64, s128}});
getActionDefinitionsBuilder(G_FPEXT)
.legalFor(ST.hasStdExtD(), {{s64, s32}})
.legalFor(ST.hasStdExtZfh(), {{s32, s16}})
.legalFor(ST.hasStdExtZfh() && ST.hasStdExtD(), {{s64, s16}})
.libcallFor({{s64, s32}})
.libcallFor(ST.is64Bit(), {{s128, s32}, {s128, s64}});
getActionDefinitionsBuilder(G_FCMP)
.legalFor(ST.hasStdExtF(), {{sXLen, s32}})
.legalFor(ST.hasStdExtD(), {{sXLen, s64}})
.legalFor(ST.hasStdExtZfh(), {{sXLen, s16}})
.clampScalar(0, sXLen, sXLen)
.libcallFor({{sXLen, s32}, {sXLen, s64}})
.libcallFor(ST.is64Bit(), {{sXLen, s128}});
// TODO: Support vector version of G_IS_FPCLASS.
getActionDefinitionsBuilder(G_IS_FPCLASS)
.customFor(ST.hasStdExtF(), {{s1, s32}})
.customFor(ST.hasStdExtD(), {{s1, s64}})
.customFor(ST.hasStdExtZfh(), {{s1, s16}})
.lowerFor({{s1, s32}, {s1, s64}});
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor(ST.hasStdExtF(), {s32})
.legalFor(ST.hasStdExtD(), {s64})
.legalFor(ST.hasStdExtZfh(), {s16})
.lowerFor({s32, s64, s128});
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalFor(ST.hasStdExtF(), {{sXLen, s32}})
.legalFor(ST.hasStdExtD(), {{sXLen, s64}})
.legalFor(ST.hasStdExtZfh(), {{sXLen, s16}})
.customFor(ST.is64Bit() && ST.hasStdExtF(), {{s32, s32}})
.customFor(ST.is64Bit() && ST.hasStdExtD(), {{s32, s64}})
.customFor(ST.is64Bit() && ST.hasStdExtZfh(), {{s32, s16}})
.widenScalarToNextPow2(0)
.minScalar(0, s32)
.libcallFor({{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}})
.libcallFor(ST.is64Bit(), {{s32, s128}, {s64, s128}}) // FIXME RV32.
.libcallFor(ST.is64Bit(), {{s128, s32}, {s128, s64}, {s128, s128}});
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalFor(ST.hasStdExtF(), {{s32, sXLen}})
.legalFor(ST.hasStdExtD(), {{s64, sXLen}})
.legalFor(ST.hasStdExtZfh(), {{s16, sXLen}})
.widenScalarToNextPow2(1)
// Promote to XLen if the operation is legal.
.widenScalarIf(
[=, &ST](const LegalityQuery &Query) {
return Query.Types[0].isScalar() && Query.Types[1].isScalar() &&
(Query.Types[1].getSizeInBits() < ST.getXLen()) &&
((ST.hasStdExtF() && Query.Types[0].getSizeInBits() == 32) ||
(ST.hasStdExtD() && Query.Types[0].getSizeInBits() == 64) ||
(ST.hasStdExtZfh() &&
Query.Types[0].getSizeInBits() == 16));
},
LegalizeMutations::changeTo(1, sXLen))
// Otherwise only promote to s32 since we have si libcalls.
.minScalar(1, s32)
.libcallFor({{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}})
.libcallFor(ST.is64Bit(), {{s128, s32}, {s128, s64}}) // FIXME RV32.
.libcallFor(ST.is64Bit(), {{s32, s128}, {s64, s128}, {s128, s128}});
// FIXME: We can do custom inline expansion like SelectionDAG.
getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR, G_FRINT, G_FNEARBYINT,
G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
G_INTRINSIC_ROUNDEVEN})
.legalFor(ST.hasStdExtZfa(), {s32})
.legalFor(ST.hasStdExtZfa() && ST.hasStdExtD(), {s64})
.legalFor(ST.hasStdExtZfa() && ST.hasStdExtZfh(), {s16})
.libcallFor({s32, s64})
.libcallFor(ST.is64Bit(), {s128});
getActionDefinitionsBuilder({G_FMAXIMUM, G_FMINIMUM})
.legalFor(ST.hasStdExtZfa(), {s32})
.legalFor(ST.hasStdExtZfa() && ST.hasStdExtD(), {s64})
.legalFor(ST.hasStdExtZfa() && ST.hasStdExtZfh(), {s16});
getActionDefinitionsBuilder({G_FCOS, G_FSIN, G_FTAN, G_FPOW, G_FLOG, G_FLOG2,
G_FLOG10, G_FEXP, G_FEXP2, G_FEXP10, G_FACOS,
G_FASIN, G_FATAN, G_FATAN2, G_FCOSH, G_FSINH,
G_FTANH})
.libcallFor({s32, s64})
.libcallFor(ST.is64Bit(), {s128});
getActionDefinitionsBuilder({G_FPOWI, G_FLDEXP})
.libcallFor({{s32, s32}, {s64, s32}})
.libcallFor(ST.is64Bit(), {s128, s32});
getActionDefinitionsBuilder(G_VASTART).customFor({p0});
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
getActionDefinitionsBuilder(G_VAARG)
// TODO: Implement narrowScalar and widenScalar for G_VAARG for types
// other than sXLen.
