1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
|
========================
Debugging C++ Coroutines
========================
.. contents::
:local:
Introduction
============
Coroutines in C++ were introduced in C++20, and the user experience for
debugging them can still be challenging. This document guides you how to most
efficiently debug coroutines and how to navigate existing shortcomings in
debuggers and compilers.
Coroutines are generally used either as generators or for asynchronous
programming. In this document, we will discuss both use cases. Even if you are
using coroutines for asynchronous programming, you should still read the
generators section, as it will introduce foundational debugging techniques also
applicable to the debugging of asynchronous programs.
Both compilers (clang, gcc, ...) and debuggers (lldb, gdb, ...) are
still improving their support for coroutines. As such, we recommend using the
latest available version of your toolchain.
This document focuses on clang and lldb. The screenshots show
`lldb-dap <https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.lldb-dap>`_
in combination with VS Code. The same techniques can also be used in other
IDEs.
Debugging clang-compiled binaries with gdb is possible, but requires more
scripting. This guide comes with a basic GDB script for coroutine debugging.
This guide will first showcase the more polished, bleeding-edge experience, but
will also show you how to debug coroutines with older toolchains. In general,
the older your toolchain, the deeper you will have to dive into the
implementation details of coroutines (such as their ABI). The further down in
this document you go, the more low-level, technical the content will become. If
you are on an up-to-date toolchain, you will hopefully be able to stop reading
earlier.
Debugging generators
====================
One of the two major use cases for coroutines in C++ are generators, i.e.,
functions which can produce values via ``co_yield``. Values are produced
lazily, on-demand. For this purpose, every time a new value is requested, the
coroutine gets resumed. As soon as it reaches a ``co_yield`` and thereby
returns the requested value, the coroutine is suspended again.
This logic is encapsulated in a ``generator`` type similar to this one:
.. code-block:: c++
// generator.hpp
#include <coroutine>
// `generator` is a stripped down, minimal generator type.
template<typename T>
struct generator {
struct promise_type {
T current_value{};
auto get_return_object() {
return std::coroutine_handle<promise_type>::from_promise(*this);
}
auto initial_suspend() { return std::suspend_always(); }
auto final_suspend() noexcept { return std::suspend_always(); }
auto return_void() { return std::suspend_always(); }
void unhandled_exception() { __builtin_unreachable(); }
auto yield_value(T v) {
current_value = v;
return std::suspend_always();
}
};
generator(std::coroutine_handle<promise_type> h) : hdl(h) { hdl.resume(); }
~generator() { hdl.destroy(); }
generator<T>& operator++() { hdl.resume(); return *this; } // resume the coroutine
T operator*() const { return hdl.promise().current_value; }
private:
std::coroutine_handle<promise_type> hdl;
};
We can then use this ``generator`` class to print the Fibonacci sequence:
.. code-block:: c++
#include "generator.hpp"
#include <iostream>
generator<int> fibonacci() {
co_yield 0;
int prev = 0;
co_yield 1;
int current = 1;
while (true) {
int next = current + prev;
co_yield next;
prev = current;
current = next;
}
}
template<typename T>
void print10Elements(generator<T>& gen) {
for (unsigned i = 0; i < 10; ++i) {
std::cerr << *gen << "\n";
++gen;
}
}
int main() {
std::cerr << "Fibonacci sequence - here we go\n";
generator<int> fib = fibonacci();
for (unsigned i = 0; i < 5; ++i) {
++fib;
}
print10Elements(fib);
}
To compile this code, use ``clang++ --std=c++23 generator-example.cpp -g``.
Breakpoints inside the generators
---------------------------------
We can set breakpoints inside coroutines just as we set them in regular
functions. For VS Code, that means clicking next the line number in the editor.
In the ``lldb`` CLI or in ``gdb``, you can use ``b`` to set a breakpoint.
Inspecting variables in a coroutine
-----------------------------------
If you hit a breakpoint inside the ``fibonacci`` function, you should be able
to inspect all local variables (``prev``, ``current``, ``next``) just like in
a regular function.
.. image:: ./coro-generator-variables.png
Note the two additional variables ``__promise`` and ``__coro_frame``. Those
show the internal state of the coroutine. They are not relevant for our
generator example, but will be relevant for asynchronous programming described
in the next section.
Stepping out of a coroutine
---------------------------
When single-stepping, you will notice that the debugger will leave the
``fibonacci`` function as soon as you hit a ``co_yield`` statement. You might
find yourself inside some standard library code. After stepping out of the
library code, you will be back in the ``main`` function.
Stepping into a coroutine
-------------------------
If you stop at ``++fib`` and try to step into the generator, you will first
find yourself inside ``operator++``. Stepping into the ``handle.resume()`` will
not work by default.
This is because lldb does not step into functions from the standard library by
default. To make this work, you first need to run ``settings set
target.process.thread.step-avoid-regexp ""``. You can do so from the "Debug
Console" towards the bottom of the screen. With that setting change, you can
step through ``coroutine_handle::resume`` and into your generator.
You might find yourself at the top of the coroutine at first, instead of at
your previous suspension point. In that case, single-step and you will arrive
at the previously suspended ``co_yield`` statement.
