1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" \
// DEFINE: -buffer-deallocation-pipeline="private-function-dynamic-ownership" \
// DEFINE: -cse -canonicalize -test-lower-to-llvm
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-runner -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils
// RUN: %{compile} | %{run} | FileCheck %s
/// End-to-end test for computing matrix-multiplication using linalg.mmt4d. In
/// particular, demonstrates how the following MLIR sequence (implemented in @mmt4d):
///
/// A_pack = tensor.pack A
/// B_pack = tensor.pack B
/// C_pack = tensor.pack C
/// out_pack = linalg.mmt4d(A_pack, B_pack, C_pack)
///
/// is equivalent to:
///
/// linalg.matmul(A, B, C)
///
/// (implemented in @matmul).
func.func @main() {
// Allocate and initialise the inputs
%A_alloc = tensor.empty() : tensor<7x16xi32>
%B_alloc = tensor.empty() : tensor<16x13xi32>
%three = arith.constant 3 : i32
%four = arith.constant 4 : i32
%A = linalg.fill ins(%three : i32) outs(%A_alloc : tensor<7x16xi32>) -> tensor<7x16xi32>
%B = linalg.fill ins(%four : i32) outs(%B_alloc : tensor<16x13xi32>) -> tensor<16x13xi32>
%C = arith.constant dense<[
[ 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85],
[ 2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86],
[ 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87],
[ 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88],
[ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89],
[ 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90],
[ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91]
]> : tensor<7x13xi32>
// Matrix multiplication via linalg.mmt4d
// CHECK: Unranked Memref
// CHECK: [193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277]
// CHECK: [194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278]
// CHECK: [195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279]
// CHECK: [196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280]
// CHECK: [197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281]
// CHECK: [198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282]
// CHECK: [199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283]
%C_mmt4d = func.call @mmt4d(%A, %B, %C) : (tensor<7x16xi32>, tensor<16x13xi32>, tensor<7x13xi32>) -> tensor<7x13xi32>
%xf = tensor.cast %C_mmt4d : tensor<7x13xi32> to tensor<*xi32>
call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()
// Matrix multiplication with linalg.matmul
// CHECK: Unranked Memref
// CHECK: [193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277]
// CHECK: [194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278]
// CHECK: [195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279]
// CHECK: [196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280]
// CHECK: [197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281]
// CHECK: [198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282]
// CHECK: [199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283]
%C_matmul = func.call @matmul(%A, %B, %C) : (tensor<7x16xi32>, tensor<16x13xi32>, tensor<7x13xi32>) -> tensor<7x13xi32>
%xf_2 = tensor.cast %C_matmul : tensor<7x13xi32> to tensor<*xi32>
call @printMemrefI32(%xf_2) : (tensor<*xi32>) -> ()
return
}
func.func private @matmul(%A: tensor<7x16xi32>, %B: tensor<16x13xi32>, %C: tensor<7x13xi32>) -> tensor<7x13xi32> {
%C_matmul = linalg.matmul ins(%A, %B: tensor<7x16xi32>, tensor<16x13xi32>)
outs(%C: tensor<7x13xi32>) -> tensor<7x13xi32>
return %C_matmul : tensor<7x13xi32>
}
func.func private @mmt4d(%A: tensor<7x16xi32>, %B: tensor<16x13xi32>, %C: tensor<7x13xi32>) -> tensor<7x13xi32> {
%zero = arith.constant 0 : i32
%A_pack_empty = tensor.empty() : tensor<2x16x8x1xi32>
%B_pack_empty = tensor.empty() : tensor<2x16x8x1xi32>
%C_pack_empty = tensor.empty() : tensor<2x2x8x8xi32>
// Pack matrices
%A_pack = tensor.pack %A padding_value(%zero : i32) inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %A_pack_empty : tensor<7x16xi32> -> tensor<2x16x8x1xi32>
%B_pack = tensor.pack %B padding_value(%zero : i32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [8, 1] into %B_pack_empty : tensor<16x13xi32> -> tensor<2x16x8x1xi32>
%C_pack = tensor.pack %C padding_value(%zero : i32) outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %C_pack_empty : tensor<7x13xi32> -> tensor<2x2x8x8xi32>
// MMT4D
%mmt4d = linalg.mmt4d ins(%A_pack, %B_pack : tensor<2x16x8x1xi32>, tensor<2x16x8x1xi32>) outs(%C_pack : tensor<2x2x8x8xi32>) -> tensor<2x2x8x8xi32>
// Unpack output
%C_out_empty = tensor.empty() : tensor<7x13xi32>
%C_out_unpack = tensor.unpack %mmt4d outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %C_out_empty : tensor<2x2x8x8xi32> -> tensor<7x13xi32>
return %C_out_unpack : tensor<7x13xi32>
}
module @transforms attributes { transform.with_named_sequence } {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%mmt4d = transform.collect_matching @match_mmt4d in %module : (!transform.any_op) -> (!transform.any_op)
%func = transform.get_parent_op %mmt4d {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
// Step 1: Tile
// Tile parallel dims
%tiled_linalg_op_p, %loops:4 = transform.structured.tile_using_for %mmt4d tile_sizes [1, 1, 0, 8, 8, 0]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
// Tile reduction dims
%tiled_linalg_op_r, %loops2:2 = transform.structured.tile_using_for %tiled_linalg_op_p tile_sizes [0, 0, 1, 0, 0, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
// Step 2: Vectorize
transform.structured.vectorize %tiled_linalg_op_r : !transform.any_op
// Step 3: Simplify
// vector.multi_reduction --> vector.contract
// Generates a 6-dim vector.contract with the dim matching the original MMT4D Op
// and with the following split into parallel and reduction dims:
// * parallel, parallel, reduction, parallel, parallel, reduction
transform.apply_patterns to %func {
transform.apply_patterns.vector.reduction_to_contract
// Reduce the rank of xfer ops. This transforms vector.contract to be
// more matmul-like and to enable the lowering to outer product Ops.
transform.apply_patterns.vector.transfer_permutation_patterns
} : !transform.op<"func.func">
// Hoisting and LICM - not strictly required
%func_h = transform.structured.hoist_redundant_vector_transfers %func
: (!transform.op<"func.func">) -> !transform.op<"func.func">
%all_loops = transform.structured.match interface{LoopLikeInterface} in %func_h
: (!transform.op<"func.func">) -> !transform.any_op
transform.apply_licm to %all_loops : !transform.any_op
transform.loop.hoist_loop_invariant_subsets %all_loops : !transform.any_op
// Simplify the 6-dim vector.contract into a 3-dim matmul-like
// vector.contract with the following split into parallel and reduction
// dims:
// * parallel, parallel, reduction
transform.apply_patterns to %func_h {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.cast_away_vector_leading_one_dim
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">
// Step 4. Lower tensor.pack
%pack = transform.structured.match ops{["tensor.pack"]} in %func_h
: (!transform.op<"func.func">) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
// Step 5. Lower tensor.unpack
%unpack = transform.structured.match ops{["tensor.unpack"]} in %func_h
: (!transform.op<"func.func">) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
transform.named_sequence @match_mmt4d(
%entry: !transform.any_op {transform.readonly}) -> !transform.any_op {
transform.match.operation_name %entry ["linalg.mmt4d"] : !transform.any_op
transform.yield %entry : !transform.any_op
}
}
func.func private @printMemrefI32(%ptr : tensor<*xi32>)
|