.clampScalar(0, sXLen, sXLen)
.lowerForCartesianProduct({sXLen, p0}, {p0});
getActionDefinitionsBuilder(G_VSCALE)
.clampScalar(0, sXLen, sXLen)
.customFor({sXLen});
auto &SplatActions =
getActionDefinitionsBuilder(G_SPLAT_VECTOR)
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIs(1, sXLen)))
.customIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST), typeIs(1, s1)));
// Handle case of s64 element vectors on RV32. If the subtarget does not have
// f64, then try to lower it to G_SPLAT_VECTOR_SPLIT_64_VL. If the subtarget
// does have f64, then we don't know whether the type is an f64 or an i64,
// so mark the G_SPLAT_VECTOR as legal and decide later what to do with it,
// depending on how the instructions it consumes are legalized. They are not
// legalized yet since legalization is in reverse postorder, so we cannot
// make the decision at this moment.
if (XLen == 32) {
if (ST.hasVInstructionsF64() && ST.hasStdExtD())
SplatActions.legalIf(all(
typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
else if (ST.hasVInstructionsI64())
SplatActions.customIf(all(
typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
}
SplatActions.clampScalar(1, sXLen, sXLen);
LegalityPredicate ExtractSubvecBitcastPred = [=](const LegalityQuery &Query) {
LLT DstTy = Query.Types[0];
LLT SrcTy = Query.Types[1];
return DstTy.getElementType() == LLT::scalar(1) &&
DstTy.getElementCount().getKnownMinValue() >= 8 &&
SrcTy.getElementCount().getKnownMinValue() >= 8;
};
getActionDefinitionsBuilder(G_EXTRACT_SUBVECTOR)
// We don't have the ability to slide mask vectors down indexed by their
// i1 elements; the smallest we can do is i8. Often we are able to bitcast
// to equivalent i8 vectors.
.bitcastIf(
all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST), ExtractSubvecBitcastPred),
[=](const LegalityQuery &Query) {
LLT CastTy = LLT::vector(
Query.Types[0].getElementCount().divideCoefficientBy(8), 8);
return std::pair(0, CastTy);
})
.customIf(LegalityPredicates::any(
all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST)),
all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST))));
getActionDefinitionsBuilder(G_INSERT_SUBVECTOR)
.customIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST)))
.customIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)));
getLegacyLegalizerInfo().computeTables();
verify(*ST.getInstrInfo());
}
bool RISCVLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
Intrinsic::ID IntrinsicID = cast<GIntrinsic>(MI).getIntrinsicID();
switch (IntrinsicID) {
default:
return false;
case Intrinsic::vacopy: {
// vacopy arguments must be legal because of the intrinsic signature.
// No need to check here.
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
MachineFunction &MF = *MI.getMF();
const DataLayout &DL = MIRBuilder.getDataLayout();
LLVMContext &Ctx = MF.getFunction().getContext();
Register DstLst = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(DstLst);
// Load the source va_list
Align Alignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx));
MachineMemOperand *LoadMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, Alignment);
auto Tmp = MIRBuilder.buildLoad(PtrTy, MI.getOperand(2), *LoadMMO);
// Store the result in the destination va_list
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, Alignment);
MIRBuilder.buildStore(Tmp, DstLst, *StoreMMO);
MI.eraseFromParent();
return true;
}
}
}
bool RISCVLegalizerInfo::legalizeVAStart(MachineInstr &MI,
MachineIRBuilder &MIRBuilder) const {
// Stores the address of the VarArgsFrameIndex slot into the memory location
assert(MI.getOpcode() == TargetOpcode::G_VASTART);
MachineFunction *MF = MI.getParent()->getParent();
RISCVMachineFunctionInfo *FuncInfo = MF->getInfo<RISCVMachineFunctionInfo>();
int FI = FuncInfo->getVarArgsFrameIndex();
LLT AddrTy = MIRBuilder.getMRI()->getType(MI.getOperand(0).getReg());
auto FINAddr = MIRBuilder.buildFrameIndex(AddrTy, FI);
assert(MI.hasOneMemOperand());
MIRBuilder.buildStore(FINAddr, MI.getOperand(0).getReg(),
*MI.memoperands()[0]);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeBRJT(MachineInstr &MI,
MachineIRBuilder &MIRBuilder) const {
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
auto &MF = *MI.getParent()->getParent();
const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
unsigned EntrySize = MJTI->getEntrySize(MF.getDataLayout());
Register PtrReg = MI.getOperand(0).getReg();
LLT PtrTy = MRI.getType(PtrReg);
Register IndexReg = MI.getOperand(2).getReg();
LLT IndexTy = MRI.getType(IndexReg);
if (!isPowerOf2_32(EntrySize))
return false;
auto ShiftAmt = MIRBuilder.buildConstant(IndexTy, Log2_32(EntrySize));
IndexReg = MIRBuilder.buildShl(IndexTy, IndexReg, ShiftAmt).getReg(0);
auto Addr = MIRBuilder.buildPtrAdd(PtrTy, PtrReg, IndexReg);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getJumpTable(MF), MachineMemOperand::MOLoad,
EntrySize, Align(MJTI->getEntryAlignment(MF.getDataLayout())));
Register TargetReg;
switch (MJTI->getEntryKind()) {
default:
return false;
case MachineJumpTableInfo::EK_LabelDifference32: {
// For PIC, the sequence is:
// BRIND(load(Jumptable + index) + RelocBase)
// RelocBase can be JumpTable, GOT or some sort of global base.
