1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
//===-- Shared memory RPC client / server interface -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a remote procedure call mechanism to communicate between
// heterogeneous devices that can share an address space atomically. We provide
// a client and a server to facilitate the remote call. The client makes request
// to the server using a shared communication channel. We use separate atomic
// signals to indicate which side, the client or the server is in ownership of
// the buffer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SHARED_RPC_H
#define LLVM_LIBC_SHARED_RPC_H
#include "rpc_util.h"
namespace rpc {
/// Use scoped atomic variants if they are available for the target.
#if !__has_builtin(__scoped_atomic_load_n)
#define __scoped_atomic_load_n(src, ord, scp) __atomic_load_n(src, ord)
#define __scoped_atomic_store_n(dst, src, ord, scp) \
__atomic_store_n(dst, src, ord)
#define __scoped_atomic_fetch_or(src, val, ord, scp) \
__atomic_fetch_or(src, val, ord)
#define __scoped_atomic_fetch_and(src, val, ord, scp) \
__atomic_fetch_and(src, val, ord)
#endif
#if !__has_builtin(__scoped_atomic_thread_fence)
#define __scoped_atomic_thread_fence(ord, scp) __atomic_thread_fence(ord)
#endif
/// Generic codes that can be used whem implementing the server.
enum Status {
RPC_SUCCESS = 0x0,
RPC_ERROR = 0x1000,
RPC_UNHANDLED_OPCODE = 0x1001,
};
/// A fixed size channel used to communicate between the RPC client and server.
struct Buffer {
uint64_t data[8];
};
static_assert(sizeof(Buffer) == 64, "Buffer size mismatch");
/// The information associated with a packet. This indicates which operations to
/// perform and which threads are active in the slots.
struct Header {
uint64_t mask;
uint32_t opcode;
};
/// The maximum number of parallel ports that the RPC interface can support.
constexpr static uint64_t MAX_PORT_COUNT = 4096;
/// A common process used to synchronize communication between a client and a
/// server. The process contains a read-only inbox and a write-only outbox used
/// for signaling ownership of the shared buffer between both sides. We assign
/// ownership of the buffer to the client if the inbox and outbox bits match,
/// otherwise it is owned by the server.
///
/// This process is designed to allow the client and the server to exchange data
/// using a fixed size packet in a mostly arbitrary order using the 'send' and
/// 'recv' operations. The following restrictions to this scheme apply:
/// - The client will always start with a 'send' operation.
/// - The server will always start with a 'recv' operation.
/// - Every 'send' or 'recv' call is mirrored by the other process.
template <bool Invert> struct Process {
RPC_ATTRS Process() = default;
RPC_ATTRS Process(const Process &) = delete;
RPC_ATTRS Process &operator=(const Process &) = delete;
RPC_ATTRS Process(Process &&) = default;
RPC_ATTRS Process &operator=(Process &&) = default;
RPC_ATTRS ~Process() = default;
const uint32_t port_count = 0;
const uint32_t *const inbox = nullptr;
uint32_t *const outbox = nullptr;
Header *const header = nullptr;
Buffer *const packet = nullptr;
static constexpr uint64_t NUM_BITS_IN_WORD = sizeof(uint32_t) * 8;
uint32_t lock[MAX_PORT_COUNT / NUM_BITS_IN_WORD] = {0};
RPC_ATTRS Process(uint32_t port_count, void *buffer)
: port_count(port_count), inbox(reinterpret_cast<uint32_t *>(
advance(buffer, inbox_offset(port_count)))),
outbox(reinterpret_cast<uint32_t *>(
advance(buffer, outbox_offset(port_count)))),
header(reinterpret_cast<Header *>(
advance(buffer, header_offset(port_count)))),
packet(reinterpret_cast<Buffer *>(
advance(buffer, buffer_offset(port_count)))) {}
/// Allocate a memory buffer sufficient to store the following equivalent
/// representation in memory.
