File: PGOCtxProfFlattening.cpp

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.8-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,388 kB
  • sloc: cpp: 7,438,767; ansic: 1,393,871; asm: 1,012,926; python: 241,728; f90: 86,635; objc: 75,411; lisp: 42,144; pascal: 17,286; sh: 10,027; ml: 5,082; perl: 4,730; awk: 3,523; makefile: 3,349; javascript: 2,251; xml: 892; fortran: 672
file content (470 lines) | stat: -rw-r--r-- 16,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//===- PGOCtxProfFlattening.cpp - Contextual Instr. Flattening ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Flattens the contextual profile and lowers it to MD_prof.
// This should happen after all IPO (which is assumed to have maintained the
// contextual profile) happened. Flattening consists of summing the values at
// the same index of the counters belonging to all the contexts of a function.
// The lowering consists of materializing the counter values to function
// entrypoint counts and branch probabilities.
//
// This pass also removes contextual instrumentation, which has been kept around
// to facilitate its functionality.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation/PGOCtxProfFlattening.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/CtxProfAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/IR/Analysis.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Scalar/DCE.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <deque>

using namespace llvm;

namespace {

class ProfileAnnotator final {
  class BBInfo;
  struct EdgeInfo {
    BBInfo *const Src;
    BBInfo *const Dest;
    std::optional<uint64_t> Count;

    explicit EdgeInfo(BBInfo &Src, BBInfo &Dest) : Src(&Src), Dest(&Dest) {}
  };

  class BBInfo {
    std::optional<uint64_t> Count;
    // OutEdges is dimensioned to match the number of terminator operands.
    // Entries in the vector match the index in the terminator operand list. In
    // some cases - see `shouldExcludeEdge` and its implementation - an entry
    // will be nullptr.
    // InEdges doesn't have the above constraint.
    SmallVector<EdgeInfo *> OutEdges;
    SmallVector<EdgeInfo *> InEdges;
    size_t UnknownCountOutEdges = 0;
    size_t UnknownCountInEdges = 0;

    // Pass AssumeAllKnown when we try to propagate counts from edges to BBs -
    // because all the edge counters must be known.
    // Return std::nullopt if there were no edges to sum. The user can decide
    // how to interpret that.
    std::optional<uint64_t> getEdgeSum(const SmallVector<EdgeInfo *> &Edges,
                                       bool AssumeAllKnown) const {
      std::optional<uint64_t> Sum;
      for (const auto *E : Edges) {
        // `Edges` may be `OutEdges`, case in which `E` could be nullptr.
        if (E) {
          if (!Sum.has_value())
            Sum = 0;
          *Sum += (AssumeAllKnown ? *E->Count : E->Count.value_or(0U));
        }
      }
      return Sum;
    }

    bool computeCountFrom(const SmallVector<EdgeInfo *> &Edges) {
      assert(!Count.has_value());
      Count = getEdgeSum(Edges, true);
      return Count.has_value();
    }

    void setSingleUnknownEdgeCount(SmallVector<EdgeInfo *> &Edges) {
      uint64_t KnownSum = getEdgeSum(Edges, false).value_or(0U);
      uint64_t EdgeVal = *Count > KnownSum ? *Count - KnownSum : 0U;
      EdgeInfo *E = nullptr;
      for (auto *I : Edges)
        if (I && !I->Count.has_value()) {
          E = I;
#ifdef NDEBUG
          break;
#else
          assert((!E || E == I) &&
                 "Expected exactly one edge to have an unknown count, "
                 "found a second one");
          continue;
#endif
        }
      assert(E && "Expected exactly one edge to have an unknown count");
      assert(!E->Count.has_value());
      E->Count = EdgeVal;
      assert(E->Src->UnknownCountOutEdges > 0);
      assert(E->Dest->UnknownCountInEdges > 0);
      --E->Src->UnknownCountOutEdges;
      --E->Dest->UnknownCountInEdges;
    }

  public:
    BBInfo(size_t NumInEdges, size_t NumOutEdges, std::optional<uint64_t> Count)
        : Count(Count) {
      // For in edges, we just want to pre-allocate enough space, since we know
      // it at this stage. For out edges, we will insert edges at the indices
      // corresponding to positions in this BB's terminator instruction, so we
      // construct a default (nullptr values)-initialized vector. A nullptr edge
      // corresponds to those that are excluded (see shouldExcludeEdge).
      InEdges.reserve(NumInEdges);
      OutEdges.resize(NumOutEdges);
    }

    bool tryTakeCountFromKnownOutEdges(const BasicBlock &BB) {
      if (!UnknownCountOutEdges) {
        return computeCountFrom(OutEdges);
      }
      return false;
    }

    bool tryTakeCountFromKnownInEdges(const BasicBlock &BB) {
      if (!UnknownCountInEdges) {
        return computeCountFrom(InEdges);
      }
      return false;
    }

    void addInEdge(EdgeInfo &Info) {
      InEdges.push_back(&Info);
      ++UnknownCountInEdges;
    }

