| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 
 | //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SystemZTargetMachine.h"
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "SystemZ.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZMachineScheduler.h"
#include "SystemZTargetObjectFile.h"
#include "SystemZTargetTransformInfo.h"
#include "TargetInfo/SystemZTargetInfo.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Transforms/Scalar.h"
#include <memory>
#include <optional>
#include <string>
using namespace llvm;
static cl::opt<bool> EnableMachineCombinerPass(
    "systemz-machine-combiner",
    cl::desc("Enable the machine combiner pass"),
    cl::init(true), cl::Hidden);
// NOLINTNEXTLINE(readability-identifier-naming)
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
  // Register the target.
  RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
  auto &PR = *PassRegistry::getPassRegistry();
  initializeSystemZElimComparePass(PR);
  initializeSystemZShortenInstPass(PR);
  initializeSystemZLongBranchPass(PR);
  initializeSystemZLDCleanupPass(PR);
  initializeSystemZShortenInstPass(PR);
  initializeSystemZPostRewritePass(PR);
  initializeSystemZTDCPassPass(PR);
  initializeSystemZDAGToDAGISelLegacyPass(PR);
}
static std::string computeDataLayout(const Triple &TT) {
  std::string Ret;
  // Big endian.
  Ret += "E";
  // Data mangling.
  Ret += DataLayout::getManglingComponent(TT);
  // Special features for z/OS.
  if (TT.isOSzOS()) {
    if (TT.isArch64Bit()) {
      // Custom address space for ptr32.
      Ret += "-p1:32:32";
    }
  }
  // Make sure that global data has at least 16 bits of alignment by
  // default, so that we can refer to it using LARL.  We don't have any
  // special requirements for stack variables though.
  Ret += "-i1:8:16-i8:8:16";
  // 64-bit integers are naturally aligned.
  Ret += "-i64:64";
  // 128-bit floats are aligned only to 64 bits.
  Ret += "-f128:64";
  // The DataLayout string always holds a vector alignment of 64 bits, see
  // comment in clang/lib/Basic/Targets/SystemZ.h.
  Ret += "-v128:64";
  // We prefer 16 bits of aligned for all globals; see above.
  Ret += "-a:8:16";
  // Integer registers are 32 or 64 bits.
  Ret += "-n32:64";
  return Ret;
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  if (TT.isOSzOS())
    return std::make_unique<TargetLoweringObjectFileGOFF>();
  // Note: Some times run with -triple s390x-unknown.
  // In this case, default to ELF unless z/OS specifically provided.
  return std::make_unique<SystemZELFTargetObjectFile>();
}
static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
  // Static code is suitable for use in a dynamic executable; there is no
  // separate DynamicNoPIC model.
  if (!RM || *RM == Reloc::DynamicNoPIC)
    return Reloc::Static;
  return *RM;
}
// For SystemZ we define the models as follows:
//
// Small:  BRASL can call any function and will use a stub if necessary.
//         Locally-binding symbols will always be in range of LARL.
//
// Medium: BRASL can call any function and will use a stub if necessary.
//         GOT slots and locally-defined text will always be in range
//         of LARL, but other symbols might not be.
//
// Large:  Equivalent to Medium for now.
//
// Kernel: Equivalent to Medium for now.
//
// This means that any PIC module smaller than 4GB meets the
// requirements of Small, so Small seems like the best default there.
//
// All symbols bind locally in a non-PIC module, so the choice is less
// obvious.  There are two cases:
//
// - When creating an executable, PLTs and copy relocations allow
//   us to treat external symbols as part of the executable.
//   Any executable smaller than 4GB meets the requirements of Small,
//   so that seems like the best default.
//
// - When creating JIT code, stubs will be in range of BRASL if the
//   image is less than 4GB in size.  GOT entries will likewise be
//   in range of LARL.  However, the JIT environment has no equivalent
//   of copy relocs, so locally-binding data symbols might not be in
//   the range of LARL.  We need the Medium model in that case.
static CodeModel::Model
getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
                             Reloc::Model RM, bool JIT) {
  if (CM) {
    if (*CM == CodeModel::Tiny)
      report_fatal_error("Target does not support the tiny CodeModel", false);
    if (*CM == CodeModel::Kernel)
      report_fatal_error("Target does not support the kernel CodeModel", false);
    return *CM;
  }
  if (JIT)
    return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
  return CodeModel::Small;
}
SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           std::optional<Reloc::Model> RM,
                                           std::optional<CodeModel::Model> CM,
                                           CodeGenOptLevel OL, bool JIT)
    : CodeGenTargetMachineImpl(
          T, computeDataLayout(TT), TT, CPU, FS, Options,
          getEffectiveRelocModel(RM),
          getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
          OL),
      TLOF(createTLOF(getTargetTriple())) {
  initAsmInfo();
}
SystemZTargetMachine::~SystemZTargetMachine() = default;
const SystemZSubtarget *
SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute TuneAttr = F.getFnAttribute("tune-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");
  std::string CPU =
      CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
  std::string TuneCPU =
      TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
  std::string FS =
      FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
  // FIXME: This is related to the code below to reset the target options,
  // we need to know whether the soft float and backchain flags are set on the
  // function, so we can enable them as subtarget features.
  bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
  if (SoftFloat)
    FS += FS.empty() ? "+soft-float" : ",+soft-float";
  bool BackChain = F.hasFnAttribute("backchain");
  if (BackChain)
    FS += FS.empty() ? "+backchain" : ",+backchain";
  auto &I = SubtargetMap[CPU + TuneCPU + FS];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
                                           *this);
  }
  return I.get();
}
namespace {
/// SystemZ Code Generator Pass Configuration Options.
class SystemZPassConfig : public TargetPassConfig {
public:
  SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {}
  SystemZTargetMachine &getSystemZTargetMachine() const {
    return getTM<SystemZTargetMachine>();
  }
  ScheduleDAGInstrs *
  createPostMachineScheduler(MachineSchedContext *C) const override {
    return new ScheduleDAGMI(C,
                             std::make_unique<SystemZPostRASchedStrategy>(C),
                             /*RemoveKillFlags=*/true);
  }
  void addIRPasses() override;
  bool addInstSelector() override;
  bool addILPOpts() override;
  void addPreRegAlloc() override;
  void addPostRewrite() override;
  void addPostRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
};
} // end anonymous namespace
void SystemZPassConfig::addIRPasses() {
  if (getOptLevel() != CodeGenOptLevel::None) {
    addPass(createSystemZTDCPass());
    addPass(createLoopDataPrefetchPass());
  }
  addPass(createAtomicExpandLegacyPass());
  TargetPassConfig::addIRPasses();
}
bool SystemZPassConfig::addInstSelector() {
  addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
  if (getOptLevel() != CodeGenOptLevel::None)
    addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
  return false;
}
bool SystemZPassConfig::addILPOpts() {
  addPass(&EarlyIfConverterLegacyID);
  if (EnableMachineCombinerPass)
    addPass(&MachineCombinerID);
  return true;
}
void SystemZPassConfig::addPreRegAlloc() {
  addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
}
void SystemZPassConfig::addPostRewrite() {
  addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
}
void SystemZPassConfig::addPostRegAlloc() {
  // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
  // is not called).
  if (getOptLevel() == CodeGenOptLevel::None)
    addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
}
void SystemZPassConfig::addPreSched2() {
  if (getOptLevel() != CodeGenOptLevel::None)
    addPass(&IfConverterID);
}
void SystemZPassConfig::addPreEmitPass() {
  // Do instruction shortening before compare elimination because some
  // vector instructions will be shortened into opcodes that compare
  // elimination recognizes.
  if (getOptLevel() != CodeGenOptLevel::None)
    addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
  // We eliminate comparisons here rather than earlier because some
  // transformations can change the set of available CC values and we
  // generally want those transformations to have priority.  This is
  // especially true in the commonest case where the result of the comparison
  // is used by a single in-range branch instruction, since we will then
  // be able to fuse the compare and the branch instead.
  //
  // For example, two-address NILF can sometimes be converted into
  // three-address RISBLG.  NILF produces a CC value that indicates whether
  // the low word is zero, but RISBLG does not modify CC at all.  On the
  // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
  // The CC value produced by NILL isn't useful for our purposes, but the
  // value produced by RISBG can be used for any comparison with zero
  // (not just equality).  So there are some transformations that lose
  // CC values (while still being worthwhile) and others that happen to make
  // the CC result more useful than it was originally.
  //
  // Another reason is that we only want to use BRANCH ON COUNT in cases
  // where we know that the count register is not going to be spilled.
  //
  // Doing it so late makes it more likely that a register will be reused
  // between the comparison and the branch, but it isn't clear whether
  // preventing that would be a win or not.
  if (getOptLevel() != CodeGenOptLevel::None)
    addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
  addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
  // Do final scheduling after all other optimizations, to get an
  // optimal input for the decoder (branch relaxation must happen
  // after block placement).
  if (getOptLevel() != CodeGenOptLevel::None)
    addPass(&PostMachineSchedulerID);
}
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new SystemZPassConfig(*this, PM);
}
TargetTransformInfo
SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
  return TargetTransformInfo(SystemZTTIImpl(this, F));
}
MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
    BumpPtrAllocator &Allocator, const Function &F,
    const TargetSubtargetInfo *STI) const {
  return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
      Allocator, F, STI);
}
 |