///
/// struct Equivalent {
/// Atomic<uint32_t> primary[port_count];
/// Atomic<uint32_t> secondary[port_count];
/// Header header[port_count];
/// Buffer packet[port_count][lane_size];
/// };
RPC_ATTRS static constexpr uint64_t allocation_size(uint32_t port_count,
uint32_t lane_size) {
return buffer_offset(port_count) + buffer_bytes(port_count, lane_size);
}
/// Retrieve the inbox state from memory shared between processes.
RPC_ATTRS uint32_t load_inbox(uint64_t lane_mask, uint32_t index) const {
return rpc::broadcast_value(
lane_mask, __scoped_atomic_load_n(&inbox[index], __ATOMIC_RELAXED,
__MEMORY_SCOPE_SYSTEM));
}
/// Retrieve the outbox state from memory shared between processes.
RPC_ATTRS uint32_t load_outbox(uint64_t lane_mask, uint32_t index) const {
return rpc::broadcast_value(
lane_mask, __scoped_atomic_load_n(&outbox[index], __ATOMIC_RELAXED,
__MEMORY_SCOPE_SYSTEM));
}
/// Signal to the other process that this one is finished with the buffer.
/// Equivalent to loading outbox followed by store of the inverted value
/// The outbox is write only by this warp and tracking the value locally is
/// cheaper than calling load_outbox to get the value to store.
RPC_ATTRS uint32_t invert_outbox(uint32_t index, uint32_t current_outbox) {
uint32_t inverted_outbox = !current_outbox;
__scoped_atomic_thread_fence(__ATOMIC_RELEASE, __MEMORY_SCOPE_SYSTEM);
__scoped_atomic_store_n(&outbox[index], inverted_outbox, __ATOMIC_RELAXED,
__MEMORY_SCOPE_SYSTEM);
return inverted_outbox;
}
// Given the current outbox and inbox values, wait until the inbox changes
// to indicate that this thread owns the buffer element.
RPC_ATTRS void wait_for_ownership(uint64_t lane_mask, uint32_t index,
uint32_t outbox, uint32_t in) {
while (buffer_unavailable(in, outbox)) {
sleep_briefly();
in = load_inbox(lane_mask, index);
}
__scoped_atomic_thread_fence(__ATOMIC_ACQUIRE, __MEMORY_SCOPE_SYSTEM);
}
/// The packet is a linearly allocated array of buffers used to communicate
/// with the other process. This function returns the appropriate slot in this
/// array such that the process can operate on an entire warp or wavefront.
RPC_ATTRS Buffer *get_packet(uint32_t index, uint32_t lane_size) {
return &packet[index * lane_size];
}
/// Determines if this process needs to wait for ownership of the buffer. We
/// invert the condition on one of the processes to indicate that if one
/// process owns the buffer then the other does not.
RPC_ATTRS static bool buffer_unavailable(uint32_t in, uint32_t out) {
bool cond = in != out;
return Invert ? !cond : cond;
}
/// Attempt to claim the lock at index. Return true on lock taken.
/// lane_mask is a bitmap of the threads in the warp that would hold the
/// single lock on success, e.g. the result of rpc::get_lane_mask()
/// The lock is held when the n-th bit of the lock bitfield is set.
RPC_ATTRS bool try_lock(uint64_t lane_mask, uint32_t index) {
// On amdgpu, test and set to the nth lock bit and a sync_lane would suffice
// On volta, need to handle differences between the threads running and
// the threads that were detected in the previous call to get_lane_mask()
//
// All threads in lane_mask try to claim the lock. At most one can succeed.
// There may be threads active which are not in lane mask which must not
// succeed in taking the lock, as otherwise it will leak. This is handled
// by making threads which are not in lane_mask or with 0, a no-op.
uint32_t id = rpc::get_lane_id();
bool id_in_lane_mask = lane_mask & (1ul << id);
// All threads in the warp call fetch_or. Possibly at the same time.
bool before = set_nth(lock, index, id_in_lane_mask);
uint64_t packed = rpc::ballot(lane_mask, before);
// If every bit set in lane_mask is also set in packed, every single thread
// in the warp failed to get the lock. Ballot returns unset for threads not
// in the lane mask.