    // For the out edges, we care about the position we place them in, which is
    // the position in terminator instruction's list (at construction). Later,
    // we build branch_weights metadata with edge frequency values matching
    // these positions.
    void addOutEdge(size_t Index, EdgeInfo &Info) {
      OutEdges[Index] = &Info;
      ++UnknownCountOutEdges;
    }

    bool hasCount() const { return Count.has_value(); }

    uint64_t getCount() const { return *Count; }

    bool trySetSingleUnknownInEdgeCount() {
      if (UnknownCountInEdges == 1) {
        setSingleUnknownEdgeCount(InEdges);
        return true;
      }
      return false;
    }

    bool trySetSingleUnknownOutEdgeCount() {
      if (UnknownCountOutEdges == 1) {
        setSingleUnknownEdgeCount(OutEdges);
        return true;
      }
      return false;
    }
    size_t getNumOutEdges() const { return OutEdges.size(); }

    uint64_t getEdgeCount(size_t Index) const {
      if (auto *E = OutEdges[Index])
        return *E->Count;
      return 0U;
    }
  };

  Function &F;
  const SmallVectorImpl<uint64_t> &Counters;
  // To be accessed through getBBInfo() after construction.
  std::map<const BasicBlock *, BBInfo> BBInfos;
  std::vector<EdgeInfo> EdgeInfos;
  InstrProfSummaryBuilder &PB;

  // This is an adaptation of PGOUseFunc::populateCounters.
  // FIXME(mtrofin): look into factoring the code to share one implementation.
  void propagateCounterValues(const SmallVectorImpl<uint64_t> &Counters) {
    bool KeepGoing = true;
    while (KeepGoing) {
      KeepGoing = false;
      for (const auto &BB : F) {
        auto &Info = getBBInfo(BB);
        if (!Info.hasCount())
          KeepGoing |= Info.tryTakeCountFromKnownOutEdges(BB) ||
                       Info.tryTakeCountFromKnownInEdges(BB);
        if (Info.hasCount()) {
          KeepGoing |= Info.trySetSingleUnknownOutEdgeCount();
          KeepGoing |= Info.trySetSingleUnknownInEdgeCount();
        }
      }
    }
  }
  // The only criteria for exclusion is faux suspend -> exit edges in presplit
  // coroutines. The API serves for readability, currently.
  bool shouldExcludeEdge(const BasicBlock &Src, const BasicBlock &Dest) const {
    return llvm::isPresplitCoroSuspendExitEdge(Src, Dest);
  }

  BBInfo &getBBInfo(const BasicBlock &BB) { return BBInfos.find(&BB)->second; }

  const BBInfo &getBBInfo(const BasicBlock &BB) const {
    return BBInfos.find(&BB)->second;
  }

  // validation function after we propagate the counters: all BBs and edges'
  // counters must have a value.
  bool allCountersAreAssigned() const {
    for (const auto &BBInfo : BBInfos)
      if (!BBInfo.second.hasCount())
        return false;
    for (const auto &EdgeInfo : EdgeInfos)
      if (!EdgeInfo.Count.has_value())
        return false;
    return true;
  }

