1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SUPPORT_FLAT_MAP_HELPERS_H
#define SUPPORT_FLAT_MAP_HELPERS_H
#include <algorithm>
#include <cassert>
#include <string>
#include <vector>
#include <flat_map>
#include <ranges>
#include "../flat_helpers.h"
#include "test_allocator.h"
#include "test_macros.h"
template <class... Args>
constexpr void check_invariant(const std::flat_map<Args...>& m) {
assert(m.keys().size() == m.values().size());
const auto& keys = m.keys();
assert(std::is_sorted(keys.begin(), keys.end(), m.key_comp()));
auto key_equal = [&](const auto& x, const auto& y) {
const auto& c = m.key_comp();
return !c(x, y) && !c(y, x);
};
assert(std::adjacent_find(keys.begin(), keys.end(), key_equal) == keys.end());
}
constexpr void check_possible_values(const auto& actual, const auto& expected) {
assert(std::ranges::size(actual) == std::ranges::size(expected));
for (const auto& [actual_value, possible_values] : std::views::zip(actual, expected)) {
assert(std::ranges::find(possible_values, actual_value) != std::ranges::end(possible_values));
}
}
template <class F>
void test_emplace_exception_guarantee([[maybe_unused]] F&& emplace_function) {
#ifndef TEST_HAS_NO_EXCEPTIONS
using C = TransparentComparator;
{
// Throw on emplace the key, and underlying has strong exception guarantee
using KeyContainer = std::vector<int, test_allocator<int>>;
using M = std::flat_map<int, int, C, KeyContainer>;
LIBCPP_STATIC_ASSERT(std::__container_traits<KeyContainer>::__emplacement_has_strong_exception_safety_guarantee);
test_allocator_statistics stats;
KeyContainer a({1, 2, 3, 4}, test_allocator<int>{&stats});
std::vector<int> b = {5, 6, 7, 8};
[[maybe_unused]] auto expected_keys = a;
[[maybe_unused]] auto expected_values = b;
M m(std::sorted_unique, std::move(a), std::move(b));
stats.throw_after = 1;
try {
emplace_function(m, 0, 0);
assert(false);
} catch (const std::bad_alloc&) {
check_invariant(m);
// In libc++, the flat_map is unchanged
LIBCPP_ASSERT(m.size() == 4);
LIBCPP_ASSERT(m.keys() == expected_keys);
LIBCPP_ASSERT(m.values() == expected_values);
}
}
{
// Throw on emplace the key, and underlying has no strong exception guarantee
using KeyContainer = EmplaceUnsafeContainer<int>;
using M = std::flat_map<int, int, C, KeyContainer>;
LIBCPP_STATIC_ASSERT(!std::__container_traits<KeyContainer>::__emplacement_has_strong_exception_safety_guarantee);
KeyContainer a = {1, 2, 3, 4};
std::vector<int> b = {5, 6, 7, 8};
M m(std::sorted_unique, std::move(a), std::move(b));
try {
emplace_function(m, 0, 0);
assert(false);
} catch (int) {
check_invariant(m);
// In libc++, the flat_map is cleared
LIBCPP_ASSERT(m.size() == 0);
}
}
{
// Throw on emplace the value, and underlying has strong exception guarantee
using ValueContainer = std::vector<int, test_allocator<int>>;
;
using M = std::flat_map<int, int, C, std::vector<int>, ValueContainer>;
LIBCPP_STATIC_ASSERT(std::__container_traits<ValueContainer>::__emplacement_has_strong_exception_safety_guarantee);
std::vector<int> a = {1, 2, 3, 4};
test_allocator_statistics stats;
ValueContainer b({1, 2, 3, 4}, test_allocator<int>{&stats});
[[maybe_unused]] auto expected_keys = a;
[[maybe_unused]] auto expected_values = b;
M m(std::sorted_unique, std::move(a), std::move(b));
stats.throw_after = 1;
try {
emplace_function(m, 0, 0);
assert(false);
} catch (const std::bad_alloc&) {
check_invariant(m);
// In libc++, the emplaced key is erased and the flat_map is unchanged