Inspecting a suspended coroutine
--------------------------------
The ``print10Elements`` function receives an opaque ``generator`` type. Let's
assume we are suspended at the ``++gen;`` line, and want to inspect the
generator and its internal state.
To do so, we can simply look into the ``gen.hdl`` variable. LLDB comes with a
pretty printer for ``std::coroutine_handle`` which will show us the internal
state of the coroutine. For GDB, you will have to use the ``show-coro-frame``
command provided by the :ref:`gdb-script`.
.. image:: ./coro-generator-suspended.png
We can see two function pointers ``resume`` and ``destroy``. These pointers
point to the resume / destroy functions. By inspecting those function pointers,
we can see that our ``generator`` is actually backed by our ``fibonacci``
coroutine. When using VS Code + lldb-dap, you can Cmd+Click on the function
address (``0x555...`` in the screenshot) to directly jump to the function
definition backing your coroutine handle.
Next, we see the ``promise``. In our case, this reveals the current value of
our generator.
The ``coro_frame`` member represents the internal state of the coroutine. It
contains our internal coroutine state ``prev``, ``current``, ``next``.
Furthermore, it contains many internal, compiler-specific members, which are
named based on their type. These represent temporary values which the compiler
decided to spill across suspension points, but which were not declared in our
original source code and hence have no proper user-provided name.
Tracking the exact suspension point
-----------------------------------
Among the compiler-generated members, the ``__coro_index`` is particularly
important. This member identifies the suspension point at which the coroutine
is currently suspended.
However, it is non-trivial to map this number back to a source code location.
The compiler emits debug info labels for the suspension points. This allows us
to map the suspension point index back to a source code location. In gdb, we
can use the ``info line`` command to get the source code location of the
suspension point.
::
(gdb) info line -function coro_task -label __coro_resume_2
Line 45 of "llvm-example.cpp" starts at address 0x1b1b <_ZL9coro_taski.resume+555> and ends at 0x1b46 <_ZL9coro_taski.resume+598>.
Line 45 of "llvm-example.cpp" starts at address 0x201b <_ZL9coro_taski.destroy+555> and ends at 0x2046 <_ZL9coro_taski.destroy+598>.
Line 45 of "llvm-example.cpp" starts at address 0x253b <_ZL9coro_taski.cleanup+555> and ends at 0x2566 <_ZL9coro_taski.cleanup+598>.
LLDB does not support looking up labels. Furthermore, those labels are only emitted
starting with clang 21.0.
For simple cases, you might still be able to guess the suspension point correctly.
Alternatively, you might also want to modify your coroutine library to store
the line number of the current suspension point in the promise:
.. code-block:: c++
// For all promise_types we need a new `_coro_return_address` variable:
class promise_type {
...
void* _coro_return_address = nullptr;
};
// For all the awaiter types we need:
class awaiter {
...
template <typename Promise>
__attribute__((noinline)) auto await_suspend(std::coroutine_handle<Promise> handle) {
...
handle.promise()._coro_return_address = __builtin_return_address(0);
}
};
This stores the return address of ``await_suspend`` within the promise.
Thereby, we can read it back from the promise of a suspended coroutine, and map
it to an exact source code location. For a complete example, see the ``task``
type used below for asynchronous programming.
Alternatively, we can modify the C++ code to store the line number in the
promise type. We can use a ``std::source_location`` to get the line number of
the await and store it inside the ``promise_type``. In the debugger, we can
then read the line number from the promise of the suspended coroutine.
.. code-block:: c++
// For all the awaiter types we need:
class awaiter {
...
template <typename Promise>
void await_suspend(std::coroutine_handle<Promise> handle,
std::source_location sl = std::source_location::current()) {
...
handle.promise().line_number = sl.line();
}
};
The downside of both approaches is that they come at the price of additional
runtime cost. In particular the second approach increases binary size, since it
requires additional ``std::source_location`` objects, and those source
locations are not stripped by split-dwarf. Whether the first approach is worth
the additional runtime cost is a trade-off you need to make yourself.
Async stack traces
==================
Besides generators, the second common use case for coroutines in C++ is
asynchronous programming, usually involving libraries such as stdexec, folly,
cppcoro, boost::asio, or similar libraries. Some of those libraries already
provide custom debugging support, so in addition to this guide, you might want
to check out their documentation.
When using coroutines for asynchronous programming, your library usually
provides you some ``task`` type. This type usually looks similar to this:
.. code-block:: c++
// async-task-library.hpp
#include <coroutine>
#include <utility>
struct task {
struct promise_type {
task get_return_object() { return std::coroutine_handle<promise_type>::from_promise(*this); }
auto initial_suspend() { return std::suspend_always{}; }
void unhandled_exception() noexcept {}
auto final_suspend() noexcept {
struct FinalSuspend {
std::coroutine_handle<> continuation;
auto await_ready() noexcept { return false; }
auto await_suspend(std::coroutine_handle<> handle) noexcept {
return continuation;
}
void await_resume() noexcept {}
};
return FinalSuspend{continuation};
}
void return_value(int res) { result = res; }
std::coroutine_handle<> continuation = std::noop_coroutine();
int result = 0;
#ifndef NDEBUG
void* _coro_suspension_point_addr = nullptr;
#endif
};
task(std::coroutine_handle<promise_type> handle) : handle(handle) {}
~task() {
if (handle)
handle.destroy();
}
struct Awaiter {
std::coroutine_handle<promise_type> handle;
auto await_ready() { return false; }
template <typename P>
#ifndef NDEBUG
__attribute__((noinline))
#endif
auto await_suspend(std::coroutine_handle<P> continuation) {
handle.promise().continuation = continuation;
#ifndef NDEBUG
continuation.promise()._coro_suspension_point_addr = __builtin_return_address(0);
#endif
return handle;
}
int await_resume() {
return handle.promise().result;
}
};
auto operator co_await() {
return Awaiter{handle};
}
int syncStart() {
handle.resume();
return handle.promise().result;
}
private:
std::coroutine_handle<promise_type> handle;
};
Note how the ``task::promise_type`` has a member variable
``std::coroutine_handle<> continuation``. This is the handle of the coroutine
that will be resumed when the current coroutine is finished executing (see
``final_suspend``). In a sense, this is the "return address" of the coroutine.
