File: DebuggingCoroutines.rst

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,235,796 kB
  • sloc: cpp: 7,617,614; ansic: 1,433,901; asm: 1,058,726; python: 252,096; f90: 94,671; objc: 70,753; lisp: 42,813; pascal: 18,401; sh: 10,032; ml: 5,111; perl: 4,720; awk: 3,523; makefile: 3,401; javascript: 2,272; xml: 892; fortran: 770
file content (1184 lines) | stat: -rw-r--r-- 48,635 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
========================
Debugging C++ Coroutines
========================

.. contents::
   :local:

Introduction
============

Coroutines in C++ were introduced in C++20, and the user experience for
debugging them can still be challenging. This document guides you how to most
efficiently debug coroutines and how to navigate existing shortcomings in
debuggers and compilers.

Coroutines are generally used either as generators or for asynchronous
programming. In this document, we will discuss both use cases. Even if you are
using coroutines for asynchronous programming, you should still read the
generators section, as it will introduce foundational debugging techniques also
applicable to the debugging of asynchronous programs.

Both compilers (clang, gcc, ...) and debuggers (lldb, gdb, ...) are
still improving their support for coroutines. As such, we recommend using the
latest available version of your toolchain.

This document focuses on clang and lldb. The screenshots show
`lldb-dap <https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.lldb-dap>`_
in combination with VS Code. The same techniques can also be used in other
IDEs.

Debugging clang-compiled binaries with gdb is possible, but requires more
scripting. This guide comes with a basic GDB script for coroutine debugging.

This guide will first showcase the more polished, bleeding-edge experience, but
will also show you how to debug coroutines with older toolchains. In general,
the older your toolchain, the deeper you will have to dive into the
implementation details of coroutines (such as their ABI). The further down in
this document you go, the more low-level, technical the content will become. If
you are on an up-to-date toolchain, you will hopefully be able to stop reading
earlier.

Debugging generators
====================

One of the two major use cases for coroutines in C++ are generators, i.e.,
functions which can produce values via ``co_yield``. Values are produced
lazily, on-demand. For this purpose, every time a new value is requested, the
coroutine gets resumed. As soon as it reaches a ``co_yield`` and thereby
returns the requested value, the coroutine is suspended again.

This logic is encapsulated in a ``generator`` type similar to this one:

.. code-block:: c++

  // generator.hpp
  #include <coroutine>

  // `generator` is a stripped down, minimal generator type.
  template<typename T>
  struct generator {
    struct promise_type {
      T current_value{};

      auto get_return_object() {
        return std::coroutine_handle<promise_type>::from_promise(*this);
      }
      auto initial_suspend() { return std::suspend_always(); }
      auto final_suspend() noexcept { return std::suspend_always(); }
      auto return_void() { return std::suspend_always(); }
      void unhandled_exception() { __builtin_unreachable(); }
      auto yield_value(T v) {
        current_value = v;
        return std::suspend_always();
      }
    };

    generator(std::coroutine_handle<promise_type> h) : hdl(h) { hdl.resume(); }
    ~generator() { hdl.destroy(); }

    generator<T>& operator++() { hdl.resume(); return *this; } // resume the coroutine
    T operator*() const { return hdl.promise().current_value; }

    private:
    std::coroutine_handle<promise_type> hdl;
  };

We can then use this ``generator`` class to print the Fibonacci sequence:

.. code-block:: c++

  #include "generator.hpp"
  #include <iostream>

  generator<int> fibonacci() {
    co_yield 0;
    int prev = 0;
    co_yield 1;
    int current = 1;
    while (true) {
      int next = current + prev;
      co_yield next;
      prev = current;
      current = next;
    }
  }

  template<typename T>
  void print10Elements(generator<T>& gen) {
    for (unsigned i = 0; i < 10; ++i) {
      std::cerr << *gen << "\n";
      ++gen;
    }
  }

  int main() {
    std::cerr << "Fibonacci sequence - here we go\n";
    generator<int> fib = fibonacci();
    for (unsigned i = 0; i < 5; ++i) {
      ++fib;
    }
    print10Elements(fib);
  }

To compile this code, use ``clang++ --std=c++23 generator-example.cpp -g``.

Breakpoints inside the generators
---------------------------------

We can set breakpoints inside coroutines just as we set them in regular
functions. For VS Code, that means clicking next the line number in the editor.
In the ``lldb`` CLI or in ``gdb``, you can use ``b`` to set a breakpoint.

Inspecting variables in a coroutine
-----------------------------------

If you hit a breakpoint inside the ``fibonacci`` function, you should be able
to inspect all local variables (``prev``, ``current``, ``next``) just like in
a regular function.

.. image:: ./coro-generator-variables.png

Note the two additional variables ``__promise`` and ``__coro_frame``. Those
show the internal state of the coroutine. They are not relevant for our
generator example, but will be relevant for asynchronous programming described
in the next section.

Stepping out of a coroutine
---------------------------

When single-stepping, you will notice that the debugger will leave the
``fibonacci`` function as soon as you hit a ``co_yield`` statement. You might
find yourself inside some standard library code. After stepping out of the
library code, you will be back in the ``main`` function.

Stepping into a coroutine
-------------------------

If you stop at ``++fib`` and try to step into the generator, you will first
find yourself inside ``operator++``. Stepping into the ``handle.resume()`` will
not work by default.

This is because lldb does not step into functions from the standard library by
default. To make this work, you first need to run ``settings set
target.process.thread.step-avoid-regexp ""``. You can do so from the "Debug
Console" towards the bottom of the screen. With that setting change, you can
step through ``coroutine_handle::resume`` and into your generator.