unsigned LoadOpc =
STI.is64Bit() ? TargetOpcode::G_SEXTLOAD : TargetOpcode::G_LOAD;
auto Load = MIRBuilder.buildLoadInstr(LoadOpc, IndexTy, Addr, *MMO);
TargetReg = MIRBuilder.buildPtrAdd(PtrTy, PtrReg, Load).getReg(0);
break;
}
case MachineJumpTableInfo::EK_Custom32: {
auto Load = MIRBuilder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, IndexTy,
Addr, *MMO);
TargetReg = MIRBuilder.buildIntToPtr(PtrTy, Load).getReg(0);
break;
}
case MachineJumpTableInfo::EK_BlockAddress:
TargetReg = MIRBuilder.buildLoad(PtrTy, Addr, *MMO).getReg(0);
break;
}
MIRBuilder.buildBrIndirect(TargetReg);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::shouldBeInConstantPool(const APInt &APImm,
bool ShouldOptForSize) const {
assert(APImm.getBitWidth() == 32 || APImm.getBitWidth() == 64);
int64_t Imm = APImm.getSExtValue();
// All simm32 constants should be handled by isel.
// NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
// this check redundant, but small immediates are common so this check
// should have better compile time.
if (isInt<32>(Imm))
return false;
// We only need to cost the immediate, if constant pool lowering is enabled.
if (!STI.useConstantPoolForLargeInts())
return false;
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Imm, STI);
if (Seq.size() <= STI.getMaxBuildIntsCost())
return false;
// Optimizations below are disabled for opt size. If we're optimizing for
// size, use a constant pool.
if (ShouldOptForSize)
return true;
//
// Special case. See if we can build the constant as (ADD (SLLI X, C), X) do
// that if it will avoid a constant pool.
// It will require an extra temporary register though.
// If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where
// low and high 32 bits are the same and bit 31 and 63 are set.
unsigned ShiftAmt, AddOpc;
RISCVMatInt::InstSeq SeqLo =
RISCVMatInt::generateTwoRegInstSeq(Imm, STI, ShiftAmt, AddOpc);
return !(!SeqLo.empty() && (SeqLo.size() + 2) <= STI.getMaxBuildIntsCost());
}
bool RISCVLegalizerInfo::legalizeVScale(MachineInstr &MI,
MachineIRBuilder &MIB) const {
const LLT XLenTy(STI.getXLenVT());
Register Dst = MI.getOperand(0).getReg();
// We define our scalable vector types for lmul=1 to use a 64 bit known
// minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
// vscale as VLENB / 8.
static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
if (STI.getRealMinVLen() < RISCV::RVVBitsPerBlock)
// Support for VLEN==32 is incomplete.
return false;
// We assume VLENB is a multiple of 8. We manually choose the best shift
// here because SimplifyDemandedBits isn't always able to simplify it.
uint64_t Val = MI.getOperand(1).getCImm()->getZExtValue();
if (isPowerOf2_64(Val)) {
uint64_t Log2 = Log2_64(Val);
if (Log2 < 3) {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildLShr(Dst, VLENB, MIB.buildConstant(XLenTy, 3 - Log2));
} else if (Log2 > 3) {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildShl(Dst, VLENB, MIB.buildConstant(XLenTy, Log2 - 3));
} else {
MIB.buildInstr(RISCV::G_READ_VLENB, {Dst}, {});
}
} else if ((Val % 8) == 0) {
// If the multiplier is a multiple of 8, scale it down to avoid needing
// to shift the VLENB value.