It is set inside ``operator co_await`` when another coroutine calls our
generator and awaits for the next value to be produced.
The result value is returned via the ``int result`` member. It is written in
``return_value`` and read by ``Awaiter::await_resume``. Usually, the result
type of a task is a template argument. For simplicity's sake, we hard-coded the
``int`` type in this example.
Stack traces of in-flight coroutines
------------------------------------
Let's assume you have the following program and set a breakpoint inside the
``write_output`` function. There are multiple call paths through which this
function could have been reached. How can we find out said call path?
.. code-block:: c++
#include <iostream>
#include <string_view>
#include "async-task-library.hpp"
static task write_output(std::string_view contents) {
std::cout << contents << "\n";
co_return contents.size();
}
static task greet() {
int bytes_written = 0;
bytes_written += co_await write_output("Hello");
bytes_written += co_await write_output("World");
co_return bytes_written;
}
int main() {
int bytes_written = greet().syncStart();
std::cout << "Bytes written: " << bytes_written << "\n";
return 0;
}
To do so, let's break inside ``write_output``. We can understand our call-stack
by looking into the special ``__promise`` variable. This artificial variable is
generated by the compiler and points to the ``promise_type`` instance
corresponding to the currently in-flight coroutine. In this case, the
``__promise`` variable contains the ``continuation`` which points to our
caller. That caller again contains a ``promise`` with a ``continuation`` which
points to our caller's caller.
.. image:: ./coro-async-task-continuations.png
We can figure out the involved coroutine functions and their current suspension
points as discussed above in the "Inspecting a suspended coroutine" section.
When using LLDB's CLI, the command ``p --ptr-depth 4 __promise`` might also be
useful to automatically dereference all the pointers up to the given depth.
To get a flat representation of that call stack, we can use a debugger script,
such as the one shown in the :ref:`lldb-script` section. With that
script, we can run ``coro bt`` to get the following stack trace:
.. code-block::
(lldb) coro bt
frame #0: write_output(std::basic_string_view<char, std::char_traits<char>>) at /home/avogelsgesang/Documents/corotest/async-task-example.cpp:6:16
[async] frame #1: greet() at /home/avogelsgesang/Documents/corotest/async-task-example.cpp:12:20
[async] frame #2: std::__n4861::coroutine_handle<std::__n4861::noop_coroutine_promise>::__frame::__dummy_resume_destroy() at /usr/include/c++/14/coroutine:298, suspension point unknown
frame #3: std::__n4861::coroutine_handle<task::promise_type>::resume() const at /usr/include/c++/14/coroutine:242:29
frame #4: task::syncStart() at /home/avogelsgesang/Documents/corotest/async-task-library.hpp:78:14
frame #5: main at /home/avogelsgesang/Documents/corotest/async-task-example.cpp:18:11
frame #6: __libc_start_call_main at sysdeps/nptl/libc_start_call_main.h:58:16
frame #7: __libc_start_main_impl at csu/libc-start.c:360:3
frame #8: _start at :4294967295
Note how the frames #1 and #2 are async frames.
The ``coro bt`` command already includes logic to identify the exact suspension
point of each frame based on the ``_coro_suspension_point_addr`` stored inside
the promise.
Stack traces of suspended coroutines
------------------------------------
Usually, while a coroutine is waiting for, e.g., an in-flight network request,
the suspended ``coroutine_handle`` is stored within the work queues inside the
IO scheduler. As soon as we get hold of the coroutine handle, we can backtrace
it by using ``coro bt <coro_handle>`` where ``<coro_handle>`` is an expression
evaluating to the coroutine handle of the suspended coroutine.
Keeping track of all existing coroutines
----------------------------------------
Usually, we should be able to get hold of all currently suspended coroutines by
inspecting the worker queues of the IO scheduler. In cases where this is not
possible, we can use the following approach to keep track of all currently
suspended coroutines.