//
// Cases, per thread:
// mask==0 -> unspecified before, discarded by ballot -> 0
// mask==1 and before==0 (success), set zero by ballot -> 0
// mask==1 and before==1 (failure), set one by ballot -> 1
//
// mask != packed implies at least one of the threads got the lock
// atomic semantics of fetch_or mean at most one of the threads for the lock
// If holding the lock then the caller can load values knowing said loads
// won't move past the lock. No such guarantee is needed if the lock acquire
// failed. This conditional branch is expected to fold in the caller after
// inlining the current function.
bool holding_lock = lane_mask != packed;
if (holding_lock)
__scoped_atomic_thread_fence(__ATOMIC_ACQUIRE, __MEMORY_SCOPE_DEVICE);
return holding_lock;
}
/// Unlock the lock at index. We need a lane sync to keep this function
/// convergent, otherwise the compiler will sink the store and deadlock.
RPC_ATTRS void unlock(uint64_t lane_mask, uint32_t index) {
// Do not move any writes past the unlock.
__scoped_atomic_thread_fence(__ATOMIC_RELEASE, __MEMORY_SCOPE_DEVICE);
// Use exactly one thread to clear the nth bit in the lock array Must
// restrict to a single thread to avoid one thread dropping the lock, then
// an unrelated warp claiming the lock, then a second thread in this warp
// dropping the lock again.
clear_nth(lock, index, rpc::is_first_lane(lane_mask));
rpc::sync_lane(lane_mask);
}
/// Number of bytes to allocate for an inbox or outbox.
RPC_ATTRS static constexpr uint64_t mailbox_bytes(uint32_t port_count) {
return port_count * sizeof(uint32_t);
}
/// Number of bytes to allocate for the buffer containing the packets.
RPC_ATTRS static constexpr uint64_t buffer_bytes(uint32_t port_count,
uint32_t lane_size) {
return port_count * lane_size * sizeof(Buffer);
}
/// Offset of the inbox in memory. This is the same as the outbox if inverted.
RPC_ATTRS static constexpr uint64_t inbox_offset(uint32_t port_count) {
return Invert ? mailbox_bytes(port_count) : 0;
}
/// Offset of the outbox in memory. This is the same as the inbox if inverted.
RPC_ATTRS static constexpr uint64_t outbox_offset(uint32_t port_count) {
return Invert ? 0 : mailbox_bytes(port_count);
}
/// Offset of the buffer containing the packets after the inbox and outbox.
RPC_ATTRS static constexpr uint64_t header_offset(uint32_t port_count) {
return align_up(2 * mailbox_bytes(port_count), alignof(Header));
}
/// Offset of the buffer containing the packets after the inbox and outbox.
RPC_ATTRS static constexpr uint64_t buffer_offset(uint32_t port_count) {
return align_up(header_offset(port_count) + port_count * sizeof(Header),
alignof(Buffer));
}
/// Conditionally set the n-th bit in the atomic bitfield.
RPC_ATTRS static constexpr uint32_t set_nth(uint32_t *bits, uint32_t index,
bool cond) {
uint32_t slot = index / NUM_BITS_IN_WORD;
uint32_t bit = index % NUM_BITS_IN_WORD;
return __scoped_atomic_fetch_or(&bits[slot],
static_cast<uint32_t>(cond) << bit,
__ATOMIC_RELAXED, __MEMORY_SCOPE_DEVICE) &
(1u << bit);
}
/// Conditionally clear the n-th bit in the atomic bitfield.