You might find yourself at the top of the coroutine at first, instead of at
your previous suspension point. In that case, single-step and you will arrive
at the previously suspended ``co_yield`` statement.


Inspecting a suspended coroutine
--------------------------------

The ``print10Elements`` function receives an opaque ``generator`` type. Let's
assume we are suspended at the ``++gen;`` line, and want to inspect the
generator and its internal state.

To do so, we can simply look into the ``gen.hdl`` variable. LLDB comes with a
pretty printer for ``std::coroutine_handle`` which will show us the internal
state of the coroutine. For GDB, you will have to use the ``show-coro-frame``
command provided by the :ref:`gdb-script`.

.. image:: ./coro-generator-suspended.png

We can see two function pointers ``resume`` and ``destroy``. These pointers
point to the resume / destroy functions. By inspecting those function pointers,
we can see that our ``generator`` is actually backed by our ``fibonacci``
coroutine. When using VS Code + lldb-dap, you can Cmd+Click on the function
address (``0x555...`` in the screenshot) to directly jump to the function
definition backing your coroutine handle.

Next, we see the ``promise``. In our case, this reveals the current value of
our generator.

The ``coro_frame`` member represents the internal state of the coroutine. It
contains our internal coroutine state ``prev``, ``current``, ``next``.
Furthermore, it contains many internal, compiler-specific members, which are
named based on their type. These represent temporary values which the compiler
decided to spill across suspension points, but which were not declared in our
original source code and hence have no proper user-provided name.

Tracking the exact suspension point
-----------------------------------

Among the compiler-generated members, the ``__coro_index`` is particularly
important. This member identifies the suspension point at which the coroutine
is currently suspended.

However, it is non-trivial to map this number back to a source code location.
The compiler emits debug info labels for the suspension points. This allows us
to map the suspension point index back to a source code location. In gdb, we
can use the ``info line`` command to get the source code location of the
suspension point.

::

  (gdb) info line -function coro_task -label __coro_resume_2
  Line 45 of "llvm-example.cpp" starts at address 0x1b1b <_ZL9coro_taski.resume+555> and ends at 0x1b46 <_ZL9coro_taski.resume+598>.
  Line 45 of "llvm-example.cpp" starts at address 0x201b <_ZL9coro_taski.destroy+555> and ends at 0x2046 <_ZL9coro_taski.destroy+598>.
  Line 45 of "llvm-example.cpp" starts at address 0x253b <_ZL9coro_taski.cleanup+555> and ends at 0x2566 <_ZL9coro_taski.cleanup+598>.

LLDB does not support looking up labels. Furthermore, those labels are only emitted
starting with clang 21.0.

For simple cases, you might still be able to guess the suspension point correctly.
Alternatively, you might also want to modify your coroutine library to store
the line number of the current suspension point in the promise:

.. code-block:: c++

  // For all promise_types we need a new `_coro_return_address` variable:
  class promise_type {
    ...
    void* _coro_return_address = nullptr;
  };

  // For all the awaiter types we need:
  class awaiter {
    ...
    template <typename Promise>
    __attribute__((noinline)) auto await_suspend(std::coroutine_handle<Promise> handle) {
          ...
          handle.promise()._coro_return_address = __builtin_return_address(0);
    }
  };

This stores the return address of ``await_suspend`` within the promise.
Thereby, we can read it back from the promise of a suspended coroutine, and map
it to an exact source code location. For a complete example, see the ``task``
type used below for asynchronous programming.

Alternatively, we can modify the C++ code to store the line number in the
promise type. We can use a ``std::source_location`` to get the line number of
the await and store it inside the ``promise_type``. In the debugger, we can
then read the line number from the promise of the suspended coroutine.

.. code-block:: c++

  // For all the awaiter types we need:
  class awaiter {
    ...
    template <typename Promise>
    void await_suspend(std::coroutine_handle<Promise> handle,
                       std::source_location sl = std::source_location::current()) {
          ...
          handle.promise().line_number = sl.line();
    }
  };

The downside of both approaches is that they come at the price of additional
runtime cost. In particular the second approach increases binary size, since it
requires additional ``std::source_location`` objects, and those source
locations are not stripped by split-dwarf. Whether the first approach is worth
the additional runtime cost is a trade-off you need to make yourself.

Async stack traces
==================

Besides generators, the second common use case for coroutines in C++ is
asynchronous programming, usually involving libraries such as stdexec, folly,
cppcoro, boost::asio, or similar libraries. Some of those libraries already
provide custom debugging support, so in addition to this guide, you might want
to check out their documentation.

