File: emplace.pass.cpp

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,235,796 kB
  • sloc: cpp: 7,617,614; ansic: 1,433,901; asm: 1,058,726; python: 252,096; f90: 94,671; objc: 70,753; lisp: 42,813; pascal: 18,401; sh: 10,032; ml: 5,111; perl: 4,720; awk: 3,523; makefile: 3,401; javascript: 2,272; xml: 892; fortran: 770
file content (342 lines) | stat: -rw-r--r-- 10,478 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// UNSUPPORTED: c++03 && !stdlib=libc++
// ADDITIONAL_COMPILE_FLAGS(has-fconstexpr-steps): -fconstexpr-steps=9000000

// <vector>

// template <class... Args> iterator emplace(const_iterator pos, Args&&... args);

#include <cassert>
#include <cstddef>
#include <type_traits>
#include <utility>
#include <vector>

#include "asan_testing.h"
#include "common.h"
#include "min_allocator.h"
#include "MoveOnly.h"
#include "test_allocator.h"
#include "test_macros.h"

template <class T>
struct has_moved_from_sentinel_value : std::false_type {};

template <>
struct has_moved_from_sentinel_value<MoveOnly> : std::true_type {};

template <template <class...> class Allocator, class T>
TEST_CONSTEXPR_CXX20 void test() {
  using Vector   = std::vector<T, Allocator<T> >;
  using Iterator = typename Vector::iterator;

  // Check the return type
  {
    Vector v;
    ASSERT_SAME_TYPE(decltype(v.emplace(v.cbegin(), 1)), Iterator);
  }

  // Emplace at the end of a vector with increasing size
  {
    Vector v;

    // starts with size 0
    {
      Iterator it = v.emplace(v.cend(), 0);
      assert(it == v.end() - 1);
      assert(v.size() == 1);
      assert(v[0] == T(0));
      assert(is_contiguous_container_asan_correct(v));
    }

    // starts with size 1
    {
      Iterator it = v.emplace(v.cend(), 1);
      assert(it == v.end() - 1);
      assert(v.size() == 2);
      assert(v[0] == T(0));
      assert(v[1] == T(1));
      assert(is_contiguous_container_asan_correct(v));
    }

    // starts with size 2
    {
      Iterator it = v.emplace(v.cend(), 2);
      assert(it == v.end() - 1);
      assert(v.size() == 3);
      assert(v[0] == T(0));
      assert(v[1] == T(1));
      assert(v[2] == T(2));
      assert(is_contiguous_container_asan_correct(v));
    }

    // starts with size n...
    for (std::size_t n = 3; n != 100; ++n) {
      Iterator it = v.emplace(v.cend(), n);
      assert(it == v.end() - 1);
      assert(v.size() == n + 1);
      for (std::size_t i = 0; i != n + 1; ++i)
        assert(v[i] == T(i));
      assert(is_contiguous_container_asan_correct(v));
    }
  }

  // Emplace at the start of a vector with increasing size
  {
    Vector v;

    // starts with size 0
    {
      Iterator it = v.emplace(v.cbegin(), 0);
      assert(it == v.begin());
      assert(v.size() == 1);
      assert(v[0] == T(0));
      assert(is_contiguous_container_asan_correct(v));
    }

    // starts with size 1
    {
      Iterator it = v.emplace(v.cbegin(), 1);
      assert(it == v.begin());
      assert(v.size() == 2);
      assert(v[0] == T(1));
      assert(v[1] == T(0));
      assert(is_contiguous_container_asan_correct(v));
    }

    // starts with size 2
    {
      Iterator it = v.emplace(v.cbegin(), 2);
      assert(it == v.begin());
      assert(v.size() == 3);
      assert(v[0] == T(2));
      assert(v[1] == T(1));
      assert(v[2] == T(0));
      assert(is_contiguous_container_asan_correct(v));
    }

    // starts with size n...
    for (std::size_t n = 3; n != 100; ++n) {
      Iterator it = v.emplace(v.cbegin(), n);
      assert(it == v.begin());
      assert(v.size() == n + 1);
      for (std::size_t i = 0; i != n + 1; ++i)
        assert(v[i] == T(n - i));
      assert(is_contiguous_container_asan_correct(v));
    }
  }

  // Emplace somewhere inside the vector
  {
    Vector v;
    v.emplace_back(0);
    v.emplace_back(1);
    v.emplace_back(2);
    // vector is {0, 1, 2}

    {
      Iterator it = v.emplace(v.cbegin() + 1, 3);
      // vector is {0, 3, 1, 2}
      assert(it == v.begin() + 1);
      assert(v.size() == 4);
      assert(v[0] == T(0));
      assert(v[1] == T(3));
      assert(v[2] == T(1));
      assert(v[3] == T(2));
      assert(is_contiguous_container_asan_correct(v));
    }

    {
      Iterator it = v.emplace(v.cbegin() + 2, 4);
      // vector is {0, 3, 4, 1, 2}
      assert(it == v.begin() + 2);
      assert(v.size() == 5);
      assert(v[0] == T(0));
      assert(v[1] == T(3));
      assert(v[2] == T(4));
      assert(v[3] == T(1));
      assert(v[4] == T(2));
      assert(is_contiguous_container_asan_correct(v));
    }
  }

  // Emplace after reserving
  {
    Vector v;
    v.emplace_back(0);
    v.emplace_back(1);
    v.emplace_back(2);
    // vector is {0, 1, 2}

    v.reserve(1000);
    Iterator it = v.emplace(v.cbegin() + 1, 3);
    assert(it == v.begin() + 1);
    assert(v.size() == 4);
    assert(v[0] == T(0));
    assert(v[1] == T(3));
    assert(v[2] == T(1));
    assert(v[3] == T(2));
    assert(is_contiguous_container_asan_correct(v));
  }