One such solution is to store the list of in-flight coroutines in a collection:
.. code-block:: c++
inline std::unordered_set<std::coroutine_handle<void>> inflight_coroutines;
inline std::mutex inflight_coroutines_mutex;
class promise_type {
public:
promise_type() {
std::unique_lock<std::mutex> lock(inflight_coroutines_mutex);
inflight_coroutines.insert(std::coroutine_handle<promise_type>::from_promise(*this));
}
~promise_type() {
std::unique_lock<std::mutex> lock(inflight_coroutines_mutex);
inflight_coroutines.erase(std::coroutine_handle<promise_type>::from_promise(*this));
}
};
With this in place, it is possible to inspect ``inflight_coroutines`` from the
debugger, and rely on LLDB's ``std::coroutine_handle`` pretty-printer to
inspect the coroutines.
This technique will track *all* coroutines, also the ones which are currently
awaiting another coroutine, though. To identify just the "roots" of our
in-flight coroutines, we can use the ``coro in-flight inflight_coroutines``
command provided by the :ref:`lldb-script`.
Please note that the above is expensive from a runtime performance perspective,
and requires locking to prevent data races. As such, it is not recommended to
use this approach in production code.
Known issues & workarounds for older LLDB versions
==================================================
LLDB before 21.0 did not yet show the ``__coro_frame`` inside
``coroutine_handle``. To inspect the coroutine frame, you had to use the
approach described in the :ref:`devirtualization` section.
LLDB before 18.0 was hiding the ``__promise`` and ``__coro_frame``
variable by default. The variables are still present, but they need to be
explicitly added to the "watch" pane in VS Code or requested via
``print __promise`` and ``print __coro_frame`` from the debugger console.
LLDB before 16.0 did not yet provide a pretty-printer for
``std::coroutine_handle``. To inspect the coroutine handle, you had to manually
use the approach described in the :ref:`devirtualization`
section.
Toolchain Implementation Details
================================
This section covers the ABI, as well as additional compiler-specific behavior.
The ABI is followed by all compilers, on all major systems, including Windows,
Linux and macOS. Different compilers emit different debug information, though.
Ramp, resume and destroy functions
----------------------------------
Every coroutine is split into three parts:
* The ramp function allocates the coroutine frame and initializes it, usually
copying over all variables into the coroutine frame
* The resume function continues the coroutine from its previous suspension point
* The destroy function destroys and deallocates the coroutine frame
* The cleanup function destroys the coroutine frame but does not deallocate it.
It is used when the coroutine's allocation was elided thanks to
`Heap Allocation Elision (HALO) <https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0981r0.html>`_
The ramp function is called by the coroutine's caller, and available under the
original function name used in the C++ source code. The resume function is
called via ``std::coroutine_handle::resume``. The destroy function is called
via ``std::coroutine_handle::destroy``.
Information between the three functions is passed via the coroutine frame, a
compiler-synthesized struct that contains all necessary internal state. The
resume function knows where to resume execution by reading the suspension point
index from the coroutine frame. Similarly, the destroy function relies on the
suspension point index to know which variables are currently in scope and need
to be destructed.
Usually, the destroy function calls all destructors and deallocates the
coroutine frame. When a coroutine frame was elided thanks to HALO, only the
destructors need to be called, but the coroutine frame must not be deallocated.
In those cases, the cleanup function is used instead of the destroy function.
For coroutines allocated with ``[[clang::coro_await_elidable]]``, clang also
generates a ``.noalloc`` variant of the ramp function, which does not allocate
the coroutine frame by itself, but instead expects the caller to allocate the
coroutine frame and pass it to the ramp function.
When trying to intercept all creations of new coroutines in the debugger, you
hence might have to set breakpoints in the ramp function and its ``.noalloc``
variant.
Artificial ``__promise`` and ``__coro_frame`` variables
-------------------------------------------------------
Inside all coroutine functions, clang / LLVM synthesize a ``__promise`` and
``__coro_frame`` variable. These variables are used to store the coroutine's
state. When inside the coroutine function, those can be used to directly
inspect the promise and the coroutine frame of the own function.
The ABI of a coroutine
----------------------
A ``std::coroutine_handle`` essentially only holds a pointer to a coroutine
frame. It resembles the following struct:
.. code-block:: c++
template<typename promise_type>
struct coroutine_handle {
void* __coroutine_frame = nullptr;
};
The structure of coroutine frames is defined as
.. code-block:: c++
struct my_coroutine_frame {
void (*__resume)(coroutine_frame*); // function pointer to the `resume` function
void (*__destroy)(coroutine_frame*); // function pointer to the `destroy` function
promise_type promise; // the corresponding `promise_type`
... // Internal coroutine state
}
For each coroutine, the compiler synthesizes a different coroutine type,
storing all necessary internal state. The actual coroutine type is type-erased
behind the ``std::coroutine_handle``.
However, all coroutine frames always contain the ``resume`` and ``destroy``
functions as their first two members. As such, we can read the function
pointers from the coroutine frame and then obtain the function's name from its
address.
The promise is guaranteed to be at a 16 byte offset from the coroutine frame.
If we have a coroutine handle at address 0x416eb0, we can hence reinterpret-cast
the promise as follows:
.. code-block:: text
print (task::promise_type)*(0x416eb0+16)
Implementation in clang / LLVM
------------------------------
The C++ Coroutines feature in the Clang compiler is implemented in two parts of
the compiler. Semantic analysis is performed in Clang, and Coroutine
construction and optimization takes place in the LLVM middle-end.