When using coroutines for asynchronous programming, your library usually
provides you some ``task`` type. This type usually looks similar to this:

.. code-block:: c++

  // async-task-library.hpp
  #include <coroutine>
  #include <utility>

  struct task {
    struct promise_type {
      task get_return_object() { return std::coroutine_handle<promise_type>::from_promise(*this); }
      auto initial_suspend() { return std::suspend_always{}; }

      void unhandled_exception() noexcept {}

      auto final_suspend() noexcept {
        struct FinalSuspend {
          std::coroutine_handle<> continuation;
          auto await_ready() noexcept { return false; }
          auto await_suspend(std::coroutine_handle<> handle) noexcept {
            return continuation;
          }
          void await_resume() noexcept {}
        };
        return FinalSuspend{continuation};
      }

      void return_value(int res) { result = res; }

      std::coroutine_handle<> continuation = std::noop_coroutine();
      int result = 0;
      #ifndef NDEBUG
      void* _coro_suspension_point_addr = nullptr;
      #endif
    };

    task(std::coroutine_handle<promise_type> handle) : handle(handle) {}
    ~task() {
      if (handle)
        handle.destroy();
    }

    struct Awaiter {
      std::coroutine_handle<promise_type> handle;
      auto await_ready() { return false; }

      template <typename P>
      #ifndef NDEBUG
      __attribute__((noinline))
      #endif
      auto await_suspend(std::coroutine_handle<P> continuation) {
        handle.promise().continuation = continuation;
        #ifndef NDEBUG
        continuation.promise()._coro_suspension_point_addr = __builtin_return_address(0);
        #endif
        return handle;
      }
      int await_resume() {
        return handle.promise().result;
      }
    };

    auto operator co_await() {
      return Awaiter{handle};
    }

    int syncStart() {
      handle.resume();
      return handle.promise().result;
    }

  private:
    std::coroutine_handle<promise_type> handle;
  };

Note how the ``task::promise_type`` has a member variable
``std::coroutine_handle<> continuation``. This is the handle of the coroutine
that will be resumed when the current coroutine is finished executing (see
``final_suspend``). In a sense, this is the "return address" of the coroutine.
It is set inside ``operator co_await`` when another coroutine calls our
generator and awaits for the next value to be produced.

The result value is returned via the ``int result`` member. It is written in
``return_value`` and read by ``Awaiter::await_resume``. Usually, the result
type of a task is a template argument. For simplicity's sake, we hard-coded the
``int`` type in this example.

Stack traces of in-flight coroutines
------------------------------------

Let's assume you have the following program and set a breakpoint inside the
``write_output`` function. There are multiple call paths through which this
function could have been reached. How can we find out said call path?

.. code-block:: c++

  #include <iostream>
  #include <string_view>
  #include "async-task-library.hpp"

  static task write_output(std::string_view contents) {
    std::cout << contents << "\n";
    co_return contents.size();
  }

  static task greet() {
    int bytes_written = 0;
    bytes_written += co_await write_output("Hello");
    bytes_written += co_await write_output("World");
    co_return bytes_written;
  }

  int main() {
    int bytes_written = greet().syncStart();
    std::cout << "Bytes written: " << bytes_written << "\n";
    return 0;
  }

To do so, let's break inside ``write_output``. We can understand our call-stack
by looking into the special ``__promise`` variable. This artificial variable is
generated by the compiler and points to the ``promise_type`` instance
corresponding to the currently in-flight coroutine. In this case, the
``__promise`` variable contains the ``continuation`` which points to our
caller. That caller again contains a ``promise`` with a ``continuation`` which
points to our caller's caller.

.. image:: ./coro-async-task-continuations.png

We can figure out the involved coroutine functions and their current suspension
points as discussed above in the "Inspecting a suspended coroutine" section.

When using LLDB's CLI, the command ``p --ptr-depth 4 __promise`` might also be
useful to automatically dereference all the pointers up to the given depth.

To get a flat representation of that call stack, we can use a debugger script,
such as the one shown in the :ref:`lldb-script` section. With that
script, we can run ``coro bt`` to get the following stack trace:

.. code-block::

  (lldb) coro bt
  frame #0: write_output(std::basic_string_view<char, std::char_traits<char>>) at /home/avogelsgesang/Documents/corotest/async-task-example.cpp:6:16
  [async] frame #1: greet() at /home/avogelsgesang/Documents/corotest/async-task-example.cpp:12:20
  [async] frame #2: std::__n4861::coroutine_handle<std::__n4861::noop_coroutine_promise>::__frame::__dummy_resume_destroy() at /usr/include/c++/14/coroutine:298, suspension point unknown
  frame #3: std::__n4861::coroutine_handle<task::promise_type>::resume() const at /usr/include/c++/14/coroutine:242:29
  frame #4: task::syncStart() at /home/avogelsgesang/Documents/corotest/async-task-library.hpp:78:14
  frame #5: main at /home/avogelsgesang/Documents/corotest/async-task-example.cpp:18:11
  frame #6: __libc_start_call_main at sysdeps/nptl/libc_start_call_main.h:58:16
  frame #7: __libc_start_main_impl at csu/libc-start.c:360:3
  frame #8: _start at :4294967295

Note how the frames #1 and #2 are async frames.

The ``coro bt`` command already includes logic to identify the exact suspension
point of each frame based on the ``_coro_suspension_point_addr`` stored inside
the promise.

Stack traces of suspended coroutines
------------------------------------

Usually, while a coroutine is waiting for, e.g., an in-flight network request,
the suspended ``coroutine_handle`` is stored within the work queues inside the
IO scheduler. As soon as we get hold of the coroutine handle, we can backtrace
it by using ``coro bt <coro_handle>`` where ``<coro_handle>`` is an expression
evaluating to the coroutine handle of the suspended coroutine.

Keeping track of all existing coroutines
----------------------------------------

Usually, we should be able to get hold of all currently suspended coroutines by
inspecting the worker queues of the IO scheduler. In cases where this is not
possible, we can use the following approach to keep track of all currently
suspended coroutines.

