1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++98 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++17 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++20 %s
// Tests that dependent expressions are always allowed, whereas non-dependent
// are checked as usual.
#include <stddef.h>
// Fake typeid, lacking a typeinfo header.
namespace std { class type_info {}; }
struct dummy {}; // expected-note 3 {{candidate constructor (the implicit copy constructor)}}
#if __cplusplus >= 201103L // C++11 or later
// expected-note@-2 3 {{candidate constructor (the implicit move constructor) not viable}}
#endif
template<typename T>
int f0(T x) {
return (sizeof(x) == sizeof(int))? 0 : (sizeof(x) == sizeof(double))? 1 : 2;
}
template <typename T, typename U>
T f1(T t1, U u1, int i1, T** tpp)
{
T t2 = i1;
t2 = i1 + u1;
++u1;
u1++;
int i2 = u1;
i1 = t1[u1];
i1 *= t1;
i1(u1, t1);
u1(i1, t1);
U u2 = (T)i1;
static_cast<void>(static_cast<U>(reinterpret_cast<T>(
dynamic_cast<U>(const_cast<T>(i1)))));
new U(i1, t1);
new int(t1, u1);
new (t1, u1) int;
delete t1;
dummy d1 = sizeof(t1); // expected-error {{no viable conversion}}
dummy d2 = offsetof(T, foo); // expected-error {{no viable conversion}}
dummy d3 = __alignof(u1); // expected-error {{no viable conversion}}
i1 = typeid(t1); // expected-error {{assigning to 'int' from incompatible type 'const std::type_info'}}
i1 = tpp[0].size(); // expected-error {{'T *' is not a structure or union}}
return u1;
}
template<typename T>
void f2(__restrict T x) {} // expected-note {{substitution failure [with T = int]: restrict requires a pointer or reference ('int' is invalid}}
void f3() {
f2<int*>(0);
f2<int>(0); // expected-error {{no matching function for call to 'f2'}}
}
#if __cplusplus >= 202002L
namespace GH138657 {
template <auto V> // #gh138657-template-head
class meta {};
template<int N>
class meta<N()> {}; // expected-error {{called object type 'int' is not a function or function point}}
template<int N[1]>
class meta<N()> {}; // expected-error {{called object type 'int *' is not a function or function point}}
template<char* N>
class meta<N()> {}; // expected-error {{called object type 'char *' is not a function or function point}}
struct S {};
template<S>
class meta<S()> {}; // expected-error {{template argument for non-type template parameter is treated as function type 'S ()'}}
// expected-note@#gh138657-template-head {{template parameter is declared here}}
}
namespace GH115725 {
template<auto ...> struct X {};
template<typename T, typename ...Ts> struct A {
template<Ts ...Ns, T *...Ps>
A(X<0(Ps)...>, Ts (*...qs)[Ns]);
// expected-error@-1{{called object type 'int' is not a function or function pointer}}
};
}
namespace GH68852 {
template <auto v>
struct constexpr_value {
template <class... Ts>
constexpr constexpr_value<v(Ts::value...)> call(Ts...) {
//expected-error@-1 {{called object type 'int' is not a function or function pointer}}
return {};
}
};
template <auto v> constexpr static inline auto c_ = constexpr_value<v>{};
// expected-note@-1 {{in instantiation of template}}
auto k = c_<1>; // expected-note {{in instantiation of variable}}
}
#endif
#if __cplusplus >= 201702L
namespace GH138731 {
template <class...>
using void_t = void;
template <class T>
T&& declval();
struct S {
S();
static int f();
static int var;
};
namespace invoke_detail {
template <typename F>
struct traits {
template <typename... A>
using result = decltype(declval<F>()(declval<A>()...));
};
template <typename F, typename... A>
using invoke_result_t = typename traits<F>::template result<A...>;
template <typename Void, typename F, typename... A>
inline constexpr bool is_invocable_v = false;
template <typename F, typename... A>
inline constexpr bool
is_invocable_v<void_t<invoke_result_t<F, A...>>, F, A...> = true;
}
template <typename F, typename... A>
inline constexpr bool is_invocable_v =
invoke_detail::is_invocable_v<void, F, A...>;
static_assert(!is_invocable_v<int>);
static_assert(!is_invocable_v<int, int>);
static_assert(!is_invocable_v<S>);
static_assert(is_invocable_v<decltype(&S::f)>);
static_assert(!is_invocable_v<decltype(&S::var)>);
}
#endif
|