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildMul(Dst, VLENB, MIB.buildConstant(XLenTy, Val / 8));
} else {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
auto VScale = MIB.buildLShr(XLenTy, VLENB, MIB.buildConstant(XLenTy, 3));
MIB.buildMul(Dst, VScale, MIB.buildConstant(XLenTy, Val));
}
MI.eraseFromParent();
return true;
}
// Custom-lower extensions from mask vectors by using a vselect either with 1
// for zero/any-extension or -1 for sign-extension:
// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
// Note that any-extension is lowered identically to zero-extension.
bool RISCVLegalizerInfo::legalizeExt(MachineInstr &MI,
MachineIRBuilder &MIB) const {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_SEXT ||
Opc == TargetOpcode::G_ANYEXT);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
int64_t ExtTrueVal = Opc == TargetOpcode::G_SEXT ? -1 : 1;
LLT DstEltTy = DstTy.getElementType();
auto SplatZero = MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, 0));
auto SplatTrue =
MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, ExtTrueVal));
MIB.buildSelect(Dst, Src, SplatTrue, SplatZero);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeLoadStore(MachineInstr &MI,
LegalizerHelper &Helper,
MachineIRBuilder &MIB) const {
assert((isa<GLoad>(MI) || isa<GStore>(MI)) &&
"Machine instructions must be Load/Store.");
MachineRegisterInfo &MRI = *MIB.getMRI();
MachineFunction *MF = MI.getMF();
const DataLayout &DL = MIB.getDataLayout();
LLVMContext &Ctx = MF->getFunction().getContext();
Register DstReg = MI.getOperand(0).getReg();
LLT DataTy = MRI.getType(DstReg);
if (!DataTy.isVector())
return false;
if (!MI.hasOneMemOperand())
return false;
MachineMemOperand *MMO = *MI.memoperands_begin();
const auto *TLI = STI.getTargetLowering();
EVT VT = EVT::getEVT(getTypeForLLT(DataTy, Ctx));
if (TLI->allowsMemoryAccessForAlignment(Ctx, DL, VT, *MMO))
return true;
unsigned EltSizeBits = DataTy.getScalarSizeInBits();
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
"Unexpected unaligned RVV load type");
// Calculate the new vector type with i8 elements
unsigned NumElements =
DataTy.getElementCount().getKnownMinValue() * (EltSizeBits / 8);
LLT NewDataTy = LLT::scalable_vector(NumElements, 8);
Helper.bitcast(MI, 0, NewDataTy);
return true;
}
/// Return the type of the mask type suitable for masking the provided
/// vector type. This is simply an i1 element type vector of the same
/// (possibly scalable) length.
static LLT getMaskTypeFor(LLT VecTy) {
assert(VecTy.isVector());
ElementCount EC = VecTy.getElementCount();
return LLT::vector(EC, LLT::scalar(1));
}
/// Creates an all ones mask suitable for masking a vector of type VecTy with
/// vector length VL.
static MachineInstrBuilder buildAllOnesMask(LLT VecTy, const SrcOp &VL,
MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
LLT MaskTy = getMaskTypeFor(VecTy);
return MIB.buildInstr(RISCV::G_VMSET_VL, {MaskTy}, {VL});
}
/// Gets the two common "VL" operands: an all-ones mask and the vector length.
/// VecTy is a scalable vector type.
static std::pair<MachineInstrBuilder, MachineInstrBuilder>
buildDefaultVLOps(LLT VecTy, MachineIRBuilder &MIB, MachineRegisterInfo &MRI) {
assert(VecTy.isScalableVector() && "Expecting scalable container type");
const RISCVSubtarget &STI = MIB.getMF().getSubtarget<RISCVSubtarget>();
LLT XLenTy(STI.getXLenVT());
auto VL = MIB.buildConstant(XLenTy, -1);
auto Mask = buildAllOnesMask(VecTy, VL, MIB, MRI);
return {Mask, VL};
}
static MachineInstrBuilder
buildSplatPartsS64WithVL(const DstOp &Dst, const SrcOp &Passthru, Register Lo,
Register Hi, const SrcOp &VL, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
// TODO: If the Hi bits of the splat are undefined, then it's fine to just
// splat Lo even if it might be sign extended. I don't think we have
// introduced a case where we're build a s64 where the upper bits are undef
// yet.
// Fall back to a stack store and stride x0 vector load.
// TODO: need to lower G_SPLAT_VECTOR_SPLIT_I64. This is done in
// preprocessDAG in SDAG.
return MIB.buildInstr(RISCV::G_SPLAT_VECTOR_SPLIT_I64_VL, {Dst},
{Passthru, Lo, Hi, VL});
}
static MachineInstrBuilder
buildSplatSplitS64WithVL(const DstOp &Dst, const SrcOp &Passthru,
const SrcOp &Scalar, const SrcOp &VL,
MachineIRBuilder &MIB, MachineRegisterInfo &MRI) {
assert(Scalar.getLLTTy(MRI) == LLT::scalar(64) && "Unexpected VecTy!");
auto Unmerge = MIB.buildUnmerge(LLT::scalar(32), Scalar);
return buildSplatPartsS64WithVL(Dst, Passthru, Unmerge.getReg(0),
Unmerge.getReg(1), VL, MIB, MRI);
}
// Lower splats of s1 types to G_ICMP. For each mask vector type, we have a
// legal equivalently-sized i8 type, so we can use that as a go-between.