One such solution is to store the list of in-flight coroutines in a collection:

.. code-block:: c++

  inline std::unordered_set<std::coroutine_handle<void>> inflight_coroutines;
  inline std::mutex inflight_coroutines_mutex;

  class promise_type {
  public:
      promise_type() {
          std::unique_lock<std::mutex> lock(inflight_coroutines_mutex);
          inflight_coroutines.insert(std::coroutine_handle<promise_type>::from_promise(*this));
      }
      ~promise_type() {
          std::unique_lock<std::mutex> lock(inflight_coroutines_mutex);
          inflight_coroutines.erase(std::coroutine_handle<promise_type>::from_promise(*this));
      }
  };

With this in place, it is possible to inspect ``inflight_coroutines`` from the
debugger, and rely on LLDB's ``std::coroutine_handle`` pretty-printer to
inspect the coroutines.

This technique will track *all* coroutines, also the ones which are currently
awaiting another coroutine, though. To identify just the "roots" of our
in-flight coroutines, we can use the ``coro in-flight inflight_coroutines``
command provided by the :ref:`lldb-script`.

Please note that the above is expensive from a runtime performance perspective,
and requires locking to prevent data races. As such, it is not recommended to
use this approach in production code.

Known issues & workarounds for older LLDB versions
==================================================

LLDB before 21.0 did not yet show the ``__coro_frame`` inside
``coroutine_handle``. To inspect the coroutine frame, you had to use the
approach described in the :ref:`devirtualization` section.

LLDB before 18.0 was hiding the ``__promise`` and ``__coro_frame``
variable by default. The variables are still present, but they need to be
explicitly added to the "watch" pane in VS Code or requested via
``print __promise`` and ``print __coro_frame`` from the debugger console.

LLDB before 16.0 did not yet provide a pretty-printer for
``std::coroutine_handle``. To inspect the coroutine handle, you had to manually
use the approach described in the :ref:`devirtualization`
section.

Toolchain Implementation Details
================================

This section covers the ABI, as well as additional compiler-specific behavior.
The ABI is followed by all compilers, on all major systems, including Windows,
Linux and macOS. Different compilers emit different debug information, though.

Ramp, resume and destroy functions
----------------------------------

Every coroutine is split into three parts:

* The ramp function allocates the coroutine frame and initializes it, usually
  copying over all variables into the coroutine frame
* The resume function continues the coroutine from its previous suspension point
* The destroy function destroys and deallocates the coroutine frame
* The cleanup function destroys the coroutine frame but does not deallocate it.
  It is used when the coroutine's allocation was elided thanks to
  `Heap Allocation Elision (HALO) <https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0981r0.html>`_

The ramp function is called by the coroutine's caller, and available under the
original function name used in the C++ source code. The resume function is
called via ``std::coroutine_handle::resume``. The destroy function is called
via ``std::coroutine_handle::destroy``.

Information between the three functions is passed via the coroutine frame, a
compiler-synthesized struct that contains all necessary internal state. The
resume function knows where to resume execution by reading the suspension point
index from the coroutine frame. Similarly, the destroy function relies on the
suspension point index to know which variables are currently in scope and need
to be destructed.

Usually, the destroy function calls all destructors and deallocates the
coroutine frame. When a coroutine frame was elided thanks to HALO, only the
destructors need to be called, but the coroutine frame must not be deallocated.
In those cases, the cleanup function is used instead of the destroy function.

For coroutines allocated with ``[[clang::coro_await_elidable]]``, clang also
generates a ``.noalloc`` variant of the ramp function, which does not allocate
the coroutine frame by itself, but instead expects the caller to allocate the
coroutine frame and pass it to the ramp function.

When trying to intercept all creations of new coroutines in the debugger, you
hence might have to set breakpoints in the ramp function and its ``.noalloc``
variant.

Artificial ``__promise`` and ``__coro_frame`` variables
-------------------------------------------------------

Inside all coroutine functions, clang / LLVM synthesize a ``__promise`` and
``__coro_frame`` variable. These variables are used to store the coroutine's
state. When inside the coroutine function, those can be used to directly
inspect the promise and the coroutine frame of the own function.

The ABI of a coroutine
----------------------

A ``std::coroutine_handle`` essentially only holds a pointer to a coroutine
frame. It resembles the following struct:

.. code-block:: c++

  template<typename promise_type>
  struct coroutine_handle {
    void* __coroutine_frame = nullptr;
  };

The structure of coroutine frames is defined as

.. code-block:: c++

  struct my_coroutine_frame {
    void (*__resume)(coroutine_frame*); // function pointer to the `resume` function
    void (*__destroy)(coroutine_frame*); // function pointer to the `destroy` function
    promise_type promise; // the corresponding `promise_type`
    ... // Internal coroutine state
  }

For each coroutine, the compiler synthesizes a different coroutine type,
storing all necessary internal state. The actual coroutine type is type-erased
behind the ``std::coroutine_handle``.

However, all coroutine frames always contain the ``resume`` and ``destroy``
functions as their first two members. As such, we can read the function
pointers from the coroutine frame and then obtain the function's name from its
address.

The promise is guaranteed to be at a 16 byte offset from the coroutine frame.
If we have a coroutine handle at address 0x416eb0, we can hence reinterpret-cast
the promise as follows:

.. code-block:: text

  print (task::promise_type)*(0x416eb0+16)

Implementation in clang / LLVM
------------------------------

The C++ Coroutines feature in the Clang compiler is implemented in two parts of
the compiler. Semantic analysis is performed in Clang, and Coroutine
construction and optimization takes place in the LLVM middle-end.

