1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17, c++20
// <flat_set>
// template<class K> pair<iterator, bool> insert(K&& x);
// template<class K> iterator insert(const_iterator hint, K&& x);
#include <algorithm>
#include <compare>
#include <concepts>
#include <deque>
#include <flat_set>
#include <functional>
#include <tuple>
#include "MinSequenceContainer.h"
#include "../helpers.h"
#include "test_macros.h"
#include "test_iterators.h"
#include "min_allocator.h"
// Constraints: The qualified-id Compare::is_transparent is valid and denotes a type. is_constructible_v<value_type, K> is true.
template <class M, class... Args>
concept CanInsert = requires(M m, Args&&... args) { m.insert(std::forward<Args>(args)...); };
using TransparentSet = std::flat_set<int, TransparentComparator>;
using TransparentSetIter = typename TransparentSet::iterator;
static_assert(CanInsert<TransparentSet, ExplicitlyConvertibleTransparent<int>>);
static_assert(CanInsert<TransparentSet, TransparentSetIter, ExplicitlyConvertibleTransparent<int>>);
static_assert(!CanInsert<TransparentSet, NonConvertibleTransparent<int>>);
static_assert(!CanInsert<TransparentSet, TransparentSetIter, NonConvertibleTransparent<int>>);
using NonTransparentSet = std::flat_set<int>;
using NonTransparentSetIter = typename NonTransparentSet::iterator;
static_assert(!CanInsert<NonTransparentSet, ExplicitlyConvertibleTransparent<int>>);
static_assert(!CanInsert<NonTransparentSet, NonTransparentSetIter, ExplicitlyConvertibleTransparent<int>>);
static_assert(!CanInsert<NonTransparentSet, NonConvertibleTransparent<int>>);
static_assert(!CanInsert<NonTransparentSet, NonTransparentSetIter, NonConvertibleTransparent<int>>);
template <class KeyContainer>
constexpr void test_one() {
using Key = typename KeyContainer::value_type;
using M = std::flat_set<Key, TransparentComparator, KeyContainer>;
{
const int expected[] = {1, 2, 3, 4, 5};
{
// insert(K&&)
bool transparent_used = false;
M m{{1, 2, 4, 5}, TransparentComparator{transparent_used}};
assert(!transparent_used);
std::same_as<std::pair<typename M::iterator, bool>> decltype(auto) r =
m.insert(ExplicitlyConvertibleTransparent<Key>{3});
assert(transparent_used);
assert(r.first == m.begin() + 2);
assert(r.second);
assert(std::ranges::equal(m, expected));
}
{
// insert(const_iterator, K&&)
bool transparent_used = false;
M m{{1, 2, 4, 5}, TransparentComparator{transparent_used}};
assert(!transparent_used);
std::same_as<typename M::iterator> auto it = m.insert(m.begin(), ExplicitlyConvertibleTransparent<Key>{3});
assert(transparent_used);
assert(it == m.begin() + 2);
assert(std::ranges::equal(m, expected));
}
}
{
// was empty
const int expected[] = {3};
{
// insert(K&&)
bool transparent_used = false;
M m{{}, TransparentComparator{transparent_used}};
assert(!transparent_used);
std::same_as<std::pair<typename M::iterator, bool>> decltype(auto) r =
m.insert(ExplicitlyConvertibleTransparent<Key>{3});
assert(!transparent_used); // no elements to compare against
assert(r.first == m.begin());
assert(r.second);
assert(std::ranges::equal(m, expected));
}
{
// insert(const_iterator, K&&)
bool transparent_used = false;
M m{{}, TransparentComparator{transparent_used}};
assert(!transparent_used);
std::same_as<typename M::iterator> auto it = m.insert(m.begin(), ExplicitlyConvertibleTransparent<Key>{3});
assert(!transparent_used); // no elements to compare against
assert(it == m.begin());
assert(std::ranges::equal(m, expected));
}
}
}
constexpr bool test() {
test_one<std::vector<int>>();
#ifndef __cpp_lib_constexpr_deque
if (!TEST_IS_CONSTANT_EVALUATED)
#endif
test_one<std::deque<int>>();
test_one<MinSequenceContainer<int>>();
test_one<std::vector<int, min_allocator<int>>>();
{
// no ambiguity between insert(pos, P&&) and insert(first, last)
using M = std::flat_set<int>;
struct Evil {
operator M::value_type() const;
operator M::const_iterator() const;
};
std::flat_set<int> m;
ASSERT_SAME_TYPE(decltype(m.insert(Evil())), std::pair<M::iterator, bool>);
ASSERT_SAME_TYPE(decltype(m.insert(m.begin(), Evil())), M::iterator);
ASSERT_SAME_TYPE(decltype(m.insert(m.begin(), m.end())), void);
}
{
// LWG4239 std::string and C string literal
using M = std::flat_set<std::string, std::less<>>;
M m{"alpha", "beta", "epsilon", "eta", "gamma"};
auto [iter, inserted] = m.insert("beta");
assert(!inserted);
assert(iter == m.begin() + 1);
}
return true;
}
void test_exception() {
{
auto insert_func = [](auto& m, auto key_arg) {
using FlatSet = std::decay_t<decltype(m)>;
m.insert(ExplicitlyConvertibleTransparent<typename FlatSet::key_type>{key_arg});
};
test_emplace_exception_guarantee(insert_func);
}
{
auto insert_func_iter = [](auto& m, auto key_arg) {
using FlatSet = std::decay_t<decltype(m)>;
m.insert(m.begin(), ExplicitlyConvertibleTransparent<typename FlatSet::key_type>{key_arg});
};
test_emplace_exception_guarantee(insert_func_iter);
}
}
int main(int, char**) {
test();
test_exception();
#if TEST_STD_VER >= 26
static_assert(test());
#endif
return 0;
}
|