LIBCPP_ASSERT(m.size() == 4);
LIBCPP_ASSERT(m.keys() == expected_keys);
LIBCPP_ASSERT(m.values() == expected_values);
}
}
{
// Throw on emplace the value, and underlying has no strong exception guarantee
using ValueContainer = EmplaceUnsafeContainer<int>;
using M = std::flat_map<int, int, C, std::vector<int>, ValueContainer>;
LIBCPP_STATIC_ASSERT(!std::__container_traits<ValueContainer>::__emplacement_has_strong_exception_safety_guarantee);
std::vector<int> a = {1, 2, 3, 4};
ValueContainer b = {1, 2, 3, 4};
M m(std::sorted_unique, std::move(a), std::move(b));
try {
emplace_function(m, 0, 0);
assert(false);
} catch (int) {
check_invariant(m);
// In libc++, the flat_map is cleared
LIBCPP_ASSERT(m.size() == 0);
}
}
{
// Throw on emplace the value, then throw again on erasing the key
using KeyContainer = ThrowOnEraseContainer<int>;
using ValueContainer = std::vector<int, test_allocator<int>>;
using M = std::flat_map<int, int, C, KeyContainer, ValueContainer>;
LIBCPP_STATIC_ASSERT(std::__container_traits<ValueContainer>::__emplacement_has_strong_exception_safety_guarantee);
KeyContainer a = {1, 2, 3, 4};
test_allocator_statistics stats;
ValueContainer b({1, 2, 3, 4}, test_allocator<int>{&stats});
M m(std::sorted_unique, std::move(a), std::move(b));
stats.throw_after = 1;
try {
emplace_function(m, 0, 0);
assert(false);
} catch (const std::bad_alloc&) {
check_invariant(m);
// In libc++, we try to erase the key after value emplacement failure.
// and after erasure failure, we clear the flat_map
LIBCPP_ASSERT(m.size() == 0);
}
}
#endif
}
template <class F>
void test_insert_range_exception_guarantee([[maybe_unused]] F&& insert_function) {
#ifndef TEST_HAS_NO_EXCEPTIONS
using KeyContainer = EmplaceUnsafeContainer<int>;
using ValueContainer = std::vector<int>;
using M = std::flat_map<int, int, std::ranges::less, KeyContainer, ValueContainer>;
test_allocator_statistics stats;
KeyContainer a{1, 2, 3, 4};
ValueContainer b{1, 2, 3, 4};
M m(std::sorted_unique, std::move(a), std::move(b));
std::vector<std::pair<int, int>> newValues = {{0, 0}, {1, 1}, {5, 5}, {6, 6}, {7, 7}, {8, 8}};
stats.throw_after = 1;
try {
insert_function(m, newValues);
assert(false);
} catch (int) {
check_invariant(m);
// In libc++, we clear if anything goes wrong when inserting a range
LIBCPP_ASSERT(m.size() == 0);
}
#endif
}
template <class F>
void test_erase_exception_guarantee([[maybe_unused]] F&& erase_function) {
#ifndef TEST_HAS_NO_EXCEPTIONS
{
// key erase throws
using KeyContainer = ThrowOnEraseContainer<int>;
using ValueContainer = std::vector<int>;
using M = std::flat_map<int, int, TransparentComparator, KeyContainer, ValueContainer>;
KeyContainer a{1, 2, 3, 4};
ValueContainer b{1, 2, 3, 4};
M m(std::sorted_unique, std::move(a), std::move(b));
try {
erase_function(m, 3);
assert(false);
} catch (int) {
check_invariant(m);
// In libc++, we clear if anything goes wrong when erasing
LIBCPP_ASSERT(m.size() == 0);
}
}
{
// key erase throws
using KeyContainer = std::vector<int>;
using ValueContainer = ThrowOnEraseContainer<int>;
using M = std::flat_map<int, int, TransparentComparator, KeyContainer, ValueContainer>;
KeyContainer a{1, 2, 3, 4};
ValueContainer b{1, 2, 3, 4};
M m(std::sorted_unique, std::move(a), std::move(b));
try {
erase_function(m, 3);
assert(false);
} catch (int) {
check_invariant(m);
// In libc++, we clear if anything goes wrong when erasing
LIBCPP_ASSERT(m.size() == 0);
}
}
#endif
}
#endif // SUPPORT_FLAT_MAP_HELPERS_H
|