RPC_ATTRS static constexpr uint32_t clear_nth(uint32_t *bits, uint32_t index,
bool cond) {
uint32_t slot = index / NUM_BITS_IN_WORD;
uint32_t bit = index % NUM_BITS_IN_WORD;
return __scoped_atomic_fetch_and(&bits[slot],
~0u ^ (static_cast<uint32_t>(cond) << bit),
__ATOMIC_RELAXED, __MEMORY_SCOPE_DEVICE) &
(1u << bit);
}
};
/// Invokes a function across every active buffer across the total lane size.
template <typename F>
RPC_ATTRS static void invoke_rpc(F &&fn, uint32_t lane_size, uint64_t lane_mask,
Buffer *slot) {
if constexpr (is_process_gpu()) {
fn(&slot[rpc::get_lane_id()], rpc::get_lane_id());
} else {
for (uint32_t i = 0; i < lane_size; i += rpc::get_num_lanes())
if (lane_mask & (1ul << i))
fn(&slot[i], i);
}
}
/// The port provides the interface to communicate between the multiple
/// processes. A port is conceptually an index into the memory provided by the
/// underlying process that is guarded by a lock bit.
template <bool T> struct Port {
RPC_ATTRS Port(Process<T> &process, uint64_t lane_mask, uint32_t lane_size,
uint32_t index, uint32_t out)
: process(process), lane_mask(lane_mask), lane_size(lane_size),
index(index), out(out), receive(false), owns_buffer(true) {}
RPC_ATTRS ~Port() = default;
private:
RPC_ATTRS Port(const Port &) = delete;
RPC_ATTRS Port &operator=(const Port &) = delete;
RPC_ATTRS Port(Port &&) = default;
RPC_ATTRS Port &operator=(Port &&) = default;
friend struct Client;
friend struct Server;
friend class rpc::optional<Port<T>>;
public:
template <typename U> RPC_ATTRS void recv(U use);
template <typename F> RPC_ATTRS void send(F fill);
template <typename F, typename U> RPC_ATTRS void send_and_recv(F fill, U use);
template <typename W> RPC_ATTRS void recv_and_send(W work);
RPC_ATTRS void send_n(const void *const *src, uint64_t *size);
RPC_ATTRS void send_n(const void *src, uint64_t size);
template <typename A>
RPC_ATTRS void recv_n(void **dst, uint64_t *size, A &&alloc);
RPC_ATTRS uint32_t get_opcode() const { return process.header[index].opcode; }
RPC_ATTRS uint32_t get_index() const { return index; }
RPC_ATTRS void close() {
// Wait for all lanes to finish using the port.
rpc::sync_lane(lane_mask);
// The server is passive, if it own the buffer when it closes we need to
// give ownership back to the client.
if (owns_buffer && T)
out = process.invert_outbox(index, out);
process.unlock(lane_mask, index);
}
private:
Process<T> &process;
uint64_t lane_mask;
uint32_t lane_size;
uint32_t index;
uint32_t out;
bool receive;
bool owns_buffer;
};
/// The RPC client used to make requests to the server.
struct Client {
RPC_ATTRS Client() = default;
RPC_ATTRS Client(const Client &) = delete;
RPC_ATTRS Client &operator=(const Client &) = delete;
RPC_ATTRS ~Client() = default;
RPC_ATTRS Client(uint32_t port_count, void *buffer)
: process(port_count, buffer) {}
using Port = rpc::Port<false>;
template <uint32_t opcode> RPC_ATTRS Port open();
private:
Process<false> process;
};
/// The RPC server used to respond to the client.
struct Server {
RPC_ATTRS Server() = default;
RPC_ATTRS Server(const Server &) = delete;
RPC_ATTRS Server &operator=(const Server &) = delete;
RPC_ATTRS ~Server() = default;
RPC_ATTRS Server(uint32_t port_count, void *buffer)
: process(port_count, buffer) {}
using Port = rpc::Port<true>;
RPC_ATTRS rpc::optional<Port> try_open(uint32_t lane_size,
uint32_t start = 0);
RPC_ATTRS Port open(uint32_t lane_size);
RPC_ATTRS static constexpr uint64_t allocation_size(uint32_t lane_size,
uint32_t port_count) {
return Process<true>::allocation_size(port_count, lane_size);
}
private:
Process<true> process;
};
/// Applies \p fill to the shared buffer and initiates a send operation.
