1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
//===- MatrixTest.cpp - Tests for QuasiPolynomial -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/QuasiPolynomial.h"
#include "./Utils.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
using namespace mlir;
using namespace presburger;
// Test the arithmetic operations on QuasiPolynomials;
// addition, subtraction, multiplication, and division
// by a constant.
// Two QPs of 3 parameters each were generated randomly
// and their sum, difference, and product computed by hand.
TEST(QuasiPolynomialTest, arithmetic) {
QuasiPolynomial qp1(
3, {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}});
QuasiPolynomial qp2(
3, {Fraction(1, 1), Fraction(2, 1)},
{{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}});
QuasiPolynomial sum = qp1 + qp2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
sum,
QuasiPolynomial(
3,
{Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(1, 1),
Fraction(2, 1)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}},
{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1),
Fraction(0, 1)}}}));
QuasiPolynomial diff = qp1 - qp2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
diff,
QuasiPolynomial(
3,
{Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(-1, 1),
Fraction(-2, 1)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}},
{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1),
Fraction(0, 1)}}}));
QuasiPolynomial prod = qp1 * qp2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
prod,
QuasiPolynomial(
3,
{Fraction(1, 3), Fraction(2, 3), Fraction(1, 1), Fraction(2, 1),
Fraction(1, 2), Fraction(1, 1)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)},
{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)},
{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)},
{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)},
{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)},
{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)},
{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1),
Fraction(0, 1)}}}));
QuasiPolynomial quot = qp1 / 2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
quot,
QuasiPolynomial(
3, {Fraction(1, 6), Fraction(1, 2), Fraction(1, 4)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4),
Fraction(0, 1)}}}));
}
// Test the simplify() operation on QPs, which removes terms that
// are identically zero. A random QP was generated and terms were
// changed to account for each condition in simplify() –
// the term coefficient being zero, or all the coefficients in some
// affine term in the product being zero.
TEST(QuasiPolynomialTest, simplify) {
QuasiPolynomial qp(2,
{Fraction(2, 3), Fraction(0, 1), Fraction(1, 1),
Fraction(1, 2), Fraction(0, 1)},
{{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)},
{Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}},
{{Fraction(1, 3), Fraction(8, 5), Fraction(2, 5)}},
{{Fraction(2, 7), Fraction(9, 5), Fraction(0, 1)},
{Fraction(0, 1), Fraction(0, 1), Fraction(0, 1)}},
{{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}},
{{Fraction(1, 3), Fraction(4, 3), Fraction(7, 8)}}});
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
qp.simplify(),
QuasiPolynomial(2, {Fraction(2, 3), Fraction(1, 2)},
{{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)},
{Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}},
{{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}}}));
}
|