For each coroutine function, the frontend generates a single corresponding
LLVM-IR function. This function uses special ``llvm.coro.suspend`` intrinsics
to mark the suspension points of the coroutine. The middle end first optimizes
this function and applies, e.g., constant propagation across the whole,
non-split coroutine.

CoroSplit then splits the function into ramp, resume and destroy functions.
This pass also moves stack-local variables which are alive across suspension
points into the coroutine frame. Most of the heavy lifting to preserve debugging
information is done in this pass. This pass needs to rewrite all variable
locations to point into the coroutine frame.

Afterwards, a couple of additional optimizations are applied, before code
gets emitted, but none of them are really interesting regarding debugging
information.

For more details on the IR representation of coroutines and the relevant
optimization passes, see `Coroutines in LLVM <https://llvm.org/docs/Coroutines.html>`_.

Emitting debug information inside ``CoroSplit`` forces us to generate
insufficient debugging information. Usually, the compiler generates debug
information in the frontend, as debug information is highly language specific.
However, this is not possible for coroutine frames because the frames are
constructed in the LLVM middle-end.

To mitigate this problem, the LLVM middle end attempts to generate some debug
information, which is unfortunately incomplete, since much of the language
specific information is missing in the middle end.

.. _devirtualization:

Devirtualization of coroutine handles
-------------------------------------

Figuring out the promise type and the coroutine frame type of a coroutine
handle requires inspecting the ``resume`` and ``destroy`` function pointers.
There are two possible approaches to do so:

1. clang always names the type by appending ``.coro_frame_ty`` to the
   linkage name of the ramp function.
2. Both clang and GCC add the function-local ``__promise`` and
   ``__coro_frame`` variables to the resume and destroy functions.
   We can lookup their types and thereby get the types of promise
   and coroutine frame.

In gdb, one can use the following approach to devirtualize coroutine type,
assuming we have a ``std::coroutine_handle`` is at address 0x418eb0:

::

  (gdb) # Get the address of coroutine frame
  (gdb) print/x *0x418eb0
  $1 = 0x4019e0
  (gdb) # Get the linkage name for the coroutine
  (gdb) x 0x4019e0
  0x4019e0 <_ZL9coro_taski>:  0xe5894855
  (gdb) # Turn off the demangler temporarily to avoid the debugger misunderstanding the name.
  (gdb) set demangle-style none
  (gdb) # The coroutine frame type is 'linkage_name.coro_frame_ty'
  (gdb) print  ('_ZL9coro_taski.coro_frame_ty')*(0x418eb0)
  $2 = {__resume_fn = 0x4019e0 <coro_task(int)>, __destroy_fn = 0x402000 <coro_task(int)>, __promise = {...}, ...}

In practice, one would use the ``show-coro-frame`` command provided by the
:ref:`gdb-script`.

LLDB comes with devirtualization support out of the box, as part of the
pretty-printer for ``std::coroutine_handle``. Internally, this pretty-printer
uses the second approach. We look up the types in the destroy function and not
the resume function because the resume function pointer will be set to a
nullptr as soon as a coroutine reaches its final suspension point. If we used
the resume function, devirtualization would hence fail for all coroutines that
have reached their final suspension point.

Interpreting the coroutine frame in optimized builds
----------------------------------------------------

The ``__coro_frame`` variable usually refers to the coroutine frame of an
*in-flight* coroutine. This means, the coroutine is currently executing.
However, the compiler only guarantees the coroutine frame to be in a consistent
state while the coroutine is suspended. As such, the variables inside the
``__coro_frame`` variable might be outdated, in particular when optimizations
are enabled.

Furthermore, when optimizations are enabled, the compiler will layout the
coroutine frame more aggressively. Unused values are optimized out, and the
state will usually contain only the minimal information required to reconstruct
the coroutine's state.

clang / LLVM usually use variables like ``__int_32_0`` to represent this
optimized storage. Those values usually do not directly correspond to variables
in the source code.

When compiling the program

.. code-block:: c++

  static task coro_task(int v) {
    int a = v;
    co_await some_other_task();
    a++; // __int_32_0 is 43 here
    std::cout << a << "\n";
    a++; // __int_32_0 is still 43 here
    std::cout << a << "\n";
    a++; // __int_32_0 is still 43 here!
    std::cout << a << "\n";
    co_await some_other_task();
    a++; // __int_32_0 is still 43 here!!
    std::cout << a << "\n";
    a++; // Why is __int_32_0 still 43 here?
    std::cout << a << "\n";
  }

clang creates a single entry ``__int_32_0`` in the coroutine state.

Intuitively, one might assume that ``__int_32_0`` represents the value of the
local variable ``a``. However, inspecting ``__int_32_0`` in the debugger while
single-stepping will reveal that the value of ``__int_32_0`` stays constant,
despite ``a`` being frequently incremented.

While this might be surprising, this is a result of the optimizer recognizing
that it can eliminate most of the load/store operations.
The above code gets optimized to the equivalent of:

.. code-block:: c++

  static task coro_task(int v) {
    store v into __int_32_0 in the frame
    co_await await_counter{};
    a = load __int_32_0
    std::cout << a+1 << "\n";
    std::cout << a+2 << "\n";
    std::cout << a+3 << "\n";
    co_await await_counter{};
    a = load __int_32_0
    std::cout << a+4 << "\n";
    std::cout << a+5 << "\n";
  }

It should now be obvious why the value of ``__int_32_0`` remains unchanged
throughout the function. It is important to recognize that ``__int_32_0`` does
not directly correspond to ``a``, but is instead a variable generated to assist
the compiler in code generation. The variables in an optimized coroutine frame
should not be thought of as directly representing the variables in the C++
source.