// Splats of s1 types that have constant value can be legalized as VMSET_VL or
// VMCLR_VL.
bool RISCVLegalizerInfo::legalizeSplatVector(MachineInstr &MI,
MachineIRBuilder &MIB) const {
assert(MI.getOpcode() == TargetOpcode::G_SPLAT_VECTOR);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = MI.getOperand(0).getReg();
Register SplatVal = MI.getOperand(1).getReg();
LLT VecTy = MRI.getType(Dst);
LLT XLenTy(STI.getXLenVT());
// Handle case of s64 element vectors on rv32
if (XLenTy.getSizeInBits() == 32 &&
VecTy.getElementType().getSizeInBits() == 64) {
auto [_, VL] = buildDefaultVLOps(MRI.getType(Dst), MIB, MRI);
buildSplatSplitS64WithVL(Dst, MIB.buildUndef(VecTy), SplatVal, VL, MIB,
MRI);
MI.eraseFromParent();
return true;
}
// All-zeros or all-ones splats are handled specially.
MachineInstr &SplatValMI = *MRI.getVRegDef(SplatVal);
if (isAllOnesOrAllOnesSplat(SplatValMI, MRI)) {
auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
MIB.buildInstr(RISCV::G_VMSET_VL, {Dst}, {VL});
MI.eraseFromParent();
return true;
}
if (isNullOrNullSplat(SplatValMI, MRI)) {
auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
MIB.buildInstr(RISCV::G_VMCLR_VL, {Dst}, {VL});
MI.eraseFromParent();
return true;
}
// Handle non-constant mask splat (i.e. not sure if it's all zeros or all
// ones) by promoting it to an s8 splat.
LLT InterEltTy = LLT::scalar(8);
LLT InterTy = VecTy.changeElementType(InterEltTy);
auto ZExtSplatVal = MIB.buildZExt(InterEltTy, SplatVal);
auto And =
MIB.buildAnd(InterEltTy, ZExtSplatVal, MIB.buildConstant(InterEltTy, 1));
auto LHS = MIB.buildSplatVector(InterTy, And);
auto ZeroSplat =
MIB.buildSplatVector(InterTy, MIB.buildConstant(InterEltTy, 0));
MIB.buildICmp(CmpInst::Predicate::ICMP_NE, Dst, LHS, ZeroSplat);
MI.eraseFromParent();
return true;
}
static LLT getLMUL1Ty(LLT VecTy) {
assert(VecTy.getElementType().getSizeInBits() <= 64 &&
"Unexpected vector LLT");
return LLT::scalable_vector(RISCV::RVVBitsPerBlock /
VecTy.getElementType().getSizeInBits(),
VecTy.getElementType());
}
bool RISCVLegalizerInfo::legalizeExtractSubvector(MachineInstr &MI,
MachineIRBuilder &MIB) const {
GExtractSubvector &ES = cast<GExtractSubvector>(MI);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = ES.getReg(0);
Register Src = ES.getSrcVec();
uint64_t Idx = ES.getIndexImm();
// With an index of 0 this is a cast-like subvector, which can be performed
// with subregister operations.
if (Idx == 0)
return true;
LLT LitTy = MRI.getType(Dst);
LLT BigTy = MRI.getType(Src);
if (LitTy.getElementType() == LLT::scalar(1)) {
// We can't slide this mask vector up indexed by its i1 elements.
// This poses a problem when we wish to insert a scalable vector which
// can't be re-expressed as a larger type. Just choose the slow path and
// extend to a larger type, then truncate back down.
LLT ExtBigTy = BigTy.changeElementType(LLT::scalar(8));
LLT ExtLitTy = LitTy.changeElementType(LLT::scalar(8));
auto BigZExt = MIB.buildZExt(ExtBigTy, Src);
auto ExtractZExt = MIB.buildExtractSubvector(ExtLitTy, BigZExt, Idx);
auto SplatZero = MIB.buildSplatVector(
ExtLitTy, MIB.buildConstant(ExtLitTy.getElementType(), 0));
MIB.buildICmp(CmpInst::Predicate::ICMP_NE, Dst, ExtractZExt, SplatZero);
MI.eraseFromParent();
return true;
}
// extract_subvector scales the index by vscale if the subvector is scalable,
// and decomposeSubvectorInsertExtractToSubRegs takes this into account.
const RISCVRegisterInfo *TRI = STI.getRegisterInfo();
MVT LitTyMVT = getMVTForLLT(LitTy);
auto Decompose =
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
getMVTForLLT(BigTy), LitTyMVT, Idx, TRI);
unsigned RemIdx = Decompose.second;
// If the Idx has been completely eliminated then this is a subvector extract
// which naturally aligns to a vector register. These can easily be handled
// using subregister manipulation.
if (RemIdx == 0)
return true;
// Else LitTy is M1 or smaller and may need to be slid down: if LitTy
// was > M1 then the index would need to be a multiple of VLMAX, and so would
// divide exactly.
assert(
RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(LitTyMVT)).second ||
RISCVTargetLowering::getLMUL(LitTyMVT) == RISCVII::VLMUL::LMUL_1);
// If the vector type is an LMUL-group type, extract a subvector equal to the
// nearest full vector register type.
