1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86SelectionDAGInfo.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "x86-selectiondag-info"
static cl::opt<bool>
UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
cl::desc("Use fast short rep mov in memcpy lowering"));
bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const {
return Opcode >= X86ISD::FIRST_MEMORY_OPCODE &&
Opcode <= X86ISD::LAST_MEMORY_OPCODE;
}
bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const {
return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE &&
Opcode <= X86ISD::LAST_STRICTFP_OPCODE;
}
/// Returns the best type to use with repmovs/repstos depending on alignment.
static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) {
uint64_t Align = Alignment.value();
assert((Align != 0) && "Align is normalized");
assert(isPowerOf2_64(Align) && "Align is a power of 2");
switch (Align) {
case 1:
return MVT::i8;
case 2:
return MVT::i16;
case 4:
return MVT::i32;
default:
return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
}
}
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
// blocks. Legalization may introduce new stack temporaries with large
// alignment requirements. Fall back to generic code if there are any
// dynamic stack adjustments (hopefully rare) and the base pointer would
// conflict if we had to use it.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
return false;
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
DAG.getSubtarget().getRegisterInfo());
return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
}
/// Emit a single REP STOSB instruction for a particular constant size.
static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Val, SDValue Size, MVT AVT) {
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
unsigned AX = X86::AL;
switch (AVT.getSizeInBits()) {
case 8:
AX = X86::AL;
break;
case 16:
AX = X86::AX;
break;
case 32:
AX = X86::EAX;
break;
default:
AX = X86::RAX;
break;
}
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
SDValue InGlue;
Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
InGlue = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
}
/// Emit a single REP STOSB instruction for a particular constant size.
static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Val, uint64_t Size) {
return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns a REP STOS instruction, possibly with a few load/stores to implement
/// a constant size memory set. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
/// generate a store sequence or call the runtime memset function.
static SDValue emitConstantSizeRepstos(SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &dl, SDValue Chain,
SDValue Dst, SDValue Val, uint64_t Size,
EVT SizeVT, Align Alignment,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo) {
/// In case we optimize for size, we use repstosb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize()) {
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
// Special case 0 because otherwise we get large literals,
// which causes larger encoding.
if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) {
MVT BlockType = MVT::i32;
const uint64_t BlockBits = BlockType.getSizeInBits();
const uint64_t BlockBytes = BlockBits / 8;
const uint64_t BlockCount = Size / BlockBytes;
Val = DAG.getConstant(0, dl, BlockType);
// repstosd is same size as repstosb
return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
}
}
return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size);
}
if (Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if (Alignment < Align(4))
return SDValue();
MVT BlockType = MVT::i8;
uint64_t BlockCount = Size;
uint64_t BytesLeft = 0;
SDValue OriginalVal = Val;
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
BlockType = getOptimalRepType(Subtarget, Alignment);
uint64_t Value = ValC->getZExtValue() & 255;
const uint64_t BlockBits = BlockType.getSizeInBits();
if (BlockBits >= 16)
Value = (Value << 8) | Value;
if (BlockBits >= 32)
Value = (Value << 16) | Value;
if (BlockBits >= 64)
Value = (Value << 32) | Value;
const uint64_t BlockBytes = BlockBits / 8;
BlockCount = Size / BlockBytes;
BytesLeft = Size % BlockBytes;
Val = DAG.getConstant(Value, dl, BlockType);
}
SDValue RepStos =
emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepStos can process the whole length.
if (BytesLeft == 0)
return RepStos;
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepStos);
unsigned Offset = Size - BytesLeft;
EVT AddrVT = Dst.getValueType();
Results.push_back(
DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
OriginalVal, DAG.getConstant(BytesLeft, dl, SizeVT),
Alignment, isVolatile, AlwaysInline,
/* CI */ nullptr, DstPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo) const {
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base register might conflict with our physical registers, bail out.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
X86::ECX, X86::EAX, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
return emitConstantSizeRepstos(
DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(),
Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo);
}
/// Emit a single REP MOVS{B,W,D,Q} instruction.
static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, SDValue Size, MVT AVT) {
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
SDValue InGlue;
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InGlue);
InGlue = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
}
/// Emit a single REP MOVSB instruction for a particular constant size.
static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size) {
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
/// a constant size memory copy. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
/// generate a load/store sequence or call the runtime memcpy function.
static SDValue emitConstantSizeRepmov(
SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
/// In case we optimize for size, we use repmovsb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
/// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
/// efficient.
if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
/// If we have enhanced repmovs we use it.
if (Subtarget.hasERMSB())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
/// We assume runtime memcpy will do a better job for unaligned copies when
/// ERMS is not present.
if (!AlwaysInline && (Alignment < Align(4)))
return SDValue();
const MVT BlockType = getOptimalRepType(Subtarget, Alignment);
const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
const uint64_t BlockCount = Size / BlockBytes;
const uint64_t BytesLeft = Size % BlockBytes;
SDValue RepMovs =
emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepMov can process the whole length.
if (BytesLeft == 0)
return RepMovs;
assert(BytesLeft && "We have leftover at this point");
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
unsigned Offset = Size - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
Results.push_back(DAG.getMemcpy(
Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile,
/*AlwaysInline*/ true, /*CI=*/nullptr, std::nullopt,
DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base registers conflict with our physical registers, use the default
// lowering.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
X86::ECX, X86::ESI, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
// If enabled and available, use fast short rep mov.
if (UseFSRMForMemcpy && Subtarget.hasFSRM())
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
/// Handle constant sizes
if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),
Size.getValueType(), Alignment, isVolatile,
AlwaysInline, DstPtrInfo, SrcPtrInfo);
return SDValue();
}
|