  /// Check that all paths from the entry basic block that use edges with
  /// non-zero counts arrive at a basic block with no successors (i.e. "exit")
  bool allTakenPathsExit() const {
    std::deque<const BasicBlock *> Worklist;
    DenseSet<const BasicBlock *> Visited;
    Worklist.push_back(&F.getEntryBlock());
    bool HitExit = false;
    while (!Worklist.empty()) {
      const auto *BB = Worklist.front();
      Worklist.pop_front();
      if (!Visited.insert(BB).second)
        continue;
      if (succ_size(BB) == 0) {
        if (isa<UnreachableInst>(BB->getTerminator()))
          return false;
        HitExit = true;
        continue;
      }
      if (succ_size(BB) == 1) {
        Worklist.push_back(BB->getUniqueSuccessor());
        continue;
      }
      const auto &BBInfo = getBBInfo(*BB);
      bool HasAWayOut = false;
      for (auto I = 0U; I < BB->getTerminator()->getNumSuccessors(); ++I) {
        const auto *Succ = BB->getTerminator()->getSuccessor(I);
        if (!shouldExcludeEdge(*BB, *Succ)) {
          if (BBInfo.getEdgeCount(I) > 0) {
            HasAWayOut = true;
            Worklist.push_back(Succ);
          }
        }
      }
      if (!HasAWayOut)
        return false;
    }
    return HitExit;
  }

  bool allNonColdSelectsHaveProfile() const {
    for (const auto &BB : F) {
      if (getBBInfo(BB).getCount() > 0) {
        for (const auto &I : BB) {
          if (const auto *SI = dyn_cast<SelectInst>(&I)) {
            if (!SI->getMetadata(LLVMContext::MD_prof)) {
              return false;
            }
          }
        }
      }
    }
    return true;
  }

public:
  ProfileAnnotator(Function &F, const SmallVectorImpl<uint64_t> &Counters,
                   InstrProfSummaryBuilder &PB)
      : F(F), Counters(Counters), PB(PB) {
    assert(!F.isDeclaration());
    assert(!Counters.empty());
    size_t NrEdges = 0;
    for (const auto &BB : F) {
      std::optional<uint64_t> Count;
      if (auto *Ins = CtxProfAnalysis::getBBInstrumentation(
              const_cast<BasicBlock &>(BB))) {
        auto Index = Ins->getIndex()->getZExtValue();
        assert(Index < Counters.size() &&
               "The index must be inside the counters vector by construction - "
               "tripping this assertion indicates a bug in how the contextual "
               "profile is managed by IPO transforms");
        (void)Index;
        Count = Counters[Ins->getIndex()->getZExtValue()];
      } else if (isa<UnreachableInst>(BB.getTerminator())) {
        // The program presumably didn't crash.
        Count = 0;
      }
      auto [It, Ins] =
          BBInfos.insert({&BB, {pred_size(&BB), succ_size(&BB), Count}});
      (void)Ins;
      assert(Ins && "We iterate through the function's BBs, no reason to "
                    "insert one more than once");
      NrEdges += llvm::count_if(successors(&BB), [&](const auto *Succ) {
        return !shouldExcludeEdge(BB, *Succ);
      });
    }
    // Pre-allocate the vector, we want references to its contents to be stable.
    EdgeInfos.reserve(NrEdges);
    for (const auto &BB : F) {
      auto &Info = getBBInfo(BB);
      for (auto I = 0U; I < BB.getTerminator()->getNumSuccessors(); ++I) {
        const auto *Succ = BB.getTerminator()->getSuccessor(I);
        if (!shouldExcludeEdge(BB, *Succ)) {
          auto &EI = EdgeInfos.emplace_back(getBBInfo(BB), getBBInfo(*Succ));
          Info.addOutEdge(I, EI);
          getBBInfo(*Succ).addInEdge(EI);
        }
      }
    }
    assert(EdgeInfos.capacity() == NrEdges &&
           "The capacity of EdgeInfos should have stayed unchanged it was "
           "populated, because we need pointers to its contents to be stable");
  }

  void setProfileForSelectInstructions(BasicBlock &BB, const BBInfo &BBInfo) {
    if (BBInfo.getCount() == 0)
      return;

    for (auto &I : BB) {
      if (auto *SI = dyn_cast<SelectInst>(&I)) {
        if (auto *Step = CtxProfAnalysis::getSelectInstrumentation(*SI)) {
          auto Index = Step->getIndex()->getZExtValue();
          assert(Index < Counters.size() &&
                 "The index of the step instruction must be inside the "
                 "counters vector by "
                 "construction - tripping this assertion indicates a bug in "
                 "how the contextual profile is managed by IPO transforms");
          auto TotalCount = BBInfo.getCount();
          auto TrueCount = Counters[Index];
          auto FalseCount =
              (TotalCount > TrueCount ? TotalCount - TrueCount : 0U);
          setProfMetadata(F.getParent(), SI, {TrueCount, FalseCount},
                          std::max(TrueCount, FalseCount));
          PB.addInternalCount(TrueCount);
          PB.addInternalCount(FalseCount);
        }
      }
    }
  }