LLT InterLitTy = BigTy;
Register Vec = Src;
if (TypeSize::isKnownGT(BigTy.getSizeInBits(),
getLMUL1Ty(BigTy).getSizeInBits())) {
// If BigTy has an LMUL > 1, then LitTy should have a smaller LMUL, and
// we should have successfully decomposed the extract into a subregister.
assert(Decompose.first != RISCV::NoSubRegister);
InterLitTy = getLMUL1Ty(BigTy);
// SDAG builds a TargetExtractSubreg. We cannot create a a Copy with SubReg
// specified on the source Register (the equivalent) since generic virtual
// register does not allow subregister index.
Vec = MIB.buildExtractSubvector(InterLitTy, Src, Idx - RemIdx).getReg(0);
}
// Slide this vector register down by the desired number of elements in order
// to place the desired subvector starting at element 0.
const LLT XLenTy(STI.getXLenVT());
auto SlidedownAmt = MIB.buildVScale(XLenTy, RemIdx);
auto [Mask, VL] = buildDefaultVLOps(LitTy, MIB, MRI);
uint64_t Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
auto Slidedown = MIB.buildInstr(
RISCV::G_VSLIDEDOWN_VL, {InterLitTy},
{MIB.buildUndef(InterLitTy), Vec, SlidedownAmt, Mask, VL, Policy});
// Now the vector is in the right position, extract our final subvector. This
// should resolve to a COPY.
MIB.buildExtractSubvector(Dst, Slidedown, 0);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeInsertSubvector(MachineInstr &MI,
LegalizerHelper &Helper,
MachineIRBuilder &MIB) const {
GInsertSubvector &IS = cast<GInsertSubvector>(MI);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = IS.getReg(0);
Register BigVec = IS.getBigVec();
Register LitVec = IS.getSubVec();
uint64_t Idx = IS.getIndexImm();
LLT BigTy = MRI.getType(BigVec);
LLT LitTy = MRI.getType(LitVec);
if (Idx == 0 ||
MRI.getVRegDef(BigVec)->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
return true;
// We don't have the ability to slide mask vectors up indexed by their i1
// elements; the smallest we can do is i8. Often we are able to bitcast to
// equivalent i8 vectors. Otherwise, we can must zeroextend to equivalent i8
// vectors and truncate down after the insert.
if (LitTy.getElementType() == LLT::scalar(1)) {
auto BigTyMinElts = BigTy.getElementCount().getKnownMinValue();
auto LitTyMinElts = LitTy.getElementCount().getKnownMinValue();
if (BigTyMinElts >= 8 && LitTyMinElts >= 8)
return Helper.bitcast(
IS, 0,
LLT::vector(BigTy.getElementCount().divideCoefficientBy(8), 8));
// We can't slide this mask vector up indexed by its i1 elements.
// This poses a problem when we wish to insert a scalable vector which
// can't be re-expressed as a larger type. Just choose the slow path and
// extend to a larger type, then truncate back down.
LLT ExtBigTy = BigTy.changeElementType(LLT::scalar(8));
return Helper.widenScalar(IS, 0, ExtBigTy);
}
const RISCVRegisterInfo *TRI = STI.getRegisterInfo();
unsigned SubRegIdx, RemIdx;
std::tie(SubRegIdx, RemIdx) =
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
getMVTForLLT(BigTy), getMVTForLLT(LitTy), Idx, TRI);
TypeSize VecRegSize = TypeSize::getScalable(RISCV::RVVBitsPerBlock);
assert(isPowerOf2_64(
STI.expandVScale(LitTy.getSizeInBits()).getKnownMinValue()));
bool ExactlyVecRegSized =
STI.expandVScale(LitTy.getSizeInBits())
.isKnownMultipleOf(STI.expandVScale(VecRegSize));
// If the Idx has been completely eliminated and this subvector's size is a
// vector register or a multiple thereof, or the surrounding elements are
// undef, then this is a subvector insert which naturally aligns to a vector
// register. These can easily be handled using subregister manipulation.
if (RemIdx == 0 && ExactlyVecRegSized)
return true;
// If the subvector is smaller than a vector register, then the insertion
// must preserve the undisturbed elements of the register. We do this by
// lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
// (which resolves to a subregister copy), performing a VSLIDEUP to place the
// subvector within the vector register, and an INSERT_SUBVECTOR of that
// LMUL=1 type back into the larger vector (resolving to another subregister
// operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
// to avoid allocating a large register group to hold our subvector.
// VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
// OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
// (in our case undisturbed). This means we can set up a subvector insertion
// where OFFSET is the insertion offset, and the VL is the OFFSET plus the
// size of the subvector.
const LLT XLenTy(STI.getXLenVT());
LLT InterLitTy = BigTy;
Register AlignedExtract = BigVec;
unsigned AlignedIdx = Idx - RemIdx;
if (TypeSize::isKnownGT(BigTy.getSizeInBits(),
getLMUL1Ty(BigTy).getSizeInBits())) {
InterLitTy = getLMUL1Ty(BigTy);
// Extract a subvector equal to the nearest full vector register type. This
// should resolve to a G_EXTRACT on a subreg.
AlignedExtract =
MIB.buildExtractSubvector(InterLitTy, BigVec, AlignedIdx).getReg(0);
}
auto Insert = MIB.buildInsertSubvector(InterLitTy, MIB.buildUndef(InterLitTy),
LitVec, 0);
auto [Mask, _] = buildDefaultVLOps(BigTy, MIB, MRI);
auto VL = MIB.buildVScale(XLenTy, LitTy.getElementCount().getKnownMinValue());
// If we're inserting into the lowest elements, use a tail undisturbed
// vmv.v.v.
MachineInstrBuilder Inserted;
bool NeedInsertSubvec =
TypeSize::isKnownGT(BigTy.getSizeInBits(), InterLitTy.getSizeInBits());
Register InsertedDst =
NeedInsertSubvec ? MRI.createGenericVirtualRegister(InterLitTy) : Dst;
if (RemIdx == 0) {
Inserted = MIB.buildInstr(RISCV::G_VMV_V_V_VL, {InsertedDst},
{AlignedExtract, Insert, VL});
} else {
auto SlideupAmt = MIB.buildVScale(XLenTy, RemIdx);
// Construct the vector length corresponding to RemIdx + length(LitTy).
VL = MIB.buildAdd(XLenTy, SlideupAmt, VL);
// Use tail agnostic policy if we're inserting over InterLitTy's tail.
ElementCount EndIndex =
ElementCount::getScalable(RemIdx) + LitTy.getElementCount();
uint64_t Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
if (STI.expandVScale(EndIndex) ==
STI.expandVScale(InterLitTy.getElementCount()))
Policy = RISCVII::TAIL_AGNOSTIC;
Inserted =
MIB.buildInstr(RISCV::G_VSLIDEUP_VL, {InsertedDst},
{AlignedExtract, Insert, SlideupAmt, Mask, VL, Policy});
}
// If required, insert this subvector back into the correct vector register.
// This should resolve to an INSERT_SUBREG instruction.
if (NeedInsertSubvec)
MIB.buildInsertSubvector(Dst, BigVec, Inserted, AlignedIdx);
MI.eraseFromParent();
return true;
}
static unsigned getRISCVWOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode");
case TargetOpcode::G_ASHR:
return RISCV::G_SRAW;
case TargetOpcode::G_LSHR:
return RISCV::G_SRLW;
case TargetOpcode::G_SHL:
return RISCV::G_SLLW;
case TargetOpcode::G_SDIV:
return RISCV::G_DIVW;
case TargetOpcode::G_UDIV:
return RISCV::G_DIVUW;
case TargetOpcode::G_UREM:
return RISCV::G_REMUW;
case TargetOpcode::G_ROTL:
return RISCV::G_ROLW;
case TargetOpcode::G_ROTR:
return RISCV::G_RORW;
case TargetOpcode::G_CTLZ:
return RISCV::G_CLZW;
case TargetOpcode::G_CTTZ:
return RISCV::G_CTZW;
case TargetOpcode::G_FPTOSI:
return RISCV::G_FCVT_W_RV64;
case TargetOpcode::G_FPTOUI:
return RISCV::G_FCVT_WU_RV64;
}
}
bool RISCVLegalizerInfo::legalizeCustom(
LegalizerHelper &Helper, MachineInstr &MI,
LostDebugLocObserver &LocObserver) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
MachineFunction &MF = *MI.getParent()->getParent();
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_ABS:
return Helper.lowerAbsToMaxNeg(MI);
// TODO: G_FCONSTANT
case TargetOpcode::G_CONSTANT: {
const Function &F = MF.getFunction();
// TODO: if PSI and BFI are present, add " ||
// llvm::shouldOptForSize(*CurMBB, PSI, BFI)".