Resources
=========

.. _lldb-script:

LLDB Debugger Script
--------------------

The following script provides the ``coro bt`` and ``coro in-flight`` commands
discussed above. It can be loaded into LLDB using ``command script import
lldb_coro_debugging.py``. To load this by default, add this command to your
``~/.lldbinit`` file.

Note that this script requires LLDB 21.0 or newer.

.. code-block:: python

  # lldb_coro_debugging.py
  import lldb
  from lldb.plugins.parsed_cmd import ParsedCommand

  def _get_first_var_path(v, paths):
      """
      Tries multiple variable paths via `GetValueForExpressionPath`
      and returns the first one that succeeds, or None if none succeed.
      """
      for path in paths:
          var = v.GetValueForExpressionPath(path)
          if var.error.Success():
              return var
      return None


  def _print_async_bt(coro_hdl, result, *, curr_idx, start, limit, continuation_paths, prefix=""):
      """
      Prints a backtrace for an async coroutine stack starting from `coro_hdl`,
      using the given `continuation_paths` to get the next coroutine from the promise.
      """
      target = coro_hdl.GetTarget()
      while curr_idx < limit and coro_hdl is not None and coro_hdl.error.Success():
          # Print the stack frame, if in range
          if curr_idx >= start:
              # Figure out the function name
              destroy_func_var = coro_hdl.GetValueForExpressionPath(".destroy")
              destroy_addr = target.ResolveLoadAddress(destroy_func_var.GetValueAsAddress())
              func_name = destroy_addr.function.name
              # Figure out the line entry to show
              suspension_addr_var = coro_hdl.GetValueForExpressionPath(".promise._coro_suspension_point_addr")
              if suspension_addr_var.error.Success():
                  line_entry = target.ResolveLoadAddress(suspension_addr_var.GetValueAsAddress()).line_entry
                  print(f"{prefix} frame #{curr_idx}: {func_name} at {line_entry}", file=result)
              else:
                  # We don't know the exact line, print the suspension point ID, so we at least show
                  # the id of the current suspension point
                  suspension_point_var = coro_hdl.GetValueForExpressionPath(".coro_frame.__coro_index")
                  if suspension_point_var.error.Success():
                      suspension_point = suspension_point_var.GetValueAsUnsigned()
                  else:
                      suspension_point = "unknown"
                  line_entry = destroy_addr.line_entry
                  print(f"{prefix} frame #{curr_idx}: {func_name} at {line_entry}, suspension point {suspension_point}", file=result)
          # Move to the next stack frame
          curr_idx += 1
          promise_var = coro_hdl.GetChildMemberWithName("promise")
          coro_hdl = _get_first_var_path(promise_var, continuation_paths)
      return curr_idx

  def _print_combined_bt(frame, result, *, unfiltered, curr_idx, start, limit, continuation_paths):
      """
      Prints a backtrace starting from `frame`, interleaving async coroutine frames
      with regular frames.
      """
      while curr_idx < limit and frame.IsValid():
          if curr_idx >= start and (unfiltered or not frame.IsHidden()):
              print(f"frame #{curr_idx}: {frame.name} at {frame.line_entry}", file=result)
          curr_idx += 1
          coro_var = _get_first_var_path(frame.GetValueForVariablePath("__promise"), continuation_paths)
          if coro_var:
              curr_idx = _print_async_bt(coro_var, result,
                  curr_idx=curr_idx, start=start, limit=limit,
                  continuation_paths=continuation_paths, prefix="[async]")
          frame = frame.parent


  class CoroBacktraceCommand(ParsedCommand):
      def get_short_help(self):
          return "Create a backtrace for C++-20 coroutines"

      def get_flags(self):
          return lldb.eCommandRequiresFrame | lldb.eCommandProcessMustBePaused

      def setup_command_definition(self):
          ov_parser = self.get_parser()
          ov_parser.add_option(
              "e",
              "continuation-expr",
              help = (
                  "Semi-colon-separated list of expressions evaluated against the promise object"
                  "to get the next coroutine (e.g. `.continuation;.coro_parent`)"
              ),
              value_type = lldb.eArgTypeNone,
              dest = "continuation_expr_arg",
              default = ".continuation",
          )
          ov_parser.add_option(
              "c",
              "count",
              help = "How many frames to display (0 for all)",
              value_type = lldb.eArgTypeCount,
              dest = "count_arg",
              default = 20,
          )
          ov_parser.add_option(
              "s",
              "start",
              help = "Frame in which to start the backtrace",
              value_type = lldb.eArgTypeIndex,
              dest = "frame_index_arg",
              default = 0,
          )
          ov_parser.add_option(
              "u",
              "unfiltered",
              help = "Do not filter out frames according to installed frame recognizers",
              value_type = lldb.eArgTypeBoolean,
              dest = "unfiltered_arg",
              default = False,
          )
          ov_parser.add_argument_set([
              ov_parser.make_argument_element(
                  lldb.eArgTypeExpression,
                  repeat="optional"
              )
          ])

      def __call__(self, debugger, args_array, exe_ctx, result):
          ov_parser = self.get_parser()
          continuation_paths = ov_parser.continuation_expr_arg.split(";")
          count = ov_parser.count_arg
          if count == 0:
              count = 99999
          frame_index = ov_parser.frame_index_arg
          unfiltered = ov_parser.unfiltered_arg

          frame = exe_ctx.GetFrame()
          if not frame.IsValid():
              result.SetError("invalid frame")
              return