template <bool T> template <typename F> RPC_ATTRS void Port<T>::send(F fill) {
uint32_t in = owns_buffer ? out ^ T : process.load_inbox(lane_mask, index);
// We need to wait until we own the buffer before sending.
process.wait_for_ownership(lane_mask, index, out, in);
// Apply the \p fill function to initialize the buffer and release the memory.
invoke_rpc(fill, lane_size, process.header[index].mask,
process.get_packet(index, lane_size));
out = process.invert_outbox(index, out);
owns_buffer = false;
receive = false;
}
/// Applies \p use to the shared buffer and acknowledges the send.
template <bool T> template <typename U> RPC_ATTRS void Port<T>::recv(U use) {
// We only exchange ownership of the buffer during a receive if we are waiting
// for a previous receive to finish.
if (receive) {
out = process.invert_outbox(index, out);
owns_buffer = false;
}
uint32_t in = owns_buffer ? out ^ T : process.load_inbox(lane_mask, index);
// We need to wait until we own the buffer before receiving.
process.wait_for_ownership(lane_mask, index, out, in);
// Apply the \p use function to read the memory out of the buffer.
invoke_rpc(use, lane_size, process.header[index].mask,
process.get_packet(index, lane_size));
receive = true;
owns_buffer = true;
}
/// Combines a send and receive into a single function.
template <bool T>
template <typename F, typename U>
RPC_ATTRS void Port<T>::send_and_recv(F fill, U use) {
send(fill);
recv(use);
}
/// Combines a receive and send operation into a single function. The \p work
/// function modifies the buffer in-place and the send is only used to initiate
/// the copy back.
template <bool T>
template <typename W>
RPC_ATTRS void Port<T>::recv_and_send(W work) {
recv(work);
send([](Buffer *, uint32_t) { /* no-op */ });
}
/// Helper routine to simplify the interface when sending from the GPU using
/// thread private pointers to the underlying value.
template <bool T>
RPC_ATTRS void Port<T>::send_n(const void *src, uint64_t size) {
const void **src_ptr = &src;
uint64_t *size_ptr = &size;
send_n(src_ptr, size_ptr);
}
/// Sends an arbitrarily sized data buffer \p src across the shared channel in
/// multiples of the packet length.
template <bool T>
RPC_ATTRS void Port<T>::send_n(const void *const *src, uint64_t *size) {
uint64_t num_sends = 0;
send([&](Buffer *buffer, uint32_t id) {
reinterpret_cast<uint64_t *>(buffer->data)[0] = lane_value(size, id);
num_sends = is_process_gpu() ? lane_value(size, id)
: rpc::max(lane_value(size, id), num_sends);
uint64_t len =
lane_value(size, id) > sizeof(Buffer::data) - sizeof(uint64_t)
? sizeof(Buffer::data) - sizeof(uint64_t)
: lane_value(size, id);
rpc_memcpy(&buffer->data[1], lane_value(src, id), len);
});
uint64_t idx = sizeof(Buffer::data) - sizeof(uint64_t);
uint64_t mask = process.header[index].mask;
while (rpc::ballot(mask, idx < num_sends)) {
send([=](Buffer *buffer, uint32_t id) {
uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data)
? sizeof(Buffer::data)
: lane_value(size, id) - idx;
if (idx < lane_value(size, id))
rpc_memcpy(buffer->data, advance(lane_value(src, id), idx), len);
});
idx += sizeof(Buffer::data);
}
}
/// Receives an arbitrarily sized data buffer across the shared channel in
/// multiples of the packet length. The \p alloc function is called with the
/// size of the data so that we can initialize the size of the \p dst buffer.