bool ShouldOptForSize = F.hasOptSize() || F.hasMinSize();
const ConstantInt *ConstVal = MI.getOperand(1).getCImm();
if (!shouldBeInConstantPool(ConstVal->getValue(), ShouldOptForSize))
return true;
return Helper.lowerConstant(MI);
}
case TargetOpcode::G_SUB:
case TargetOpcode::G_ADD: {
Helper.Observer.changingInstr(MI);
Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ANYEXT);
Register DstALU = MRI.createGenericVirtualRegister(sXLen);
MachineOperand &MO = MI.getOperand(0);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
auto DstSext = MIRBuilder.buildSExtInReg(sXLen, DstALU, 32);
MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {MO}, {DstSext});
MO.setReg(DstALU);
Helper.Observer.changedInstr(MI);
return true;
}
case TargetOpcode::G_SEXT_INREG: {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
int64_t SizeInBits = MI.getOperand(2).getImm();
// Source size of 32 is sext.w.
if (DstTy.getSizeInBits() == 64 && SizeInBits == 32)
return true;
if (STI.hasStdExtZbb() && (SizeInBits == 8 || SizeInBits == 16))
return true;
return Helper.lower(MI, 0, /* Unused hint type */ LLT()) ==
LegalizerHelper::Legalized;
}
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_SHL: {
if (getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI)) {
// We don't need a custom node for shift by constant. Just widen the
// source and the shift amount.
unsigned ExtOpc = TargetOpcode::G_ANYEXT;
if (MI.getOpcode() == TargetOpcode::G_ASHR)
ExtOpc = TargetOpcode::G_SEXT;
else if (MI.getOpcode() == TargetOpcode::G_LSHR)
ExtOpc = TargetOpcode::G_ZEXT;
Helper.Observer.changingInstr(MI);
Helper.widenScalarSrc(MI, sXLen, 1, ExtOpc);
Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ZEXT);
Helper.widenScalarDst(MI, sXLen);
Helper.Observer.changedInstr(MI);
return true;
}
Helper.Observer.changingInstr(MI);
Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ANYEXT);
Helper.widenScalarDst(MI, sXLen);
MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
Helper.Observer.changedInstr(MI);
return true;
}
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UDIV:
case TargetOpcode::G_UREM:
case TargetOpcode::G_ROTL:
case TargetOpcode::G_ROTR: {
Helper.Observer.changingInstr(MI);
Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
Helper.widenScalarSrc(MI, sXLen, 2, TargetOpcode::G_ANYEXT);
Helper.widenScalarDst(MI, sXLen);
MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
Helper.Observer.changedInstr(MI);
return true;
}
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTTZ: {
Helper.Observer.changingInstr(MI);
Helper.widenScalarSrc(MI, sXLen, 1, TargetOpcode::G_ANYEXT);
Helper.widenScalarDst(MI, sXLen);
MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
Helper.Observer.changedInstr(MI);
return true;
}
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI: {
Helper.Observer.changingInstr(MI);
Helper.widenScalarDst(MI, sXLen);
MI.setDesc(MIRBuilder.getTII().get(getRISCVWOpcode(MI.getOpcode())));
MI.addOperand(MachineOperand::CreateImm(RISCVFPRndMode::RTZ));
Helper.Observer.changedInstr(MI);
return true;
}
case TargetOpcode::G_IS_FPCLASS: {
Register GISFPCLASS = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const MachineOperand &ImmOp = MI.getOperand(2);
MachineIRBuilder MIB(MI);
// Turn LLVM IR's floating point classes to that in RISC-V,
// by simply rotating the 10-bit immediate right by two bits.
APInt GFpClassImm(10, static_cast<uint64_t>(ImmOp.getImm()));
auto FClassMask = MIB.buildConstant(sXLen, GFpClassImm.rotr(2).zext(XLen));
auto ConstZero = MIB.buildConstant(sXLen, 0);
auto GFClass = MIB.buildInstr(RISCV::G_FCLASS, {sXLen}, {Src});
auto And = MIB.buildAnd(sXLen, GFClass, FClassMask);
MIB.buildICmp(CmpInst::ICMP_NE, GISFPCLASS, And, ConstZero);
MI.eraseFromParent();
return true;
}
case TargetOpcode::G_BRJT:
return legalizeBRJT(MI, MIRBuilder);
case TargetOpcode::G_VASTART:
return legalizeVAStart(MI, MIRBuilder);
case TargetOpcode::G_VSCALE:
return legalizeVScale(MI, MIRBuilder);
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ANYEXT:
return legalizeExt(MI, MIRBuilder);
case TargetOpcode::G_SPLAT_VECTOR:
return legalizeSplatVector(MI, MIRBuilder);
case TargetOpcode::G_EXTRACT_SUBVECTOR:
return legalizeExtractSubvector(MI, MIRBuilder);
case TargetOpcode::G_INSERT_SUBVECTOR:
return legalizeInsertSubvector(MI, Helper, MIRBuilder);
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
return legalizeLoadStore(MI, Helper, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}
|