          if len(args_array) > 1:
              result.SetError("At most one expression expected")
              return
          elif len(args_array) == 1:
              expr = args_array.GetItemAtIndex(0).GetStringValue(9999)
              coro_hdl = frame.EvaluateExpression(expr)
              if not coro_hdl.error.Success():
                  result.AppendMessage(
                      f'error: expression failed {expr} => {coro_hdl.error}'
                  )
                  result.SetError(f"Expression `{expr}` failed to evaluate")
                  return
              _print_async_bt(coro_hdl, result,
                  curr_idx = 0, start = frame_index, limit = frame_index + count,
                  continuation_paths = continuation_paths)
          else:
              _print_combined_bt(frame, result, unfiltered=unfiltered,
                  curr_idx = 0, start = frame_index, limit = frame_index + count,
                  continuation_paths = continuation_paths)


  class CoroInflightCommand(ParsedCommand):
      def get_short_help(self):
          return "Identify all in-flight coroutines"

      def get_flags(self):
          return lldb.eCommandRequiresTarget | lldb.eCommandProcessMustBePaused

      def setup_command_definition(self):
          ov_parser = self.get_parser()
          ov_parser.add_option(
              "e",
              "continuation-expr",
              help = (
                  "Semi-colon-separated list of expressions evaluated against the promise object"
                  "to get the next coroutine (e.g. `.continuation;.coro_parent`)"
              ),
              value_type = lldb.eArgTypeNone,
              dest = "continuation_expr_arg",
              default = ".continuation",
          )
          ov_parser.add_option(
              "c",
              "count",
              help = "How many frames to display (0 for all)",
              value_type = lldb.eArgTypeCount,
              dest = "count_arg",
              default = 5,
          )
          ov_parser.add_argument_set([
              ov_parser.make_argument_element(
                  lldb.eArgTypeExpression,
                  repeat="plus"
              )
          ])

      def __call__(self, debugger, args_array, exe_ctx, result):
          ov_parser = self.get_parser()
          continuation_paths = ov_parser.continuation_expr_arg.split(";")
          count = ov_parser.count_arg

          # Collect all coroutine_handles from the provided containers
          all_coros = []
          for entry in args_array:
              expr = entry.GetStringValue(9999)
              if exe_ctx.frame.IsValid():
                  coro_container = exe_ctx.frame.EvaluateExpression(expr)
              else:
                  coro_container = exe_ctx.target.EvaluateExpression(expr)
              if not coro_container.error.Success():
                  result.AppendMessage(
                      f'error: expression failed {expr} => {coro_container.error}'
                  )
                  result.SetError(f"Expression `{expr}` failed to evaluate")
                  return
              for entry in coro_container.children:
                  if "coroutine_handle" not in entry.GetType().name:
                      result.SetError(f"Found entry of type {entry.GetType().name} in {expr},"
                                      "  expected a coroutine handle")
                      return
                  all_coros.append(entry)

          # Remove all coroutines that are currently waiting for other coroutines to finish
          coro_roots = {c.GetChildMemberWithName("coro_frame").GetValueAsAddress(): c for c in all_coros}
          for coro_hdl in all_coros:
              parent_coro = _get_first_var_path(coro_hdl.GetChildMemberWithName("promise"), continuation_paths)
              parent_addr = parent_coro.GetChildMemberWithName("coro_frame").GetValueAsAddress()
              if parent_addr in coro_roots:
                  del coro_roots[parent_addr]

          # Print all remaining coroutines
          for addr, root_hdl in coro_roots.items():
              print(f"coroutine root 0x{addr:x}", file=result)
              _print_async_bt(root_hdl, result,
                              curr_idx=0, start=0, limit=count,
                              continuation_paths=continuation_paths, prefix="    ")


  def __lldb_init_module(debugger, internal_dict):
      debugger.HandleCommand("command container add -h 'Debugging utilities for C++20 coroutines' coro")
      debugger.HandleCommand(f"command script add -o -p -c {__name__}.CoroBacktraceCommand coro bt")
      debugger.HandleCommand(f"command script add -o -p -c {__name__}.CoroInflightCommand coro in-flight")
      print("Coro debugging utilities installed. Use `help coro` to see available commands.")

  if __name__ == '__main__':
      print("This script should be loaded from LLDB using `command script import <filename>`")

.. _gdb-script:

GDB Debugger Script
-------------------

For GDB, the following script provides a couple of useful commands:

* ``async-bt`` to print the stack trace of a coroutine
* ``show-coro-frame`` to print the coroutine frame, similar to
  LLDB's builtin pretty-printer for coroutine frames

.. code-block:: python

  # debugging-helper.py
  import gdb
  from gdb.FrameDecorator import FrameDecorator

  class SymValueWrapper():
      def __init__(self, symbol, value):
          self.sym = symbol
          self.val = value

      def __str__(self):
          return str(self.sym) + " = " + str(self.val)

  def get_long_pointer_size():
      return gdb.lookup_type('long').pointer().sizeof

  def cast_addr2long_pointer(addr):
      return gdb.Value(addr).cast(gdb.lookup_type('long').pointer())

  def dereference(addr):
      return long(cast_addr2long_pointer(addr).dereference())