For each coroutine function, the frontend generates a single corresponding
LLVM-IR function. This function uses special ``llvm.coro.suspend`` intrinsics
to mark the suspension points of the coroutine. The middle end first optimizes
this function and applies, e.g., constant propagation across the whole,
non-split coroutine.
CoroSplit then splits the function into ramp, resume and destroy functions.
This pass also moves stack-local variables which are alive across suspension
points into the coroutine frame. Most of the heavy lifting to preserve debugging
information is done in this pass. This pass needs to rewrite all variable
locations to point into the coroutine frame.
Afterwards, a couple of additional optimizations are applied, before code
gets emitted, but none of them are really interesting regarding debugging
information.
For more details on the IR representation of coroutines and the relevant
optimization passes, see `Coroutines in LLVM <https://llvm.org/docs/Coroutines.html>`_.
Emitting debug information inside ``CoroSplit`` forces us to generate
insufficient debugging information. Usually, the compiler generates debug
information in the frontend, as debug information is highly language specific.
However, this is not possible for coroutine frames because the frames are
constructed in the LLVM middle-end.
To mitigate this problem, the LLVM middle end attempts to generate some debug
information, which is unfortunately incomplete, since much of the language
specific information is missing in the middle end.
.. _devirtualization:
Devirtualization of coroutine handles
-------------------------------------
Figuring out the promise type and the coroutine frame type of a coroutine
handle requires inspecting the ``resume`` and ``destroy`` function pointers.
There are two possible approaches to do so:
1. clang always names the type by appending ``.coro_frame_ty`` to the
linkage name of the ramp function.
2. Both clang and GCC add the function-local ``__promise`` and
``__coro_frame`` variables to the resume and destroy functions.
We can lookup their types and thereby get the types of promise
and coroutine frame.
In gdb, one can use the following approach to devirtualize coroutine type,
assuming we have a ``std::coroutine_handle`` is at address 0x418eb0:
::
(gdb) # Get the address of coroutine frame
(gdb) print/x *0x418eb0
$1 = 0x4019e0
(gdb) # Get the linkage name for the coroutine
(gdb) x 0x4019e0
0x4019e0 <_ZL9coro_taski>: 0xe5894855
(gdb) # Turn off the demangler temporarily to avoid the debugger misunderstanding the name.
(gdb) set demangle-style none
(gdb) # The coroutine frame type is 'linkage_name.coro_frame_ty'
(gdb) print ('_ZL9coro_taski.coro_frame_ty')*(0x418eb0)
$2 = {__resume_fn = 0x4019e0 <coro_task(int)>, __destroy_fn = 0x402000 <coro_task(int)>, __promise = {...}, ...}
In practice, one would use the ``show-coro-frame`` command provided by the
:ref:`gdb-script`.
LLDB comes with devirtualization support out of the box, as part of the
pretty-printer for ``std::coroutine_handle``. Internally, this pretty-printer
uses the second approach. We look up the types in the destroy function and not
the resume function because the resume function pointer will be set to a
nullptr as soon as a coroutine reaches its final suspension point. If we used
the resume function, devirtualization would hence fail for all coroutines that
have reached their final suspension point.
Interpreting the coroutine frame in optimized builds
----------------------------------------------------
The ``__coro_frame`` variable usually refers to the coroutine frame of an
*in-flight* coroutine. This means, the coroutine is currently executing.
However, the compiler only guarantees the coroutine frame to be in a consistent
state while the coroutine is suspended. As such, the variables inside the
``__coro_frame`` variable might be outdated, in particular when optimizations
are enabled.
Furthermore, when optimizations are enabled, the compiler will layout the
coroutine frame more aggressively. Unused values are optimized out, and the
state will usually contain only the minimal information required to reconstruct
the coroutine's state.
clang / LLVM usually use variables like ``__int_32_0`` to represent this
optimized storage. Those values usually do not directly correspond to variables
in the source code.
When compiling the program
.. code-block:: c++
static task coro_task(int v) {
int a = v;
co_await some_other_task();
a++; // __int_32_0 is 43 here
std::cout << a << "\n";
a++; // __int_32_0 is still 43 here
std::cout << a << "\n";
a++; // __int_32_0 is still 43 here!
std::cout << a << "\n";
co_await some_other_task();
a++; // __int_32_0 is still 43 here!!
std::cout << a << "\n";
a++; // Why is __int_32_0 still 43 here?
std::cout << a << "\n";
}
clang creates a single entry ``__int_32_0`` in the coroutine state.
Intuitively, one might assume that ``__int_32_0`` represents the value of the
local variable ``a``. However, inspecting ``__int_32_0`` in the debugger while
single-stepping will reveal that the value of ``__int_32_0`` stays constant,
despite ``a`` being frequently incremented.
While this might be surprising, this is a result of the optimizer recognizing
that it can eliminate most of the load/store operations.
The above code gets optimized to the equivalent of:
.. code-block:: c++
static task coro_task(int v) {
store v into __int_32_0 in the frame
co_await await_counter{};
a = load __int_32_0
std::cout << a+1 << "\n";
std::cout << a+2 << "\n";
std::cout << a+3 << "\n";
co_await await_counter{};
a = load __int_32_0
std::cout << a+4 << "\n";
std::cout << a+5 << "\n";
}
It should now be obvious why the value of ``__int_32_0`` remains unchanged
throughout the function. It is important to recognize that ``__int_32_0`` does
not directly correspond to ``a``, but is instead a variable generated to assist
the compiler in code generation. The variables in an optimized coroutine frame
should not be thought of as directly representing the variables in the C++
source.
