File: pack-dynamic-inner-tile.mlir

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.8-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,388 kB
  • sloc: cpp: 7,438,767; ansic: 1,393,871; asm: 1,012,926; python: 241,728; f90: 86,635; objc: 75,411; lisp: 42,144; pascal: 17,286; sh: 10,027; ml: 5,082; perl: 4,730; awk: 3,523; makefile: 3,349; javascript: 2,251; xml: 892; fortran: 672
file content (138 lines) | stat: -rw-r--r-- 5,361 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// DEFINE: %{compile} =  mlir-opt %s \
// DEFINE:  -transform-interpreter -test-transform-dialect-erase-schedule |\
// DEFINE: mlir-opt \
// DEFINE:  -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-runner %t -e %{entry_point} -entry-point-result=void \
// DEFINE:    -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils

// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s

/// End-to-end test for tensor.pack where one of the inner tile sizes is
/// dynamic.

func.func @main() {
  // Allocate and initialise the inputs
  %A_alloc = tensor.empty() : tensor<7x16xi32>

  %A = arith.constant dense<[
    [ 1,  8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99 , 106],
    [ 2,  9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107],
    [ 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101, 108],
    [ 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109],
    [ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110],
    [ 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111],
    [ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112]
  ]> : tensor<7x16xi32>

  func.call @pack(%A) : (tensor<7x16xi32>) -> ()

  return
}

func.func private @pack(%A: tensor<7x16xi32>) {
  %c1 = arith.constant 1 : index
  %pad_val = arith.constant 123 : i32

  // Dynamic tile size
  %tile_size = arith.constant 8 : index
  %A_pack_empty = tensor.empty(%c1, %tile_size) : tensor<?x16x?x1xi32>

  %A_pack = tensor.pack %A
    padding_value(%pad_val : i32)
    inner_dims_pos = [0, 1]
    inner_tiles = [%tile_size, 1]
    into %A_pack_empty : tensor<7x16xi32> -> tensor<?x16x?x1xi32>
  %A_cast = tensor.cast %A_pack : tensor<?x16x?x1xi32> to tensor<*xi32>

  // Print the results
  // CHECK: Unranked Memref base@ = 0x{{.*}} rank = 4 offset = 0 sizes = [1, 16, 8, 1] strides = [128, 8, 1, 1] data =
  // Tile 1: (8 x 1)
  // CHECK-NEXT:  1
  // CHECK-NEXT:  2
  // CHECK-NEXT:  3
  // CHECK-NEXT:  4
  // CHECK-NEXT:  5
  // CHECK-NEXT:  6
  // CHECK-NEXT:  7
  // Expect pad value after 7 elements
  // CHECK-NEXT:  123
  // Tile 2: (8 x 1)
  // CHECK-NEXT:  8
  // CHECK-NEXT:  9
  // CHECK-NEXT:  10
  // CHECK-NEXT:  11
  // CHECK-NEXT:  12
  // CHECK-NEXT:  13
  // CHECK-NEXT:  14
  // Expect pad value after further 7 elements
  // CHECK-NEXT:  123
  // Tile 3: (8 x 1)
  // CHECK-NEXT:  15
  // CHECK-NEXT:  16
  // ...
  call @printMemrefI32(%A_cast) : (tensor<*xi32>) -> ()

  return
}

module @transforms attributes { transform.with_named_sequence } {
  transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
    %pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op

    // 1. Tile so that we can decompose tensor.pack into tensor.pad and other
    // Ops (see step 2)
    %tiled_pack_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
       : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

    // 2. Decompose the tiled pack Op into (trimmed for brevity):
    //
    //  %padded = tensor.pad %slice_of_A (..) :
    //      tensor<?x?xi32> to tensor<8x1xi32>
    //  %inserted_slice = tensor.insert_slice %padded into %slice_of_A_pack (...) :
    //      tensor<8x1xi32> into tensor<1x1x?x1xi32>
    //
    // (NOTE: no tile is transposed, hence no linalg.transpose)
    //
    // This is followed by this decomposition of the pad Op:
    //
    //  %c123_i32 = arith.constant 123 : i32
    //  %slice_of_A = tensor.extract_slice %A[%3, %arg3] [%4, %5] [1, 1] :
    //    tensor<7x16xi32> to tensor<?x?xi32>
    //  %empty = tensor.empty() : tensor<8x1xi32>
    //  %fill = linalg.fill ins(%c123_i32 : i32) outs(%empty :
    //    tensor<8x1xi32>) -> tensor<8x1xi32>
    //  %inserted_slice = tensor.insert_slice %slice_of_A into %fill[0, 0] [%4, %5] [1, 1] :
    //    tensor<?x?xi32> into tensor<8x1xi32>
    //
    %func_op = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
    transform.apply_patterns to %func_op {
      transform.apply_patterns.linalg.decompose_pack_unpack
      transform.apply_patterns.linalg.decompose_pad
    } : !transform.op<"func.func">

    // 3. Vectorize linalg.fill.
    // Vector sizes match the inner tiles in the payload IR.
    %fill = transform.structured.match ops{["linalg.fill"]} in %func_op : (!transform.op<"func.func">) -> !transform.any_op
    transform.structured.vectorize %fill vector_sizes [8, 1] : !transform.any_op

    transform.apply_patterns to %func_op {
      transform.apply_patterns.tensor.fold_tensor_subset_ops
      transform.apply_patterns.canonicalization
    } : !transform.op<"func.func">

    // 3. Bufferize before lowering to LLVM
    %bufferize = transform.bufferization.one_shot_bufferize %module
      {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op

    // 4. Canonicalize
    %func_op_bufferized = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
    transform.apply_patterns to %func_op_bufferized {
      transform.apply_patterns.canonicalization
    } : !transform.op<"func.func">

    transform.yield
  }
}

func.func private @printMemrefI32(%ptr : tensor<*xi32>)