1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule |\
// DEFINE: mlir-opt \
// DEFINE: -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-runner %t -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils
// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s
/// End-to-end test for tensor.pack where one of the inner tile sizes is
/// dynamic.
func.func @main() {
// Allocate and initialise the inputs
%A_alloc = tensor.empty() : tensor<7x16xi32>
%A = arith.constant dense<[
[ 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99 , 106],
[ 2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107],
[ 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101, 108],
[ 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109],
[ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110],
[ 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111],
[ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112]
]> : tensor<7x16xi32>
func.call @pack(%A) : (tensor<7x16xi32>) -> ()
return
}
func.func private @pack(%A: tensor<7x16xi32>) {
%c1 = arith.constant 1 : index
%pad_val = arith.constant 123 : i32
// Dynamic tile size
%tile_size = arith.constant 8 : index
%A_pack_empty = tensor.empty(%c1, %tile_size) : tensor<?x16x?x1xi32>
%A_pack = tensor.pack %A
padding_value(%pad_val : i32)
inner_dims_pos = [0, 1]
inner_tiles = [%tile_size, 1]
into %A_pack_empty : tensor<7x16xi32> -> tensor<?x16x?x1xi32>
%A_cast = tensor.cast %A_pack : tensor<?x16x?x1xi32> to tensor<*xi32>
// Print the results
// CHECK: Unranked Memref base@ = 0x{{.*}} rank = 4 offset = 0 sizes = [1, 16, 8, 1] strides = [128, 8, 1, 1] data =
// Tile 1: (8 x 1)
// CHECK-NEXT: 1
// CHECK-NEXT: 2
// CHECK-NEXT: 3
// CHECK-NEXT: 4
// CHECK-NEXT: 5
// CHECK-NEXT: 6
// CHECK-NEXT: 7
// Expect pad value after 7 elements
// CHECK-NEXT: 123
// Tile 2: (8 x 1)
// CHECK-NEXT: 8
// CHECK-NEXT: 9
// CHECK-NEXT: 10
// CHECK-NEXT: 11
// CHECK-NEXT: 12
// CHECK-NEXT: 13
// CHECK-NEXT: 14
// Expect pad value after further 7 elements
// CHECK-NEXT: 123
// Tile 3: (8 x 1)
// CHECK-NEXT: 15
// CHECK-NEXT: 16
// ...
call @printMemrefI32(%A_cast) : (tensor<*xi32>) -> ()
return
}
module @transforms attributes { transform.with_named_sequence } {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op
// 1. Tile so that we can decompose tensor.pack into tensor.pad and other
// Ops (see step 2)
%tiled_pack_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
// 2. Decompose the tiled pack Op into (trimmed for brevity):
//
// %padded = tensor.pad %slice_of_A (..) :
// tensor<?x?xi32> to tensor<8x1xi32>
// %inserted_slice = tensor.insert_slice %padded into %slice_of_A_pack (...) :
// tensor<8x1xi32> into tensor<1x1x?x1xi32>
//
// (NOTE: no tile is transposed, hence no linalg.transpose)
//
// This is followed by this decomposition of the pad Op:
//
// %c123_i32 = arith.constant 123 : i32
// %slice_of_A = tensor.extract_slice %A[%3, %arg3] [%4, %5] [1, 1] :
// tensor<7x16xi32> to tensor<?x?xi32>
// %empty = tensor.empty() : tensor<8x1xi32>
// %fill = linalg.fill ins(%c123_i32 : i32) outs(%empty :
// tensor<8x1xi32>) -> tensor<8x1xi32>
// %inserted_slice = tensor.insert_slice %slice_of_A into %fill[0, 0] [%4, %5] [1, 1] :
// tensor<?x?xi32> into tensor<8x1xi32>
//
%func_op = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.decompose_pack_unpack
transform.apply_patterns.linalg.decompose_pad
} : !transform.op<"func.func">
// 3. Vectorize linalg.fill.
// Vector sizes match the inner tiles in the payload IR.
%fill = transform.structured.match ops{["linalg.fill"]} in %func_op : (!transform.op<"func.func">) -> !transform.any_op
transform.structured.vectorize %fill vector_sizes [8, 1] : !transform.any_op
transform.apply_patterns to %func_op {
transform.apply_patterns.tensor.fold_tensor_subset_ops
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">
// 3. Bufferize before lowering to LLVM
%bufferize = transform.bufferization.one_shot_bufferize %module
{bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
// 4. Canonicalize
%func_op_bufferized = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op_bufferized {
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">
transform.yield
}
}
func.func private @printMemrefI32(%ptr : tensor<*xi32>)
|