Resources
=========
.. _lldb-script:
LLDB Debugger Script
--------------------
The following script provides the ``coro bt`` and ``coro in-flight`` commands
discussed above. It can be loaded into LLDB using ``command script import
lldb_coro_debugging.py``. To load this by default, add this command to your
``~/.lldbinit`` file.
Note that this script requires LLDB 21.0 or newer.
.. code-block:: python
# lldb_coro_debugging.py
import lldb
from lldb.plugins.parsed_cmd import ParsedCommand
def _get_first_var_path(v, paths):
"""
Tries multiple variable paths via `GetValueForExpressionPath`
and returns the first one that succeeds, or None if none succeed.
"""
for path in paths:
var = v.GetValueForExpressionPath(path)
if var.error.Success():
return var
return None
def _print_async_bt(coro_hdl, result, *, curr_idx, start, limit, continuation_paths, prefix=""):
"""
Prints a backtrace for an async coroutine stack starting from `coro_hdl`,
using the given `continuation_paths` to get the next coroutine from the promise.
"""
target = coro_hdl.GetTarget()
while curr_idx < limit and coro_hdl is not None and coro_hdl.error.Success():
# Print the stack frame, if in range
if curr_idx >= start:
# Figure out the function name
destroy_func_var = coro_hdl.GetValueForExpressionPath(".destroy")
destroy_addr = target.ResolveLoadAddress(destroy_func_var.GetValueAsAddress())
func_name = destroy_addr.function.name
# Figure out the line entry to show
suspension_addr_var = coro_hdl.GetValueForExpressionPath(".promise._coro_suspension_point_addr")
if suspension_addr_var.error.Success():
line_entry = target.ResolveLoadAddress(suspension_addr_var.GetValueAsAddress()).line_entry
print(f"{prefix} frame #{curr_idx}: {func_name} at {line_entry}", file=result)
else:
# We don't know the exact line, print the suspension point ID, so we at least show
# the id of the current suspension point
suspension_point_var = coro_hdl.GetValueForExpressionPath(".coro_frame.__coro_index")
if suspension_point_var.error.Success():
suspension_point = suspension_point_var.GetValueAsUnsigned()
else:
suspension_point = "unknown"
line_entry = destroy_addr.line_entry
print(f"{prefix} frame #{curr_idx}: {func_name} at {line_entry}, suspension point {suspension_point}", file=result)
# Move to the next stack frame
curr_idx += 1
promise_var = coro_hdl.GetChildMemberWithName("promise")
coro_hdl = _get_first_var_path(promise_var, continuation_paths)
return curr_idx
def _print_combined_bt(frame, result, *, unfiltered, curr_idx, start, limit, continuation_paths):
"""
Prints a backtrace starting from `frame`, interleaving async coroutine frames
with regular frames.
"""
while curr_idx < limit and frame.IsValid():
if curr_idx >= start and (unfiltered or not frame.IsHidden()):
print(f"frame #{curr_idx}: {frame.name} at {frame.line_entry}", file=result)
curr_idx += 1
coro_var = _get_first_var_path(frame.GetValueForVariablePath("__promise"), continuation_paths)
if coro_var:
curr_idx = _print_async_bt(coro_var, result,
curr_idx=curr_idx, start=start, limit=limit,
continuation_paths=continuation_paths, prefix="[async]")
frame = frame.parent
class CoroBacktraceCommand(ParsedCommand):
def get_short_help(self):
return "Create a backtrace for C++-20 coroutines"
def get_flags(self):
return lldb.eCommandRequiresFrame | lldb.eCommandProcessMustBePaused
def setup_command_definition(self):
ov_parser = self.get_parser()
ov_parser.add_option(
"e",
"continuation-expr",
help = (
"Semi-colon-separated list of expressions evaluated against the promise object"
"to get the next coroutine (e.g. `.continuation;.coro_parent`)"
),
value_type = lldb.eArgTypeNone,
dest = "continuation_expr_arg",
default = ".continuation",
)
ov_parser.add_option(
"c",
"count",
help = "How many frames to display (0 for all)",
value_type = lldb.eArgTypeCount,
dest = "count_arg",
default = 20,
)
ov_parser.add_option(
"s",
"start",
help = "Frame in which to start the backtrace",
value_type = lldb.eArgTypeIndex,
dest = "frame_index_arg",
default = 0,
)
ov_parser.add_option(
"u",
"unfiltered",
help = "Do not filter out frames according to installed frame recognizers",
value_type = lldb.eArgTypeBoolean,
dest = "unfiltered_arg",
default = False,
)
ov_parser.add_argument_set([
ov_parser.make_argument_element(
lldb.eArgTypeExpression,
repeat="optional"
)
])
def __call__(self, debugger, args_array, exe_ctx, result):
ov_parser = self.get_parser()
continuation_paths = ov_parser.continuation_expr_arg.split(";")
count = ov_parser.count_arg
if count == 0:
count = 99999
frame_index = ov_parser.frame_index_arg
unfiltered = ov_parser.unfiltered_arg
frame = exe_ctx.GetFrame()
if not frame.IsValid():
result.SetError("invalid frame")
return
if len(args_array) > 1:
result.SetError("At most one expression expected")
return
elif len(args_array) == 1:
expr = args_array.GetItemAtIndex(0).GetStringValue(9999)
coro_hdl = frame.EvaluateExpression(expr)
if not coro_hdl.error.Success():
result.AppendMessage(
f'error: expression failed {expr} => {coro_hdl.error}'
)
result.SetError(f"Expression `{expr}` failed to evaluate")