  /// Assign branch weights and function entry count. Also update the PSI
  /// builder.
  void assignProfileData() {
    assert(!Counters.empty());
    propagateCounterValues(Counters);
    F.setEntryCount(Counters[0]);
    PB.addEntryCount(Counters[0]);

    for (auto &BB : F) {
      const auto &BBInfo = getBBInfo(BB);
      setProfileForSelectInstructions(BB, BBInfo);
      if (succ_size(&BB) < 2)
        continue;
      auto *Term = BB.getTerminator();
      SmallVector<uint64_t, 2> EdgeCounts(Term->getNumSuccessors(), 0);
      uint64_t MaxCount = 0;

      for (unsigned SuccIdx = 0, Size = BBInfo.getNumOutEdges(); SuccIdx < Size;
           ++SuccIdx) {
        uint64_t EdgeCount = BBInfo.getEdgeCount(SuccIdx);
        if (EdgeCount > MaxCount)
          MaxCount = EdgeCount;
        EdgeCounts[SuccIdx] = EdgeCount;
        PB.addInternalCount(EdgeCount);
      }

      if (MaxCount != 0)
        setProfMetadata(F.getParent(), Term, EdgeCounts, MaxCount);
    }
    assert(allCountersAreAssigned() &&
           "[ctx-prof] Expected all counters have been assigned.");
    assert(allTakenPathsExit() &&
           "[ctx-prof] Encountered a BB with more than one successor, where "
           "all outgoing edges have a 0 count. This occurs in non-exiting "
           "functions (message pumps, usually) which are not supported in the "
           "contextual profiling case");
    assert(allNonColdSelectsHaveProfile() &&
           "[ctx-prof] All non-cold select instructions were expected to have "
           "a profile.");
  }
};

[[maybe_unused]] bool areAllBBsReachable(const Function &F,
                                         FunctionAnalysisManager &FAM) {
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F));
  return llvm::all_of(
      F, [&](const BasicBlock &BB) { return DT.isReachableFromEntry(&BB); });
}

void clearColdFunctionProfile(Function &F) {
  for (auto &BB : F)
    BB.getTerminator()->setMetadata(LLVMContext::MD_prof, nullptr);
  F.setEntryCount(0U);
}

void removeInstrumentation(Function &F) {
  for (auto &BB : F)
    for (auto &I : llvm::make_early_inc_range(BB))
      if (isa<InstrProfCntrInstBase>(I))
        I.eraseFromParent();
}

} // namespace

PreservedAnalyses PGOCtxProfFlatteningPass::run(Module &M,
                                                ModuleAnalysisManager &MAM) {
  // Ensure in all cases the instrumentation is removed: if this module had no
  // roots, the contextual profile would evaluate to false, but there would
  // still be instrumentation.
  // Note: in such cases we leave as-is any other profile info (if present -
  // e.g. synthetic weights, etc) because it wouldn't interfere with the
  // contextual - based one (which would be in other modules)
  auto OnExit = llvm::make_scope_exit([&]() {
    for (auto &F : M)
      removeInstrumentation(F);
  });
  auto &CtxProf = MAM.getResult<CtxProfAnalysis>(M);
  if (!CtxProf)
    return PreservedAnalyses::none();

  const auto FlattenedProfile = CtxProf.flatten();

  InstrProfSummaryBuilder PB(ProfileSummaryBuilder::DefaultCutoffs);
  for (auto &F : M) {
    if (F.isDeclaration())
      continue;

    assert(areAllBBsReachable(
               F, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M)
                      .getManager()) &&
           "Function has unreacheable basic blocks. The expectation was that "
           "DCE was run before.");

    auto It = FlattenedProfile.find(AssignGUIDPass::getGUID(F));
    // If this function didn't appear in the contextual profile, it's cold.
    if (It == FlattenedProfile.end())
      clearColdFunctionProfile(F);
    else {
      ProfileAnnotator S(F, It->second, PB);
      S.assignProfileData();
    }
  }

  auto &PSI = MAM.getResult<ProfileSummaryAnalysis>(M);

  M.setProfileSummary(PB.getSummary()->getMD(M.getContext()),
                      ProfileSummary::Kind::PSK_Instr);
  PSI.refresh();
  return PreservedAnalyses::none();
}