  // Emplace with the same type that's stored in the vector (as opposed to just constructor arguments)
  {
    Vector v;
    Iterator it = v.emplace(v.cbegin(), T(1));
    assert(it == v.begin());
    assert(v.size() == 1);
    assert(v[0] == T(1));
    assert(is_contiguous_container_asan_correct(v));
  }

  // Emplace from an element inside the vector itself. This is interesting for two reasons. First, if the
  // vector must increase capacity, the implementation needs to make sure that it doesn't end up inserting
  // from a dangling reference.
  //
  // Second, if the vector doesn't need to grow but its elements get shifted internally, the implementation
  // must make sure that it doesn't end up inserting from an element whose position has changed.
  {
    // When capacity must increase
    {
      Vector v;
      v.emplace_back(1);
      v.emplace_back(2);

      while (v.size() < v.capacity()) {
        v.emplace_back(3);
      }
      assert(v.size() == v.capacity());
      // vector is {1, 2, 3...}

      std::size_t old_cap = v.capacity();
      v.emplace(v.cbegin(), std::move(v[1]));
      assert(v.capacity() > old_cap); // test the test

      // vector is {2, 1, 0, 3...}
      // Note that old v[1] has been set to 0 when it was moved-from
      assert(v.size() >= 3);
      assert(v[0] == T(2));
      assert(v[1] == T(1));
      if (has_moved_from_sentinel_value<T>::value)
        assert(v[2] == T(0));
      assert(is_contiguous_container_asan_correct(v));
    }

    // When elements shift around
    {
      Vector v;
      v.emplace_back(1);
      v.emplace_back(2);
      // vector is {1, 2}

      v.reserve(3);
      std::size_t old_cap = v.capacity();
      v.emplace(v.cbegin(), std::move(v[1]));
      assert(v.capacity() == old_cap); // test the test

      // vector is {2, 1, 0}
      // Note that old v[1] has been set to 0 when it was moved-from
      assert(v.size() == 3);
      assert(v[0] == T(2));
      assert(v[1] == T(1));
      if (has_moved_from_sentinel_value<T>::value)
        assert(v[2] == T(0));
      assert(is_contiguous_container_asan_correct(v));
    }
  }

  // Make sure that we don't reallocate when we have sufficient capacity
  {
    Vector v;
    v.reserve(8);
    assert(v.capacity() >= 8);

    std::size_t old_capacity = v.capacity();
    v.emplace_back(0);
    v.emplace_back(1);
    v.emplace_back(2);
    v.emplace_back(3);
    assert(v.capacity() == old_capacity);

    v.emplace(v.cend(), 4);
    assert(v.size() == 5);
    assert(v.capacity() == old_capacity);
    assert(v[0] == T(0));
    assert(v[1] == T(1));
    assert(v[2] == T(2));
    assert(v[3] == T(3));
    assert(v[4] == T(4));
    assert(is_contiguous_container_asan_correct(v));
  }

  // Make sure that we correctly handle the case where an exception would be thrown if moving the element into place.
  // This is a very specific test that aims to validate that the implementation doesn't create a temporary object e.g.
  // on the stack and then moves it into its final location inside the newly allocated vector storage.
  //
  // If that were the case, and if the element happened to throw upon move construction or move assignment into its
  // final location, we would have invalidated iterators, when a different approach would allow us to still provide
  // the strong exception safety guarantee.
  //
  // Instead of the naive approach, libc++ emplaces the new element into its final location immediately, and only
  // after this has been done do we start making non-reversible changes to the vector's underlying storage. This
  // test pins down that behavior, although that is something that we don't advertise widely and could potentially
  // change in the future.
#if defined(_LIBCPP_VERSION) && !defined(TEST_HAS_NO_EXCEPTIONS)
  {
    // This ensures that we test what we intend to test: the Standard requires the strong exception safety
    // guarantee for types that are nothrow move constructible or copy insertable, but that's not what we're
    // trying to test. We're trying to test the stronger libc++ guarantee.
    static_assert(!std::is_nothrow_move_constructible<ThrowingMoveOnly>::value, "");
    static_assert(!std::is_copy_constructible<ThrowingMoveOnly>::value, "");

    std::vector<ThrowingMoveOnly, Allocator<ThrowingMoveOnly> > v;
    v.emplace_back(0, /* do throw */ false);
    v.emplace_back(1, /* do throw */ false);

    while (v.size() < v.capacity()) {
      v.emplace_back(2, /* do throw */ false);
    }
    assert(v.size() == v.capacity()); // the next emplace will be forced to invalidate iterators

    v.emplace(v.cend(), 3, /* do throw */ true); // this shouldn't throw since we shouldn't move this element at all

    assert(v.size() >= 3);
    assert(v[0] == ThrowingMoveOnly(0));
    assert(v[1] == ThrowingMoveOnly(1));
    assert(v.back() == ThrowingMoveOnly(3));
    assert(is_contiguous_container_asan_correct(v));
  }
#endif // defined(_LIBCPP_VERSION) && !defined(TEST_HAS_NO_EXCEPTIONS)
}

TEST_CONSTEXPR_CXX20 bool tests() {
  test<std::allocator, int>();
  test<min_allocator, int>();
  test<safe_allocator, int>();

  test<std::allocator, MoveOnly>();
  test<min_allocator, MoveOnly>();
  test<safe_allocator, MoveOnly>();

  test<std::allocator, NonTriviallyRelocatable>();
  test<min_allocator, NonTriviallyRelocatable>();
  test<safe_allocator, NonTriviallyRelocatable>();

  // test<limited_allocator<int, 7> >();
  return true;
}

int main(int, char**) {
  tests();
#if TEST_STD_VER > 17
  static_assert(tests());
#endif
  return 0;
}