return
_print_async_bt(coro_hdl, result,
curr_idx = 0, start = frame_index, limit = frame_index + count,
continuation_paths = continuation_paths)
else:
_print_combined_bt(frame, result, unfiltered=unfiltered,
curr_idx = 0, start = frame_index, limit = frame_index + count,
continuation_paths = continuation_paths)
class CoroInflightCommand(ParsedCommand):
def get_short_help(self):
return "Identify all in-flight coroutines"
def get_flags(self):
return lldb.eCommandRequiresTarget | lldb.eCommandProcessMustBePaused
def setup_command_definition(self):
ov_parser = self.get_parser()
ov_parser.add_option(
"e",
"continuation-expr",
help = (
"Semi-colon-separated list of expressions evaluated against the promise object"
"to get the next coroutine (e.g. `.continuation;.coro_parent`)"
),
value_type = lldb.eArgTypeNone,
dest = "continuation_expr_arg",
default = ".continuation",
)
ov_parser.add_option(
"c",
"count",
help = "How many frames to display (0 for all)",
value_type = lldb.eArgTypeCount,
dest = "count_arg",
default = 5,
)
ov_parser.add_argument_set([
ov_parser.make_argument_element(
lldb.eArgTypeExpression,
repeat="plus"
)
])
def __call__(self, debugger, args_array, exe_ctx, result):
ov_parser = self.get_parser()
continuation_paths = ov_parser.continuation_expr_arg.split(";")
count = ov_parser.count_arg
# Collect all coroutine_handles from the provided containers
all_coros = []
for entry in args_array:
expr = entry.GetStringValue(9999)
if exe_ctx.frame.IsValid():
coro_container = exe_ctx.frame.EvaluateExpression(expr)
else:
coro_container = exe_ctx.target.EvaluateExpression(expr)
if not coro_container.error.Success():
result.AppendMessage(
f'error: expression failed {expr} => {coro_container.error}'
)
result.SetError(f"Expression `{expr}` failed to evaluate")
return
for entry in coro_container.children:
if "coroutine_handle" not in entry.GetType().name:
result.SetError(f"Found entry of type {entry.GetType().name} in {expr},"
" expected a coroutine handle")
return
all_coros.append(entry)
# Remove all coroutines that are currently waiting for other coroutines to finish
coro_roots = {c.GetChildMemberWithName("coro_frame").GetValueAsAddress(): c for c in all_coros}
for coro_hdl in all_coros:
parent_coro = _get_first_var_path(coro_hdl.GetChildMemberWithName("promise"), continuation_paths)
parent_addr = parent_coro.GetChildMemberWithName("coro_frame").GetValueAsAddress()
if parent_addr in coro_roots:
del coro_roots[parent_addr]
# Print all remaining coroutines
for addr, root_hdl in coro_roots.items():
print(f"coroutine root 0x{addr:x}", file=result)
_print_async_bt(root_hdl, result,
curr_idx=0, start=0, limit=count,
continuation_paths=continuation_paths, prefix=" ")
def __lldb_init_module(debugger, internal_dict):
debugger.HandleCommand("command container add -h 'Debugging utilities for C++20 coroutines' coro")
debugger.HandleCommand(f"command script add -o -p -c {__name__}.CoroBacktraceCommand coro bt")
debugger.HandleCommand(f"command script add -o -p -c {__name__}.CoroInflightCommand coro in-flight")
print("Coro debugging utilities installed. Use `help coro` to see available commands.")
if __name__ == '__main__':
print("This script should be loaded from LLDB using `command script import <filename>`")
.. _gdb-script:
GDB Debugger Script
-------------------
For GDB, the following script provides a couple of useful commands:
* ``async-bt`` to print the stack trace of a coroutine
* ``show-coro-frame`` to print the coroutine frame, similar to
LLDB's builtin pretty-printer for coroutine frames
.. code-block:: python
# debugging-helper.py
import gdb
from gdb.FrameDecorator import FrameDecorator
class SymValueWrapper():
def __init__(self, symbol, value):
self.sym = symbol
self.val = value
def __str__(self):
return str(self.sym) + " = " + str(self.val)
def get_long_pointer_size():
return gdb.lookup_type('long').pointer().sizeof
def cast_addr2long_pointer(addr):
return gdb.Value(addr).cast(gdb.lookup_type('long').pointer())
def dereference(addr):
return long(cast_addr2long_pointer(addr).dereference())
class CoroutineFrame(object):
def __init__(self, task_addr):
self.frame_addr = task_addr
self.resume_addr = task_addr
self.destroy_addr = task_addr + get_long_pointer_size()
self.promise_addr = task_addr + get_long_pointer_size() * 2
# In the example, the continuation is the first field member of the promise_type.
# So they have the same addresses.
# If we want to generalize the scripts to other coroutine types, we need to be sure
# the continuation field is the first member of promise_type.
self.continuation_addr = self.promise_addr
def next_task_addr(self):
return dereference(self.continuation_addr)
class CoroutineFrameDecorator(FrameDecorator):
def __init__(self, coro_frame):
super(CoroutineFrameDecorator, self).__init__(None)
self.coro_frame = coro_frame
self.resume_func = dereference(self.coro_frame.resume_addr)
self.resume_func_block = gdb.block_for_pc(self.resume_func)
if self.resume_func_block is None:
raise Exception('Not stackless coroutine.')