template <bool T>
template <typename A>
RPC_ATTRS void Port<T>::recv_n(void **dst, uint64_t *size, A &&alloc) {
uint64_t num_recvs = 0;
recv([&](Buffer *buffer, uint32_t id) {
lane_value(size, id) = reinterpret_cast<uint64_t *>(buffer->data)[0];
lane_value(dst, id) =
reinterpret_cast<uint8_t *>(alloc(lane_value(size, id)));
num_recvs = is_process_gpu() ? lane_value(size, id)
: rpc::max(lane_value(size, id), num_recvs);
uint64_t len =
lane_value(size, id) > sizeof(Buffer::data) - sizeof(uint64_t)
? sizeof(Buffer::data) - sizeof(uint64_t)
: lane_value(size, id);
rpc_memcpy(lane_value(dst, id), &buffer->data[1], len);
});
uint64_t idx = sizeof(Buffer::data) - sizeof(uint64_t);
uint64_t mask = process.header[index].mask;
while (rpc::ballot(mask, idx < num_recvs)) {
recv([=](Buffer *buffer, uint32_t id) {
uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data)
? sizeof(Buffer::data)
: lane_value(size, id) - idx;
if (idx < lane_value(size, id))
rpc_memcpy(advance(lane_value(dst, id), idx), buffer->data, len);
});
idx += sizeof(Buffer::data);
}
}
/// Continually attempts to open a port to use as the client. The client can
/// only open a port if we find an index that is in a valid sending state. That
/// is, there are send operations pending that haven't been serviced on this
/// port. Each port instance uses an associated \p opcode to tell the server
/// what to do. The Client interface provides the appropriate lane size to the
/// port using the platform's returned value.
template <uint32_t opcode> RPC_ATTRS Client::Port Client::open() {
// Repeatedly perform a naive linear scan for a port that can be opened to
// send data.
for (uint32_t index = 0;; ++index) {
// Start from the beginning if we run out of ports to check.
if (index >= process.port_count)
index = 0;
// Attempt to acquire the lock on this index.
uint64_t lane_mask = rpc::get_lane_mask();
if (!process.try_lock(lane_mask, index))
continue;
uint32_t in = process.load_inbox(lane_mask, index);
uint32_t out = process.load_outbox(lane_mask, index);
// Once we acquire the index we need to check if we are in a valid sending
// state.
if (process.buffer_unavailable(in, out)) {
process.unlock(lane_mask, index);
continue;
}
if (rpc::is_first_lane(lane_mask)) {
process.header[index].opcode = opcode;
process.header[index].mask = lane_mask;
}
rpc::sync_lane(lane_mask);
return Port(process, lane_mask, rpc::get_num_lanes(), index, out);
}
}
/// Attempts to open a port to use as the server. The server can only open a
/// port if it has a pending receive operation
RPC_ATTRS rpc::optional<typename Server::Port>
Server::try_open(uint32_t lane_size, uint32_t start) {
// Perform a naive linear scan for a port that has a pending request.
for (uint32_t index = start; index < process.port_count; ++index) {
uint64_t lane_mask = rpc::get_lane_mask();
uint32_t in = process.load_inbox(lane_mask, index);
uint32_t out = process.load_outbox(lane_mask, index);
// The server is passive, if there is no work pending don't bother
// opening a port.
if (process.buffer_unavailable(in, out))
continue;
// Attempt to acquire the lock on this index.
if (!process.try_lock(lane_mask, index))
continue;
in = process.load_inbox(lane_mask, index);
out = process.load_outbox(lane_mask, index);
if (process.buffer_unavailable(in, out)) {
process.unlock(lane_mask, index);
continue;
}
return Port(process, lane_mask, lane_size, index, out);
}
return rpc::nullopt;
}
RPC_ATTRS Server::Port Server::open(uint32_t lane_size) {
for (;;) {
if (rpc::optional<Server::Port> p = try_open(lane_size))
return rpc::move(p.value());
sleep_briefly();
}
}
#undef RPC_ATTRS
#if !__has_builtin(__scoped_atomic_load_n)
#undef __scoped_atomic_load_n
#undef __scoped_atomic_store_n
#undef __scoped_atomic_fetch_or
#undef __scoped_atomic_fetch_and
#endif
#if !__has_builtin(__scoped_atomic_thread_fence)
#undef __scoped_atomic_thread_fence
#endif
} // namespace rpc
#endif // LLVM_LIBC_SHARED_RPC_H
|