  class CoroutineFrame(object):
      def __init__(self, task_addr):
          self.frame_addr = task_addr
          self.resume_addr = task_addr
          self.destroy_addr = task_addr + get_long_pointer_size()
          self.promise_addr = task_addr + get_long_pointer_size() * 2
          # In the example, the continuation is the first field member of the promise_type.
          # So they have the same addresses.
          # If we want to generalize the scripts to other coroutine types, we need to be sure
          # the continuation field is the first member of promise_type.
          self.continuation_addr = self.promise_addr

      def next_task_addr(self):
          return dereference(self.continuation_addr)

  class CoroutineFrameDecorator(FrameDecorator):
      def __init__(self, coro_frame):
          super(CoroutineFrameDecorator, self).__init__(None)
          self.coro_frame = coro_frame
          self.resume_func = dereference(self.coro_frame.resume_addr)
          self.resume_func_block = gdb.block_for_pc(self.resume_func)
          if self.resume_func_block is None:
              raise Exception('Not stackless coroutine.')
          self.line_info = gdb.find_pc_line(self.resume_func)

      def address(self):
          return self.resume_func

      def filename(self):
          return self.line_info.symtab.filename

      def frame_args(self):
          return [SymValueWrapper("frame_addr", cast_addr2long_pointer(self.coro_frame.frame_addr)),
                  SymValueWrapper("promise_addr", cast_addr2long_pointer(self.coro_frame.promise_addr)),
                  SymValueWrapper("continuation_addr", cast_addr2long_pointer(self.coro_frame.continuation_addr))
                  ]

      def function(self):
          return self.resume_func_block.function.print_name

      def line(self):
          return self.line_info.line

  class StripDecorator(FrameDecorator):
      def __init__(self, frame):
          super(StripDecorator, self).__init__(frame)
          self.frame = frame
          f = frame.function()
          self.function_name = f

      def __str__(self, shift = 2):
          addr = "" if self.address() is None else '%#x' % self.address() + " in "
          location = "" if self.filename() is None else " at " + self.filename() + ":" + str(self.line())
          return addr + self.function() + " " + str([str(args) for args in self.frame_args()]) + location

  class CoroutineFilter:
      def create_coroutine_frames(self, task_addr):
          frames = []
          while task_addr != 0:
              coro_frame = CoroutineFrame(task_addr)
              frames.append(CoroutineFrameDecorator(coro_frame))
              task_addr = coro_frame.next_task_addr()
          return frames

  class AsyncStack(gdb.Command):
      def __init__(self):
          super(AsyncStack, self).__init__("async-bt", gdb.COMMAND_USER)

      def invoke(self, arg, from_tty):
          coroutine_filter = CoroutineFilter()
          argv = gdb.string_to_argv(arg)
          if len(argv) == 0:
              try:
                  task = gdb.parse_and_eval('__coro_frame')
                  task = int(str(task.address), 16)
              except Exception:
                  print ("Can't find __coro_frame in current context.\n" +
                        "Please use `async-bt` in stackless coroutine context.")
                  return
          elif len(argv) != 1:
              print("usage: async-bt <pointer to task>")
              return
          else:
              task = int(argv[0], 16)

          frames = coroutine_filter.create_coroutine_frames(task)
          i = 0
          for f in frames:
              print '#'+ str(i), str(StripDecorator(f))
              i += 1
          return

  AsyncStack()

  class ShowCoroFrame(gdb.Command):
      def __init__(self):
          super(ShowCoroFrame, self).__init__("show-coro-frame", gdb.COMMAND_USER)

      def invoke(self, arg, from_tty):
          argv = gdb.string_to_argv(arg)
          if len(argv) != 1:
              print("usage: show-coro-frame <address of coroutine frame>")
              return

          addr = int(argv[0], 16)
          block = gdb.block_for_pc(long(cast_addr2long_pointer(addr).dereference()))
          if block is None:
              print "block " + str(addr) + " is None."
              return

          # Disable demangling since gdb will treat names starting with `_Z`(The marker for Itanium ABI) specially.
          gdb.execute("set demangle-style none")

          coro_frame_type = gdb.lookup_type(block.function.linkage_name + ".coro_frame_ty")
          coro_frame_ptr_type = coro_frame_type.pointer()
          coro_frame = gdb.Value(addr).cast(coro_frame_ptr_type).dereference()

          gdb.execute("set demangle-style auto")
          gdb.write(coro_frame.format_string(pretty_structs = True))

  ShowCoroFrame()

Further Reading
---------------

The authors of the Folly libraries wrote a blog post series on how they debug coroutines:

* `Async stack traces in folly: Introduction <https://developers.facebook.com/blog/post/2021/09/16/async-stack-traces-folly-Introduction/>`_
* `Async stack traces in folly: Synchronous and asynchronous stack traces <https://developers.facebook.com/blog/post/2021/09/23/async-stack-traces-folly-synchronous-asynchronous-stack-traces/>`_
* `Async stack traces in folly: Forming an async stack from individual frames <https://developers.facebook.com/blog/post/2021/09/30/async-stack-traces-folly-forming-async-stack-individual-frames/>`_
* `Async Stack Traces for C++ Coroutines in Folly: Walking the async stack <https://developers.facebook.com/blog/post/2021/10/14/async-stack-traces-c-plus-plus-coroutines-folly-walking-async-stack/>`_
* `Async stack traces in folly: Improving debugging in the developer lifecycle <https://developers.facebook.com/blog/post/2021/10/21/async-stack-traces-folly-improving-debugging-developer-lifecycle/>`_

Besides some topics also covered here (stack traces from the debugger), Folly's blog post series also covers
more additional topics, such as capturing async stack traces in performance profiles via eBPF filters
and printing async stack traces on crashes.