self.line_info = gdb.find_pc_line(self.resume_func)
def address(self):
return self.resume_func
def filename(self):
return self.line_info.symtab.filename
def frame_args(self):
return [SymValueWrapper("frame_addr", cast_addr2long_pointer(self.coro_frame.frame_addr)),
SymValueWrapper("promise_addr", cast_addr2long_pointer(self.coro_frame.promise_addr)),
SymValueWrapper("continuation_addr", cast_addr2long_pointer(self.coro_frame.continuation_addr))
]
def function(self):
return self.resume_func_block.function.print_name
def line(self):
return self.line_info.line
class StripDecorator(FrameDecorator):
def __init__(self, frame):
super(StripDecorator, self).__init__(frame)
self.frame = frame
f = frame.function()
self.function_name = f
def __str__(self, shift = 2):
addr = "" if self.address() is None else '%#x' % self.address() + " in "
location = "" if self.filename() is None else " at " + self.filename() + ":" + str(self.line())
return addr + self.function() + " " + str([str(args) for args in self.frame_args()]) + location
class CoroutineFilter:
def create_coroutine_frames(self, task_addr):
frames = []
while task_addr != 0:
coro_frame = CoroutineFrame(task_addr)
frames.append(CoroutineFrameDecorator(coro_frame))
task_addr = coro_frame.next_task_addr()
return frames
class AsyncStack(gdb.Command):
def __init__(self):
super(AsyncStack, self).__init__("async-bt", gdb.COMMAND_USER)
def invoke(self, arg, from_tty):
coroutine_filter = CoroutineFilter()
argv = gdb.string_to_argv(arg)
if len(argv) == 0:
try:
task = gdb.parse_and_eval('__coro_frame')
task = int(str(task.address), 16)
except Exception:
print ("Can't find __coro_frame in current context.\n" +
"Please use `async-bt` in stackless coroutine context.")
return
elif len(argv) != 1:
print("usage: async-bt <pointer to task>")
return
else:
task = int(argv[0], 16)
frames = coroutine_filter.create_coroutine_frames(task)
i = 0
for f in frames:
print '#'+ str(i), str(StripDecorator(f))
i += 1
return
AsyncStack()
class ShowCoroFrame(gdb.Command):
def __init__(self):
super(ShowCoroFrame, self).__init__("show-coro-frame", gdb.COMMAND_USER)
def invoke(self, arg, from_tty):
argv = gdb.string_to_argv(arg)
if len(argv) != 1:
print("usage: show-coro-frame <address of coroutine frame>")
return
addr = int(argv[0], 16)
block = gdb.block_for_pc(long(cast_addr2long_pointer(addr).dereference()))
if block is None:
print "block " + str(addr) + " is None."
return
# Disable demangling since gdb will treat names starting with `_Z`(The marker for Itanium ABI) specially.
gdb.execute("set demangle-style none")
coro_frame_type = gdb.lookup_type(block.function.linkage_name + ".coro_frame_ty")
coro_frame_ptr_type = coro_frame_type.pointer()
coro_frame = gdb.Value(addr).cast(coro_frame_ptr_type).dereference()
gdb.execute("set demangle-style auto")
gdb.write(coro_frame.format_string(pretty_structs = True))
ShowCoroFrame()
Further Reading
---------------
The authors of the Folly libraries wrote a blog post series on how they debug coroutines:
* `Async stack traces in folly: Introduction <https://developers.facebook.com/blog/post/2021/09/16/async-stack-traces-folly-Introduction/>`_
* `Async stack traces in folly: Synchronous and asynchronous stack traces <https://developers.facebook.com/blog/post/2021/09/23/async-stack-traces-folly-synchronous-asynchronous-stack-traces/>`_
* `Async stack traces in folly: Forming an async stack from individual frames <https://developers.facebook.com/blog/post/2021/09/30/async-stack-traces-folly-forming-async-stack-individual-frames/>`_
* `Async Stack Traces for C++ Coroutines in Folly: Walking the async stack <https://developers.facebook.com/blog/post/2021/10/14/async-stack-traces-c-plus-plus-coroutines-folly-walking-async-stack/>`_
* `Async stack traces in folly: Improving debugging in the developer lifecycle <https://developers.facebook.com/blog/post/2021/10/21/async-stack-traces-folly-improving-debugging-developer-lifecycle/>`_
Besides some topics also covered here (stack traces from the debugger), Folly's blog post series also covers
more additional topics, such as capturing async stack traces in performance profiles via eBPF filters
and printing async stack traces on crashes.
|